
Nericell: Rich Monitoring of Road and Traffic Conditions
using Mobile Smartphones

Prashanth Mohan
prmohan@microsoft.com

Venkata N.
Padmanabhan

padmanab@microsoft.com

Ramachandran Ramjee
ramjee@microsoft.com

Microsoft Research India, Bangalore

ABSTRACT
We consider the problem of monitoring road and traffic con-
ditions in a city. Prior work in this area has required the
deployment of dedicated sensors on vehicles and/or on the
roadside, or the tracking of mobile phones by service providers.
Furthermore, prior work has largely focused on the devel-
oped world, with its relatively simple traffic flow patterns.
In fact, traffic flow in cities of the developing regions, which
comprise much of the world, tends to be much more com-
plex owing to varied road conditions (e.g., potholed roads),
chaotic traffic (e.g., a lot of braking and honking), and a
heterogeneous mix of vehicles (2-wheelers, 3-wheelers, cars,
buses, etc.).

To monitor road and traffic conditions in such a setting,
we present Nericell, a system that performs rich sensing by
piggybacking on smartphones that users carry with them
in normal course. In this paper, we focus specifically on
the sensing component, which uses the accelerometer, mi-
crophone, GSM radio, and/or GPS sensors in these phones
to detect potholes, bumps, braking, and honking. Nericell
addresses several challenges including virtually reorienting
the accelerometer on a phone that is at an arbitrary orien-
tation, and performing honk detection and localization in an
energy efficient manner. We also touch upon the idea of trig-
gered sensing, where dissimilar sensors are used in tandem
to conserve energy. We evaluate the effectiveness of the sens-
ing functions in Nericell based on experiments conducted on
the roads of Bangalore, with promising results.

Categories and Subject Descriptors
C.m [Computer Systems Organization]: Miscellaneous—
Mobile Sensing Systems

General Terms
Algorithms, Design, Experimentation, Measurement
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1. INTRODUCTION
Roads and vehicular traffic are a key part of the day-to-

day lives of people. Therefore, monitoring their conditions
has received a significant amount of attention. Prior work
in this area has primarily focused on the developed world,
where good roads and orderly traffic mean that the traffic
conditions on a stretch of road can largely be characterized
by the volume and speed of traffic flowing through it. To
monitor this information, intelligent transportation systems
(ITS) [9] have been developed. Many of these involve deploy-
ing dedicated sensors in vehicles (e.g., GPS-based tracking
units [12]) and/or on roads (inductive loop vehicle detec-
tors, traffic cameras, doppler radar, etc.), which can be an
expensive proposition and so is typically restricted to the
busiest stretches of road. See [3] for a good overview of traf-
fic surveillance technologies and Section 2 for related work.

In contrast, road and traffic conditions in the develop-
ing world tend to be more varied because of various socio-
economic reasons. Road quality tends to be variable, with
bumpy roads and potholes being commonplace even in the
heart of cities. The flow of traffic can be chaotic, with lit-
tle or no adherence to right of way protocols at some in-
tersections and liberal use of honking (The Nericell project
webpage [11] includes a video clip of a chaotic intersection
in Bangalore). Vehicles types are also very heterogeneous,
ranging from 2-wheelers (e.g., scooters and motorbikes) and
3-wheelers (e.g., autorickshaws) to 4-wheelers (e.g., cars)
and larger vehicles (e.g., buses).

Monitoring such varied road and traffic conditions is chal-
lenging, but it holds the promise of enabling new and useful
functionality. For instance, information gathered via rich
sensing could be used to annotate a map, thereby allowing
a user to search for driving directions that would minimize
stress by avoiding chaotic roads and intersections.

To address this challenge, we present Nericell1, a system
for rich monitoring of road and traffic conditions that pig-
gybacks on mobile smartphones. Nericell orchestrates the
smartphones to perform sensing and report data back to a
server for aggregation. Indeed, smartphones include a range
of sensing and communication capabilities, in addition to
computing. A phone might include any or all of a micro-
phone, camera, GPS, and accelerometer, each of which could

1Nericell is a play on the word ‘Nerisal’, which means ‘con-
gestion’ in Tamil.



be used for traffic sensing functions. In addition, the phone
would include a cellular radio (e.g., GSM), possibly with
data communication capabilities (e.g., GPRS or UMTS).

A mobile phone-based approach to traffic monitoring is a
good match for developing regions because it avoids the need
for expensive and specialized traffic monitoring infrastruc-
ture. It also avoids dependence on advanced vehicle features
such the Controller Area Network (CAN) bus that are absent
in the many low-cost vehicles that are commonplace in de-
veloping regions (e.g., the 3-wheeled autorickshaws in India).
Moreover, it takes advantage of the booming growth of mo-
bile telephony in such regions. For example, as of mid-2008,
India had 287 million mobile telephony subscribers, growing
at an estimated 7 million each month [15, 7]. Although the
majority of users have basic mobile phones today, a large
number of them, in fact more than the number of PC Inter-
net users in India, access the internet on their phones [10],
suggesting that the prospects of greater penetration of more
capable phones are good. There are similar growth trends
in many other parts of the world, with the total number of
mobile subscriptions worldwide estimated at 3.3 billion [5].
Note that despite being mobile phone-based, our approach
to traffic monitoring is distinct from prior work based on re-
mote tracking of mobile phones by cellular operators [39, 2,
1]. Our sensing and inferences goes beyond just monitoring
location and speed information, hence requiring a presence
on the phones themselves.

Our focus in this paper is on the sensing component of
Nericell; we defer a discussion of the larger system, includ-
ing the aggregation server, to future work. Several technical
challenges arise from our design choice to perform rich sens-
ing and base the system on mobile smartphones. Nericell
leverages sensors besides GPS — accelerometer and micro-
phone, in particular — to glean rich information, e.g., the
quality of the road or the noisiness of traffic. The use of
an accelerometer introduces the challenge of virtually reori-
enting it to compensate for the arbitrary orientation of the
phone that it is embedded in. Furthermore, we need to de-
sign efficient and robust bump, brake and honk detectors in
order to infer road and traffic conditions.

Moreover, since a smartphone is battery powered and is
primarily someone’s phone, energy-efficiency is a key con-
sideration in Nericell. To this end, we employ the concept
of triggered sensing, wherein a sensor that is relatively in-
expensive from an energy viewpoint (e.g., cellular radio or
accelerometer) is used to trigger the operation of a more ex-
pensive sensor (e.g., GPS or microphone). For efficiency in
communication and energy usage, each node processes the
sensed data locally before shipping the processed data back
to the server.

The main contributions of this work are: (1) algorithms to
virtually reorient a disoriented accelerometer along a canoni-
cal set of axes and then use simple threshold-based heuristics
to detect bumps and potholes, and braking (Section 5); (2)
heuristics to identify honking by using audio samples sensed
via the microphone (Section 6); (3) evaluation of the use of
cellular tower information in dense deployments in develop-
ing countries to perform energy-efficient localization (Sec-
tion 7); and (4) triggered sensing techniques, wherein a low-
energy sensor is used to trigger the operation of a high-
energy sensor (Section 8). Finally, we have implemented
most of these techniques on smartphones running Windows
Mobile 5.0 (Section 9).

There are two important issues that we do not address
in this paper. One is the question of privacy of the users
whose phones participate in Nericell. It may be possible to
achieve good enough privacy simply by suppressing the iden-
tity of a participating phone (e.g., its phone number) when
reporting and aggregating the sensed data. A more sophis-
ticated privacy-aware community sensing approach that in-
corporates formal models of sharing preferences is presented
in [32, 27]. The second issue is of providing incentives for
participation in Nericell. Providing incentives for partic-
ipation in such decentralized systems is an active area of
research (e.g., [17]) and we may be able to leverage this for
Nericell.

2. RELATED WORK
Intelligent transportation systems [9] have been proposed

and built to leverage computing and communication tech-
nology for various purposes: traffic management, routing
planning, safety of vehicles and roadways, emergency ser-
vices, etc. We focus here on work that is most relevant to
Nericell.

There has been much work on systems for traffic moni-
toring, both in the research world and in the commercial
space. Many of these systems leverage vehicle-based GPS
units (e.g., as in GM’s OnStar [12]) that track the movement
of vehicles and report this information back to a server for
aggregation and analysis. For instance, CarTel [29] includes
a special box installed in vehicles to monitor their move-
ments using GPS and report it back using opportunistic
communication across a range of radios (WiFi, Bluetooth,
cellular). This information is then used for applications such
as route planning.

Recent work on Surface Street Traffic Estimation [42] also
uses GPS-derived location traces but goes beyond just es-
timating speed to identifying anomalous traffic situations
using both the temporal and spatial distributions of speed.
For instance, the authors are able to distinguish between
traffic congestion and vehicles halting at a traffic signal.

Operational services, both commercial and otherwise, have
been built using GPS information as well as information
from other traffic sensors deployed in an area (inductive
loop vehicle detectors, traffic cameras, doppler radar, etc.).
Examples include the Washington State SmartTrek system
in the U.S. [22] (which includes, among other things, the
Busview service [13], to track the city buses in the Seattle
area), and the INRIX system [8] for predicting traffic based
on historical data.

There has also been work on leveraging mobile phones
carried by users as traffic probes. Smith et al. [39] report
on a trial conducted in Virginia in 2000, which was based
on localizing mobile phones using information gathered at
the cellular towers. This study made a number of inter-
esting observations, including that the sample density (at
the place and time of this study) was only sufficient for es-
timating speed with moderate accuracy (within 10 mph =
16 kmph), and that there was a tendency to underestimate
speed because of samples from stationary phones located
near the roadway. Regardless, the rapid growth in mobile
phone penetration has spurred the deployment of similar
systems in other locations worldwide, including in Banga-
lore [2].

Much of the work on ITS has used GPS-based localization
and some of it has used localization performed at cell towers.



However, there has been separate work on enabling a mobile
phone to locate itself, whether based on GSM signals [40,
20], with a median accuracy under 100m in the outdoors
measured in the Seattle area, or based on WiFi [21], with
a median accuracy of 13-40m in an area with dense WiFi
coverage. It is possible to use these localization techniques
in the context of an ITS, either to complement GPS or as
an alternative.

Other forms of sensing, besides localization, have also
been employed in ITS systems. Accelerometers are used
for automotive safety applications such as detecting crashes
to deploy airbags and to possibly also notify emergency ser-
vices automatically (e.g., Veridian [30]). Accelerometers and
strain gauges coupled with cameras have been used for struc-
tural monitoring of the transportation infrastructure [19]. In
recent work, the Pothole Patrol (P 2) system [24] performs
road surface monitoring by using special-purpose devices
with 3-axis accelerometers and GPS sensors mounted on the
dashboard of cars. It tackles the challenging problem of not
only identifying potholes but also differentiating potholes
from other road anomalies. The use of a special-purpose
device mounted in a known orientation, which simplifies the
analysis, is a key distinction of P 2 compared to our work on
Nericell, which leverages smartphones that users happen to
carry with them.

To put it in context, our work on Nericell builds on prior
work but is distinct from it in several ways. We do not
replicate the significant body of prior work on estimating
the speed of traffic flow [39, 42] and driving patterns [33]
based on location traces, and presenting this information to
users in an appropriate form [34]. Instead, Nericell focuses
on novel aspects of sensing varied road and traffic condi-
tions, such as bumpy roads and noisy traffic. Furthermore,
Nericell uses smartphones that users happen to carry with
them, depending only on capabilities that are already avail-
able in some phones and that are likely to be available in
many more in the coming years. By piggybacking on an ex-
isting platform, Nericell avoids the need for specialized and
potentially expensive monitoring equipment to be installed,
whether on vehicles as in [24, 29] or as part of the infras-
tructure as in SmartTrek [22]. But building on top of a
mobile phone platform introduces challenges, for instance,
with regard to accelerometer orientation, energy efficiency
and device localization, which we address in Nericell. Fi-
nally, Nericell falls under the active area of research called
opportunistic or participatory sensing [16] and can leverage
ongoing research on challenges that are inherent to this area,
e.g., data credibility and privacy.

3. EXPERIMENTAL SETUP
We discuss the hardware and software setup used for our

work and the measurement data that we gathered.

3.1 Smartphone Capabilities
A smartphone may include any or all of the following ca-

pabilities of relevance to Nericell:

• Computing: CPU, operating system, and storage
that provides a programmable computing platform.

• Communication:

– Cellular: radio for basic cellular voice communi-
cation (e.g., GSM), available in all phones.

– Cellular data: e.g., GPRS, EDGE, UMTS, pro-
vided by the cellular radio.

– Local-area wireless: radios for local-area wireless
communication (e.g., Bluetooth, WiFi).

• Sensing:

– Audio: microphone.

– Localization: GPS receiver.

– Motion: accelerometer, sometimes included for
functions such as gesture recognition.

– Visual: camera, although Nericell does not make
use of this at present.

These capabilities are not only within the realm of engi-
neering possibility, but in fact there exist smartphones on
the market that include most or all of the above capabilities
in a single package. For example, the Nokia N95 includes
all whereas the HP iPAQ hw6965 includes all except an ac-
celerometer and the Apple iPhone includes all except GPS.
We emphasize, however, that Nericell does not require all
participating phones to include each of these capabilities.

3.2 Hardware and Software Setup
Despite the availability of such capable smartphones, our

experimental setup is complicated a little by hardware and
software constraints of the devices available to us. We de-
scribe here the devices that we use.

• HP iPAQ hw6965 [6]: This Pocket PC running Win-
dows Mobile 5.0 includes a GSM/GPRS/EDGE radio,
Bluetooth 1.2, 802.11b, and a Global Locate GPS re-
ceiver.

• HTC Typhoon: For cellular localization, we use re-
branded HTC Typhoon phones, specifically the Au-
diovox SMT5600, iMate SP3, and Krome iQ700, which
feature a tri-band GSM radio and run Windows Mobile
2003. As noted in [37, 20] the HTC Typhoon is conve-
nient to use for this purpose because it makes available
information about multiple cell towers in the vicinity.
All phones (including our HP iPAQs) have this tower
information (which is needed to perform handoffs) but
do not expose it to user-level software, although there
is no fundamental reason why they could not.

• Sparkfun WiTilt accelerometer [14]: The Sparkfun WiTilt
combines a Freescale MMA7260Q [4] 3-axis accelerom-
eter sensor with a Bluetooth radio to enable remote
reading. The Freescale MMA7260Q accelerometer sen-
sor has a selectable sensitivity ranging from +/-1.5g to
+/-6g and a sampling frequency of up to 610 Hz.

While the HP iPAQ is the centerpiece of our setup, we use
the WiTilt as the accelerometer sensor and use the Typhoon
for cellular localization.

3.3 Trace Collection
Much of our experimental work was set in Bangalore.

We gathered GPS-tagged cellular tower measurements dur-
ing several drives over the course of 4 weeks. Separately,
we gathered GPS-tagged accelerometer data measurements
on drives on some of the same routes over the course of 6



Location Dates Duration Dist. Information
(hours) (km) recorded

Bangalore 03-Sep-07 – 19-Sep-07 19.5 377 GPS, GSM

20-Nov-07 – 22-Nov-07

Seattle 25-Sep-07 – 28-Sep-07 4.1 183 GPS, GSM

Bangalore 30-Mar-08 4.0 62 GPS, accel.

08-Apr-08 – 13-Apr-08

Table 1: Summary of data gathered on drives

8.54km8.54km

8.88km

Figure 1: Map of Ban-
galore with drive routes
highlighted

Figure 2: A typical
chaotic road intersection
with variety of vehicles at
loggerheads

days. 2 We also gathered cellular tower measurements over
the course of a few days in the Seattle area. Table 1 sum-
marizes all of the data that we gathered on drives through
traffic. Figure 1 shows a map of Bangalore with the drive
routes highlighted.

In addition to drive data, we gathered accelerometer data
over specific sections of road (selected for their bumps, pot-
holes, etc.) at controlled speeds using a Toyota Qualis multi-
utility vehicle. The vehicles were driven by various drivers
with the accelerometer placed in various locations – back
and middle seats, dashboard and the hand rest of the vehi-
cle. We also recorded the sound of several vehicles honking.

Figure 2 shows a typical chaotic intersection with differ-
ent vehicle types, each approaching the intersection from a
different direction and with little adherence to right of way
protocols. These intersections are typically also character-
ized by significant amount of braking and honking. A video
clip of such a chaotic intersection in Bangalore, showing a
lot of braking and honking, is available at [11].

4. OVERVIEW
The richness of sensing that Nericell encompasses is mo-

tivated by the wide applicability we envisage for the sys-
tem. The system could be used to annotate traditional traf-
fic maps with information such as the bumpiness of roads,
and the noisiness and level of chaos in traffic, for the ben-
efit of the traffic police, the road works department, and
ordinary users. For instance, a user might search for a route
that minimizes the number of chaotic intersections to be tra-
versed, thereby optimizing for “blood pressure” rather than
for distance or time. While these applications serve as the
motivation, our focus in this paper is on the sensing compo-
nent of Nericell, specifically, on how to efficiently use the ac-
celerometer, microphone, GSM, and GPS sensors in mobile

2The only reason that the accelerometer measurements were
made separately from the cellular measurements was that we
procured the accelerometers later.

Mode Life Time Power (mW)
Includes Phone Idle For given

mode only
Phone Idle 24h 18m 182.7

Bluetooth (BT) Idle 22h 13m 17.1
BT Device Inquiry 10h 46m 229.5
BT Service Discovery 7h 53m 380.0

WiFi Idle 4h 39m 771.8
WiFi Beacon (Sending) 4h 36m 782.0
WiFi Scan (Receiving) 2h 59m 1298.8

GPS 5h 32m 617.3

Microphone 10h 54m 223.2

Accelerometer (per spec.) 24h 5m 1.65
Accel. with Bluetooth 19h 56m 40

Table 2: Power usage for various activities

smartphones to detect bumps and potholes, braking, and
honking, and to determine location in an energy-efficient
manner.

In Section 5, we focus on sensing using a 3-axis accelerom-
eter. Given that a mobile smartphone and its embedded
accelerometer could be in any arbitrary orientation, we first
discuss our algorithm for virtually reorienting a disoriented
accelerometer automatically. Using real drive data from re-
oriented as well as well-oriented accelerometers, we evaluate
the efficacy of our reorientation algorithm as well as our
simple heuristics to detect bumps and potholes, and brak-
ing. In Section 6, we describe how audio sensed using the
microphone can be used to detect honks. In Section 7, we
discuss and evaluate the accuracy of energy-efficient coarse-
grain localization and traffic speed estimation using GSM
cellular tower information.

Given the energy costs of the different sensors, as indi-
cated in Table 2, Nericell only keeps its GSM radio (which
has to be turned on anyway for the phone to function) and
the accelerometer turned on continually. It uses input from
these two devices to trigger the turning on of the other sen-
sors, for instance, to obtain a precise location fix using GPS.
We discuss this and other examples of triggered sensing in
Section 8.

Note that each individual phone filters and processes its
sensed data locally before reporting it to a server for aggrega-
tion. This not only cuts down on the cost of communication
(including the energy cost entailed), it helps with privacy
(for example, by not uploading raw audio feeds) and it also
cuts down on the volume of extraneous data, not reflective of
road and traffic conditions, that the aggregator has to con-
tend with. For example, we filter out accelerometer readings
arising from a user fidgeting with their phone rather than
from bumps in the road.

Finally, we present our implementation status in Section 9
with the focus again on mobile phone-based sensing. Given
the small scale of our experiments and testbed thus far, we
have only developed a rudimentary server that simply ag-
gregates processed data from the phones. In a large-scale
system, the server would need algorithms to disambiguate
and cluster data from the various phones, for example, as
presented in [24]. The server would also need to orchestrate
the phones to perform sensing in a manner that minimizes
overall resource usage, for example, using an approach such
as in [32].

5. ACCELERATION
In this section, we discuss how Nericell uses the accelerom-

eter on a phone to sense road and traffic conditions.



5.1 Framework
As noted in Section 3.2, we use a 3-axis accelerometer for

our work. The accelerometer has a 3-dimensional Cartesian
frame of reference with respect to itself, represented by the
orthogonal x, y, and z axes. In addition, we define a Carte-
sian frame of reference with respect to the vehicle that the
accelerometer (or rather the phone that it is part of) is in.
The vehicle’s frame of reference is represented by the or-
thogonal X, Y , and Z axes, with X pointing directly to the
front, Y to the right, and Z into the ground. See Figure 3
for an illustration.

Note the distinction between the lower case letters (x, y,
z) used to represent the accelerometer’s frame of reference
and the upper case letters (X, Y , Z) used to represent the
vehicle’s frame of reference. If (x, y, z) is aligned with (X,
Y , Z), we say that the accelerometer is well-oriented. Oth-
erwise, we say that it is disoriented.

The accelerometer readings along the 3 axes are denoted
by ax, ay, and az. If the accelerometer is well-oriented, these
readings would also correspond to aX , aY , and aZ along the
vehicle’s axes. All acceleration values are expressed in terms
of g, the acceleration due to gravity (9.8 m/s2). Also, we
set the sampling frequency of the accelerometer to 310 Hz,
unless noted otherwise.

Finally, we note that ours is a DC accelerometer, which
means that it is capable of measuring “static” acceleration.
For instance, even when a well-oriented accelerometer is sta-
tionary, it reports az = 1g. In essence, the measurement re-
ported by the accelerometer is a function of the force exerted
on its sensor mechanism, not the textbook definition of ac-
celeration as the rate of change of velocity. For the same rea-
son, when the vehicle accelerates (which would represent a
positive acceleration along X according to the textbook def-
inition), our accelerometer would experience a force pressing
it backwards and hence report a negative acceleration along
X.

5.2 Determining Accelerometer Orientation
In general, the phone (or, rather, the accelerometer em-

bedded in it) and its (x,y,z) axes could be in an arbitrary
orientation with respect to the vehicle and its (X,Y ,Z) axes.
Furthermore, this orientation could change over time as the
phone is moved around. A phone that is disoriented in this
manner makes it non-trivial for its accelerometer measure-
ments to be used to infer road and traffic conditions. For
instance, if z were aligned with X (i.e., it points to the front
rather than down), episodes of sharp acceleration and decel-
eration (i.e., horizontal acceleration) might be mistaken for
bumps on the road (i.e., vertical acceleration). Thus, before
the accelerometer measurements can be used, it is important
for us to virtually reorient the accelerometer to compensate
for its disorientation. The need to address this challenge is
a key distinction of our approach based on phones from the
prior work on Pothole Patrol [24] that leverages a dedicated
accelerometer mounted at a known orientation.

We define the canonical orientation of (x,y,z) to be the
one that corresponds to (X,Y ,Z). In general, any arbitrary
orientation of (x,y,z) can be arrived at by applying rotations
about X, Y , and Z in sequence, starting with the canonical
orientation. Our goal is to infer the angles of rotation about
each axis. While we could work with such a framework, it
yields multi-factor trigonometric equations that are complex
to solve.

5.2.1 Euler Angles
An alternative but equivalent framework is based on Euler

angles [26, 41], which, as it turns out, simplifies our calcu-
lations significantly. There are a number of formulations of
Euler angles, but we only describe the formulation (termed
Z − Y − Z) that we use in our work. Any orientation of
the accelerometer can be represented by a pre-rotation of
φpre about Z, followed by a tilt of θtilt about Y , and then
a post-rotation of ψpost again about Z. All angles are mea-
sured counter-clockwise about the corresponding axis. (The
subscripts to φpre, θtilt, and ψpost are not needed, but we
include these for clarity.)

That these three Euler angles are sufficient to represent
any orientation might seem counter-intuitive since there is
no rotation about X and thus one might erroneously con-
clude that the tilt has no impact on y. However, because of
the pre-rotation, the tilt would in fact affect both x and y
in general. For example, if the pre-rotation were by 90o, y
would be in line with X, so the tilt about Y would in fact
impact y.

5.2.2 Estimating Pre-rotation and Tilt
With this framework in place, we now describe our pro-

cedure for determining the orientation of the disoriented
accelerometer. When the accelerometer is stationary or in
steady motion, the only acceleration it will experience is that
due to gravity, along Z. (Recall that our accelerometers re-
port the strength of the force field, so aZ = 1g despite the
accelerometer being stationary.) The tilt operation is the
only one that changes the orientation of z with respect to
Z. So az = aZcos(θtilt). Since aZ = 1, we have

θtilt = cos−1(az) (1)

Pre-rotation followed by tilt would also result in non-zero
ax and ay due to the effect of gravity. As explained in Ap-
pendix A, we have:

φpre = tan−1(
ay
ax

) (2)

To estimate θtilt and φpre using Equations 1 and 2, we
could identify periods when the phone is stationary (e.g., at
a traffic light) or in steady motion in a straight line, say using
GPS to track motion. However, a simpler approach that we
have found works well in practice is to just use the median
values of ax, ay, and az over a 10-second window.3 The
median value over a window of this length turns out to be
remarkably stable, even during a bumpy drive. Intuitively,
any spike in acceleration would tend to be momentary and
would settle back around the median within a few seconds
or less. For example, if the vehicle gets lifted up by a bump,
thereby causing a spike in the g-force, it would descend back
soon enough, causing a spike in the reverse direction; the
median itself remains largely unaffected.

Thus by computing ax, ay , and az over short time win-
dows, we are able to estimate θtilt and φpre on an ongoing
basis. Any significant change in θtilt and φpre would indicate
a significant change in the phone’s orientation. However, the
converse is not always true. If the phone were carefully ro-
tated about Z, θtilt and φpre would remain unaffected.

3Although it was not an issue in our setting, if sharp turns
at high speeds are likely, we would have to fall back on GPS
to identify suitable periods for this estimation.



Figure 3: This figure illustrates the process of vir-
tually reorienting a disoriented accelerometer. (a)
shows the measurements made at a disoriented ac-
celerometer, which unsurprisingly do not match
with the measurements shown in (b), correspond-
ing to a well-oriented accelerometer. However, af-
ter the disoriented accelerometer has been virtually
reoriented, its corrected measurements shown in (c)
match those in (b) quite well.

5.2.3 Estimating Post-rotation
Since post-rotation (like pre-rotation) is about Z, it has

no impact with respect to the gravitational force field, which
runs parallel to Z. So we need a different force field with
a known orientation that is not parallel to Z, to be able to
estimate the angle of post-rotation, ψpost. In practice, we
would need this force field to have a significant component
in a known direction orthogonal to Z.

The acceleration and braking of a vehicle travelling in a
straight line produces a force field in a known direction, X,
in line with the direction of motion of the vehicle. However,
these would have little impact on the orthogonal directions,
in particular, on Y . In general, braking tends to be sharper
than acceleration, so we focus our attention on braking. For
example, if a car travelling at 50 kmph ≈ 31 mph brakes to
a halt in 10 seconds, aX would be be about 0.14g, a small
but still noticeable level.

We use GPS to monitor the vehicle’s motion and thereby
identify periods of sharp deceleration but without a signifi-
cant curve in the path (i.e., the GPS track is roughly linear).
During such a period, we know that there will be a notice-
able, even if transient, force field along X, with little impact
on Y . Given the measured accelerations (ax, ay, az), and
the angles of pre-rotation (φpre) and tilt (θtilt), we estimate
the angle of post-rotation (ψpost) as the one that maximizes

our estimate, a
′

X , of the acceleration along X, which is the

direction of braking. Note that a
′

X is an estimate and hence
is not necessarily equal to the true aX .

As explained in Appendix B, this maximization procedure

yields:

ψpost = tan−1 (3)

(
−axsin(φpre)+aycos(φpre)

(axcos(φpre)+aysin(φpre))cos(θtilt)−azsin(θtilt)
)

To estimate ψpost, we first estimate φpre and θtilt using
Equations 1 and 2. We then identify an instance of sharp
deceleration using GPS data and record the mean ax, ay,
and az during this period. In our experiments, we use just
the first few seconds (typically 2 seconds) of the decelera-
tion to compensate for the time lag in the speed estimate
obtained from GPS. Note that we use the mean here, unlike
the median used in Section 5.2.2, because we want to record
the transient surge because of the sharp deceleration.

Compared to estimating φpre and θtilt, estimating ψpost is
more elaborate and expensive, requiring GPS to be turned
on. So we monitor φpre and θtilt on an ongoing basis, and
only if there is a significant change in these or there is other
evidence that the phone’s orientation may have changed
(Section 5.3), do we turn on GPS and run through the pro-
cess of estimating ψpost afresh.

5.2.4 Validating Virtual Reorientation
To validate the virtual reorientation algorithm described

above, we conduct an experiment that involves measure-
ments made with three accelerometers: ACL-1 and ACL-
2, which are well-oriented, and ACL-3, which is disoriented.
We make these measurements during a drive, which includes
episodes of acceleration and braking, and use these to esti-
mate φpre, θtilt, and ψpost for ACL-3, using Equations 1,
2, and 3, respectively. Using these estimates and the mea-

sured ax, ay, and az for ACL-3, we estimate a
′

X , a
′

Y , and

a
′

Z . We then compare these estimates with the measured
values of aX , aY , and aZ from the well-oriented accelerom-
eters, ACL-1 and ACL-2. A good match would suggest that
the estimates of φpre, θtilt, and ψpost are accurate.

As an illustration, Figure 4 shows to a sharp decelera-
tion during the period of 27-30 seconds, which generates a
surge in aX alone, as recorded by ACL-1, one of the two
well-oriented accelerometers (Figure 4(b)). The disoriented
accelerometer, ACL-3, on the other hand, records surges or
dips in its ax, ay, and az (Figure 4(c)). However, after ACL-

3’s orientation is estimated and compensated for, a
′

X , a
′

Y ,

and a
′

Z are estimated (Figure 4(d)). Figure 4(d) only shows

a surge in a
′

X , which is consistent with Figure 4(b).
To quantify the effectiveness of virtual reorientation, we

compute the cross-correlation between the measurements
from the reoriented accelerometer and those from the well-
oriented accelerometers. The cross-correlation between two
time series, x[i] and y[i], is defined as:

r =

PN

i=0 {(x[i] − x̄) ∗ (y[i] − ȳ)}
q

PN

i=0 (x[i] − x̄)2 ∗
q

PN

i=0 (y[i] − ȳ)2

x̄ and ȳ correspond to the means of the two time series.
When the two time series are perfectly correlated, r = 1.
When they are entirely uncorrelated, r = 0.

As is clear from Figure 4, measurements from an accelerom-
eter are noisy, presumably because of artifacts of its analog
sensor mechanism. This has a two implications for our eval-
uation. First, the cross-correlation between measurements
from two accelerometers is low during periods when the mea-
surements only comprise (uncorrelated) noise, with little or
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(d) Disoriented accelerometer after correction
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Figure 4: Estimating the orientation of a disoriented
accelerometer based on sharp deceleration starting
at around 27 seconds: φpre = −88o, θtilt = 49o, ψpost =
−135o

no signal. However, since our interest is in periods when
there is a signal, say due to braking or a bump, we only
consider the measurements during such periods of activity
in our computation of cross-correlation. In the experiment
we conducted, this would correspond to the X component
during the episodes of acceleration and braking. Second, the
presence of noise even during such periods of interest means
that two accelerometers may not agree perfectly, even if
they are both well-oriented. So, in addition to reporting the
cross-correlation between the virtually reoriented accelerom-
eter (ACL-3) and each of the well-oriented ones (ACL-1 and
ACL-2), we also report the cross-correlation between the two
well-oriented accelerometers (ACL-1 and ACL-2) to provide
a point of comparison.

Table 3 shows the cross-correlation numbers between each
pair of accelerometers across several episodes of acceleration
and braking. Each episode lasted 15-20 seconds and the ac-
celerometer sampling frequency was set to 25 Hz, yielding a
time series comprising 375-450 samples. The accelerometers
were placed on the rear seat of a Toyota Qualis vehicle. The
orientation of ACL-3 was held fixed across certain pairs of

W1-W2 φpre/θtilt/ψpost D3-W1 R3-W1 D3-W2 R3-W2
1 0.90 7o/38o/106o 0.30 0.88 0.20 0.91

2 0.75 174o/34o/-107o 0.43 0.72 0.54 0.87

3 0.94 174o/34o/-107o 0.59 0.84 0.67 0.90

4 0.74 4o/42o/12o 0.65 0.72 0.63 0.68

5 0.76 3o/44o/-1o 0.62 0.71 0.69 0.79

6 0.78 -80o/42o/121o 0.65 0.73 0.64 0.73

Table 3: Cross-correlation between the X compo-
nents of the disoriented accelerometer (ACL-3) and
each of the well-oriented accelerometers (ACL-1 and
ACL-2) across several episodes of acceleration and
braking. We report the cross-correlation numbers
for before (D-W ) and after (R-W ) virtual reorien-
tation is performed, along with the reorientation
angles. We also report the W -W cross-correlation
numbers between the two well-oriented accelerome-
ters, to provide a point of comparison.

episodes and was changed between others. We observe that,
in general, the the cross-correlation improves significantly
when we go from having a disoriented accelerometer to one
that has been virtually reoriented. For example, in episode
1, the cross-correlation between ACL-3 and ACL-1 improves
from 0.30 to 0.88 after virtual reorientation is performed. In
some cases, the improvement is smaller, for example, going
from 0.62 to 0.71 in episode 5. The reason for the smaller
improvement in episode 5 is that the angles of pre-rotation
(φpre) and post-rotation (ψpost) are small (3o and -1o, re-
spectively). So even with disorientation, braking causes a
surge in ax, albeit reduced in magnitude because of the tilt,
θtilt.

We also observe that the cross-correlation numbers after
virtual reorientation (the R-W columns) are comparable to
those between the two well-oriented accelerometers (the W -
W column). Furthermore, these cross-correlation numbers,
while high, are significantly lower than the cross-correlation
of 1.0 that perfect correlation would yield. The lack of per-
fection comes from noise spikes, which motivates our insis-
tence in Section 5.4.3 and Section 5.4.1 on looking for sus-
tained surges rather than momentary spikes to detect bumps
and braking, unless the spikes are much larger in magnitude
than those due to noise.

To conclude, our results in this section suggest that with
virtual reorientation, a disoriented accelerometer has the po-
tential to be almost as effective as a well-oriented accelerom-
eter for the purpose of monitoring road and traffic condi-
tions.

5.3 Detecting User Interaction
When a phone is being interacted with by the user, it

would experience extraneous accelerations. Thus, we would
like to neglect the accelerometer readings such periods. We
use two techniques to detect user interaction. To detect
orientation changes, we use the technique described in Sec-
tion 5.2.2, with the caveat noted there. To detect other
forms of user interaction, we look for one or more of the
following: key presses on the phone’s keypad, mouse move-
ments and ongoing or recently concluded phone calls.

5.4 Inferring Road and Traffic Conditions
We now present analyses of accelerometer measurements

for detecting brakes and potholes in the road.

5.4.1 Braking Detection
We first consider the problem of detecting braking events.

The frequency of braking on a section of road is indica-



tive of drive quality. A high incidence of braking could be
because of poor road conditions (e.g., poor lighting) that
make drivers tentative or because of heavy and chaotic traf-
fic. While GPS could be used to detect braking, doing so
would incur a high energy cost, as indicated in Table 2. Fur-
thermore, GPS-based braking detection is challenging at low
speeds because of the GPS localization error of 3-6 m. So in
Nericell, we focus on an alternative approach, namely, lever-
aging the accelerometer in a phone for braking detection.

In general, braking would cause a surge in aX because
the accelerometer would experience a force pushing it to the
front. The surge can be significant even when the brake
is applied at low speed. If a vehicle travelling at 10 kmph
brakes to a halt in 1 second, that would result in an aver-
age surge of 0.28g in aX and possibly much larger spikes.
Figure 4(b) and (d) clearly show a sustained surge in aX
corresponding to a braking event.

The persistence of the surge over relatively long time-
frames (a second or longer) makes brake detection an easier
problem than detecting potholes where the signal lasts only
fractions of a second (see Section 5.4.3). To detect the inci-
dence of braking, we compute the mean of aX over a sliding
window N seconds wide. If the mean exceeds a threshold T ,
we declare that as a braking event.

In order to evaluate our braking detector, we need to es-
tablish the ground truth. Ideally, we would have liked to
use data from the car’s CAN bus for obtaining accurate in-
formation on the ground truth, but we did not have access
to it. So for the evaluation presented in this section, we use
GPS-based braking detection to establish the ground truth.
To minimize the impact of GPS’s localization error noted
above, we employ a conservative approach that only consid-
ers sustained braking events that last several seconds. (See
Section 5.4.2 for an evaluation of the same brake detector
on sharp brakes at slow speeds with manually established
ground truth.) Using a trace of GPS location estimates, say
...loci−1 , loci, loci+1, ..., we compute instantaneous speed at
time i as distance(loci−1, loci+1)/2. Once we have the in-
stantaneous speed values, we define a brake as deceleration
of at least 1m/s2 sustained over at least 4 seconds (i.e., a
decrease in speed of at least 14.4 kmph over 4 seconds).

We use a 75-minute long drive over 35 km of varied traf-
fic conditions to evaluate our braking detection heuristic.
Using the GPS-derived ground truth described above, we
detect a total of 45 braking events in this trace. This drive
also includes data from two accelerometers, one well-oriented
(ACL-1) and the other disoriented (ACL-3). The virtual re-
orientation procedure from Section 5.2 was applied to mea-
surements from ACL-3, before it was fed into our braking
detection heuristic. We set the parameters of the braking de-
tection heuristic to correspond to the definition of a brake.
We compute the mean of X-values over a N = 4 second win-
dow and depict results for threshold values of T=0.11g and
T=0.12g (i.e., 10-20% more conservative than the 1m/s2 de-
celeration threshold applied on the GPS trace to establish
the ground truth).

The results of applying our braking detection heuristic are
shown in Table 4. The percentage of false positives/negatives
and also the magnitude of the change in speed during the
false positive/negative events are shown. The first obser-
vation is that the results using accelerometer ACL-1 agree
quite well with the results using the reoriented accelerom-
eter ACL-3. Thus, the virtual reorientation algorithm pre-

Accelerometer False Negative False Positive
(threshold T (g)) Rate Change in Rate Change in

speed speed
avg(max) avg(min)

ACL-1 (T=0.11) 4.4% 15(16) 22.2% 12(10)
ACL-1 (T=0.12) 11.1% 16(18) 15.5% 12(9)
ACL-3 (T=0.11) 4.4% 15(16) 31.1% 12(9)
ACL-3 (T=0.12) 11.1% 16(18) 17.7% 12(9)

Table 4: False Positives/Negatives of Brake detector
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Figure 5: X-axis accel. for a car in traffic and a
pedestrian

serves the characteristics of the accelerometer measurements
sufficiently to allow the braking detector to work effectively.
Second, while the false positive rates seem high at 15-31%,
when we examine the trace, we find that each of these false
positive events actually correspond to a deceleration event,
albeit of lesser magnitude than our earlier definition of a
brake. Based on the GPS-derived ground truth, the aver-
age (minimum) speed decrease over four seconds at these
events was 12 kmph (9 kmph), just short of our target of
14.4 kmph threshold. Note that a difference of 5kmph over
4 seconds corresponds to a location change of 5.6 m, which is
well-within the localization error of GPS. Even if the GPS
estimates were accurate, the false positives would simply
correspond to less sharp brakes and are thus not problem-
atic. In the case of false negatives, the rate is lower overall
at 4-11%. The few false negatives again correspond to bor-
derline events, with an average (maximum) speed decrease
of 15 kmph (18 kmph), which when compared to the thresh-
old of 14.4 kmph is again well within the localization error
of GPS.

5.4.2 Stop-and-Go Traffic vs. Pedestrians
Given that Nericell piggybacks on mobile phones, we have

to be able to differentiate between phones that are in vehi-
cles stuck in-traffic from out-of-traffic phones that are in
parked cars or are carried by pedestrians walking alongside
the road. Otherwise, the estimation of traffic conditions
might be unnecessarily pessimistic, as observed in [39].

We use accelerometer readings to differentiate pedestrian
motion (and stationary phones) from vehicular motion in
stop-and-go traffic. The top curve in Figure 5 shows aX
(offset by +1g for clarity) in the case of a vehicle moving at
5-10 kmph in stop-and-go traffic, applying its brakes repeat-
edly. The braking episodes, which are annotated manually
to establish the ground truth, cause surges in aX that can



be clearly seen and are also picked out by our braking de-
tection heuristic from Section 5.4.1, with no false positives
or negatives. Note that despite the low speed, and hence
the surges due to the braking episodes lasting for a shorter
duration than those in the drive in Section 5.4.1, the same
setting of N=4 seconds works well because the surge, when
averaged over a window of this duration, still exceeds the
detection threshold of T=0.11g.

The bottom curve in Figure 5 shows aX (offset by −1g
for clarity) for a pedestrian. The accelerometer is placed in
the subject’s trouser pocket, which results in larger spikes
in aX than if it were placed in a shirt pocket or in a belt
clip. Despite the significant spikes in aX associated with
pedestrian motion, there is no surge that persists, unlike
with the braking associated with stop-and-go traffic. When
we applied our brake detection heuristic to different pedes-
trian accelerometer traces (with the accelerometer placed in
the trouser pocket, shirt pocket, bag etc.), no false positives
(i.e., brakes) were detected.

This limited evaluation suggests that our brake detection
heuristic has significant potential to be used to distinguish
between vehicles in stop-and-go traffic and pedestrians.

5.4.3 Bump Detection
We now consider the problem of detecting a pothole or

bump on the road. A bump could arise due to a variety of
reasons, both unintended (e.g., potholes), and intended (e.g.,
speed bumps to slow vehicles down). We do not attempt to
distinguish between these causes here as we believe that an
external database of the intended bumps could be used to
post-process the bump events reported by Nericell to filter
out the ones due to intended causes.

As discussed in [24], the problem of bump detection is
challenging for a number of reasons. A major challenge is
establishing the ground truth. This is typically done only via
manual annotation, which is subjective and could be heav-
ily influenced by how the vehicle approaches the bump and
at what speed. We also base our ground truth on manual
annotation, but we ensure that the ground truth is decided
by consensus among two or three users. On some sections of
the road, we also performed multiple drives to compare the
ground truth across drives and arrive at a consensus. The
second major challenge with bump detection is that the ac-
celerometer signal is typically of very short duration, on the
order of milliseconds. Since a bump results in a significant
vertical jerk, we expect it to register in the measurement of
aZ . Also, since the vehicle shifts both up and down, there
would be both spikes and dips in aZ . However, the magni-
tude of the signal spike can have different characteristics at
different speeds.

These can be seen in Figures 6 and 7, which shows aZ
for a car going over a speed bump at low and high speeds,
respectively. Note that, at low speeds, there is a distinct dip
significantly below 1g that is sustained over several samples.
We hypothesize that this dip corresponds to the physical
phenomenon of the car’s wheel falling, from the time it goes
over the edge of the pothole until when it meets the bottom
of the pothole. When the wheel impacts the ground, a sharp
force is transferred to the vehicle, which is registered as a
spike in aZ . At low speeds, the upward spike is muted, as
in Figure 6, while at high speeds, the upward spike can be
significant, as in Figure 7. While the sustained dip also
occurs during bumps in many of our high speed traces, we
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also found that it also caused a lot more false positives at
high speeds. We suspect that small undulations in the road
could be the cause of such false-positive dips.

Motivated by the above observations, we utilize two bump
detectors depending on the speed of the vehicle. At high
speeds (≥25 kmph), we use the surge in aZ to detect bumps.
This is identical to the z-peak heuristic proposed in [24],
where a spike along aZ greater than a threshold is classified
as a suspect bump. At low speeds, we propose a new bump
detector called z-sus, which looks for a sustained dip in aZ ,
reaching below a threshold T and lasting at least 20 ms
(about 7 samples at our sampling rate of 310 Hz). The
exact duration for which the vehicle’s wheel falls, before it
hits the bottom of the pothole, depends upon the geometry
of the pothole as well as that of the vehicle itself. Only one of
the vehicle’s wheels — the one that passes over the pothole
— falls, while the remaining wheels are solidly grounded,
so the rate of fall is slower and the duration longer than
with free fall. At high speeds, even minor irregularities in
the road cause the vehicle to bob up and down, resulting in
sustained dips. This leads to a high rate of false positives
when z-sus is applied at high speeds. We have empirically
determined that at low speeds, looking for a sustained dip
of at least 20 ms duration is a good indicator of bumps, and
at high speeds, the z-peak algorithm performs well. Finally,
to identify the vehicle speed for applying the appropriate
bump detector, we can rely on GSM localization (Section 7)
since we only need a coarse-grained estinate of speed, i.e.,
whether the vehicle is travelling at low speeds (<25 kmph)
or not.

The two bump detectors, z-peak from [24] and our new
z-sus, were tested over two drives, one along a short section
of road approximately 5 km long with a total of 44 bumps
or potholes (labeled “bumpy road”), and another approxi-
mately 30km long with a total of 101 bumps or potholes
from a mixture of bumpy roads interspersed with stretches
of smooth highways (labeled “mixed road”). In the case of
z-sus, a threshold of T = 0.8g was chosen by training over
the bumpy road trace and then the same threshold was used
over the longer mixed road trace for validation. In the case
of z-peak, one could use techniques presented in [24] to dy-
namically tune the threshold for different speeds. However,
here we illustrate the best-case scenario for z-peak by tuning
the threshold parameter separately to its optimal values for
low and high speeds, respectively.

During each run, we obtained measurements from two
well-oriented accelerometers, ACL-1 and ACL-2, as well as
a disoriented accelerometer, ACL-3, that was virtually re-



Detector Accel. Speed < 25kmph Speed ≥ 25kmph
FN FP FN FP

BUMPY road 40 bumps total 4 bumps total
z-sus ACL-1 25% 5% 50% 0%

ACL-2 30% 0% 25% 0%
ACL-3 23% 5% 0% 50%

z-peak ACL-1 28% 15% 0% 125%
(1.45) ACL-2 20% 5% 0% 125%

ACL-3 30% 10% 0% 200%
MIXED road 62 bumps total 39 bumps total

z-sus ACL-1 29% 8% 18% 80%
ACL-3 37% 14% 0% 136%

z-peak ACL-1 35% 6% 5% 197%
(1.45) ACL-3 65% 21% 3% 49%
z-peak ACL-1 90% 0% 51% 3%
(1.75) ACL-3 83% 0% 41% 8%

Table 5: False positives/negatives (FP/FN) for
bump detectors, z-peak and our new z-sus. The
numbers in bold correspond to the hybrid approach
of applying z-sus at low speeds and z-peak at high
speeds.

oriented. Our goal is to evaluate the bump detectors, both
across the different accelerometers and across the two drives.
The results are shown in Table 5. Note that, even though
we show results for z-sus at both low and high speeds for
completeness, we wish to reiterate that z-sus is targeted as
a detector only for low speeds.

We make several observations. First, while we have tuned
both the detectors so that the false positive rate is kept
low (<10%), the false negative rate for both the detectors
is still quite high (20-30%). This can be explained partly
by the difficulty of establishing the ground truth, as noted
above. Second, the false positive/negative rates show some
variation across all three accelerometers (two well-oriented
and one virtually reoriented) for both z-peak and z-sus, but
the range of variation is limited for most of the cases. For
example, false negative (positive) rates varies between 20-
30% (5-15%) for the bumpy road trace. This shows that the
virtual reorientation preserves the essential characteristics
of the accelerometer signal. Third, consider the case when
speed is less than 25 kmph, where the optimal threshold for
z-peak is 1.45g. Here z-sus outperforms z-peak, with lower
false positive rates for attaining similar or better false neg-
ative rates. Finally, we note that if z-peak is tuned with a
threshold of 1.75g, it performs best at high speeds, achiev-
ing 3-8% false positive rates on the mixed road trace (z-sus
suffers from unacceptably high false positive rates at high
speeds).

6. AUDIO
All phones have a microphone that can serve as a readily-

available sensor. In this section, we discuss how the au-
dio sensed through the mobile’s microphone can be used for
honk detection. Audio sensing does use significant amount
of power, although lower than WiFi or GPS on our iPAQ
platform (Table 2), and is performed only on an as needed
basis (see Section 8). Finally, note that the audio content
never leaves the phone; only processed information such as
the number of honks detected is sent to the Nericell server,
alleviating privacy concerns to a large extent.

Nericell uses honk detection to identify noisy and chaotic
traffic conditions like that at an unregulated intersection.
There is considerable work in the field of audio content clas-
sification [23, 28, 31] where researchers have used various
machine learning approaches to detect, among other things,
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Phone Exposed vehicle Enclosed vehicle
FP FN FP FN

KJAM (T=5) 38% 0% 8% 15%
KJAM (T=7) 0% 0% 0% 23%
KJAM (T=10) 0% 19% 0% 54%
iPAQ (T=5) 19% 4% 0% 19%
iPAQ (T=7) 0% 8% 0% 50%
iPAQ (T=10) 0% 27% 0% 81%

Table 6: False Positives/Negatives (FP/FN) of
Honk detector

the sound of a horn. In this section, we investigate a simple,
heuristic-based approach for honk-detection.

An approach that simply looks for spikes in sound power
levels in the time domain performs quite poorly as it misses
a lot of horn sounds that are muted inside an enclosed vehi-
cle and also mistakes any loud noise as a horn. To motivate
a more discriminating detector, Figure 8 depicts the spec-
trogram of a horn sound from 1.5s to 3s, i.e., a frequency
versus time plot, with higher sound power depicted by darker
shades of grey. The frequency harmonics are clearly visible
(with a fundamental frequency under 500Hz) and there is
considerable amount of energy around the 3kHz band, the
region of highest human ear sensitivity [23].

Thus, we implement a simple detector that performs a dis-
crete Fourier transform on 100ms audio samples and looks
for energy spikes in the frequency domain. We define a
spike as an instantaneous sample that is at least T times the
mean, where T ranges between 5 and 10. While one could
design a detector that looks for the frequency harmonics
in the spikes, we found that, in many horn audio samples,
spikes corresponding to several frequencies in the harmon-
ics were either muted or even absent. Based on empirical
observations, we arrive at the following minimal heuristic
for the detector: as long as there are at least two spikes,
including at least one spike in the 2.5 kHz to 4 kHz region
corresponding to the region of highest human ear sensitiv-
ity, we classify the audio sample as corresponding to a honk.
Figure 9 plots the sound amplitude versus frequency based
on a discrete Fourier transform performed on a window of
1024 audio samples (with an audio sampling rate of 11025
Hz) at time 1.6s of the horn sample depicted in Figure 8.
Note that the spikes match well with the darker shades in
the spectrogram and would indicate a honk per the heuristic
noted above.

To evaluate the performance of our honk detector, we use



audio traces collected using four phones simultaneously at
a chaotic and noisy traffic intersection. We use two HP
iPAQs and two i-Mate KJAMs. One phone of each type
was placed inside an enclosed vehicle and one of each type
placed outside the vehicle. The latter emulates the phone
being carried on an exposed vehicle such as a motorbike,
which is common in developing regions. We establish the
ground truth by listening to the audio clip from the phone
placed outside the vehicle and manually identifying the honk
times, with a granularity of 1 second. We then use the honk
detector with different spike thresholds, T , to automatically
identify honks and compare it with the ground truth. The
audio trace was about 100 seconds in duration and had 26
honks from a variety of vehicles.4

The results are shown in Table 6. Assuming a null hy-
pothesis of no honk, the detector suffers false negatives, i.e.
missed honk detection, mostly when the spikes in the 2.5-
4kHz band are insignificant, while it suffers false positives
mostly when the spike threshold is low enough for other
sounds to be mis-identified as honks.

We make three observations based on these results. First,
with a spike threshold that is large enough to avoid false
positives, the honk detector performs better (i.e., has fewer
false negatives) in the exposed vehicle scenario due to the
higher sound power level. Second, the varying sensitivity of
microphone in different phones can result in different num-
ber of honks being detected even on the same trace. These
two observations indicate that when comparing honk data
at different locations, care must be taken to separate out
the data based on phone-type and ambient noise level be-
fore comparison. Third, a high spike threshold can substan-
tially guard against false positives (0% for T ≥ 7 in this
trace), though, it cannot eliminate it completely. In one of
our audio traces, there was an instance of a spurious detec-
tion of a honk arising from the sound of a bird’s chirping,
which displayed horn-like characteristics. In general, this de-
tector will have false positives whenever the audio content
has honk-like spectrogram characteristics (e.g., alarms). If
these false-positives become significant in some settings, a
more sophisticated honk detector would be necessary. In
future work, we plan to investigate machine learning based
approaches for honk detection.

Finally, the honk detector is very efficient. Our imple-
mentation running on the iPAQ phone consumes only about
58ms of CPU time to detect honks in 1 second worth of
16bit, 11025 Hz audio samples (i.e., a CPU utilization of
5.8%). Note that the CPU utilization would be further
reduced in practice because honk detection would be trig-
gered on-demand rather than run continuously, as discussed
in Section 8.

7. LOCALIZATION
Localization is a key component of Nericell, as it is in any

sensing application. Each phone participating in Nericell
would need to continuously localize its current position, so
that sensed information such as honking or braking can be
tagged with the relevant location. Thus, an energy-efficient
localization service is a key requirement in Nericell.

As discussed in Section 2, there are a variety of approaches
for outdoor localization including using Global Positioning

4The need to manually establish the ground truth by listen-
ing limits the length of the trace that is feasible to evaluate.

System (GPS), WiFi [21], and GSM [36, 20]. However, given
the high energy consumption characteristics of the WiFi and
GPS radios (see Table 2), these are not suitable for contin-
uous localization in Nericell5. Thus, we primarily rely on
using GSM radios for energy-efficient coarse-grain localiza-
tion and, as discussed in Section 8, we trigger the use of
fine-grain localization using GPS when necessary.

There has been some recent work on using GSM to per-
form localization in indoor [36] and outdoor environments [20].
In [20], authors show that GSM signal strength-based lo-
calization algorithms can be quite accurate, with median
errors of 94m and 196m in downtown and residential ar-
eas, respectively, in and around Seattle. When we tried to
apply these techniques to the GSM tower signal data we col-
lected in Bangalore, we found that the characteristics of the
data was significantly different that these prior techniques
were not applicable, as we elaborate on below. For example,
we gathered one-hour long traces of the cell towers seen by
four phones subscribed to four different providers, with two
phones each placed at static locations in Seattle and Ban-
galore, respectively. In the Seattle traces, we found 28 and
17 unique tower IDs in total while, in the Bangalore traces,
we found 93 and 62 unique tower IDs. Furthermore, in each
of the Seattle traces, there was a stable set of 4 strongest
tower IDs that were visible during the entire trace, while
the stable set in the case of the Bangalore traces comprised
just the 2 strongest tower IDs. 6 We believe that the sig-
nificantly higher number of unique tower IDs seen in the
Bangalore traces, and the consequent reduction in the sta-
bility of the set of towers seen, is due to the high density of
the GSM deployment in India. For example, the inter-tower
spacing in India is estimated to be 100 meters compared
to the typical international micro-cell inter-tower spacing of
about 400 meters [38].

The high density of towers seen in the Bangalore trace cre-
ates significant difficulties for prior RSSI-based localization
algorithms. For example, the RADAR-based fingerprint al-
gorithm, which outperformed other algorithms considered in
[20] when applied to the traces from Seattle, requires that
the tower signature (a set of, upto 7, tower IDs) seen by the
phone at a given time exactly match the tower signature
stored in the database. The matched database entries that
are the closest in signal strength space are then used for lo-
calization. In the above Bangalore trace, given 93 available
towers and a phone exposing only the strongest 7 tower IDs
at any given time, the probability of an exact match of a
current signature with that in the database is quite small
(a 4% probability of match, based on training data from 23
drives over 12 days in Bangalore), making these algorithms
ineffective.

On the other hand, the high density of visible tower IDs
suggests that even simple localization algorithms, such as
the strongest signal approach used, for example, in dense
indoor WiFi settings [18], may be effective. Thus, in this pa-
per, we focus on evaluating the effectiveness of a strongest
signal (SS)-based localization algorithm. This algorithm
relies on a training database that maps the tower ID with
the strongest-signal to an average latitude/longitude posi-

5Similar costs have been reported for GPS on Nokia N95
phones in [25]
6Note that a single physical tower could be associated with
several tower IDs corresponding to different sectors and fre-
quency channels.



Item Median error 90th percentile error
Localization Distance 117m 660m

Absolute speed 3.4 kmph 11.2 kmph
Relative speed 21% 70%

Table 7: Localization and Speed estimate errors for
SS
tion obtained via GPS. During localization, the phone sim-
ply looks up its current strongest tower ID in the training
database and returns the corresponding latitude/longitude
position as its estimate. Based on our traces, we find that
the probability of finding a match with SS is 96% compared
to 4% for the exact match approach, as indicated above.

We compute the localization distance estimate error of the
SS algorithm using a rich collection of cellular traces from
Bangalore. We use 23 drives over 12 days in Bangalore as
training data for building the tower ID database and use 10
drives over 5 days for validation (see Table 1). The train-
ing data covers a significant portion of roads in the heart
of Bangalore city (see Figure 1) while the validation drives
comprise a subset of these roads. We use GPS-based local-
ization data, collected during the same drives, as the ground
truth for computing the error in our location estimates.

The median localization error for SS in these validation
drives is only 117m while 90th percentile error is 660m. For
comparison, the median localization error for SS using our
limited Seattle area traces (training data of 4 drives, val-
idation on 1 drive) was higher at 179m but, as shown in
[20], sophisticated RSSI-based localization algorithms may
be applied in this setting to reduce the median error to under
100m.

Traffic speed monitoring is a direct application of localiza-
tion. Using the SS algorithm, the median and 90th percentile
error in the speed estimates over 100 second travel segments
in the Bangalore validation traces were 3.4 kmph and 11.2
kmph, respectively. The median and 90th percentile relative
error in the speed estimates were 21% and 70% respectively.
Note that the relative error is high because of the slow speed
of traffic in Bangalore. The accuracy in absolute terms (the
3.4 kmph and 11.2 kmph figures noted above) is arguably
more important for it would determine our ability to distin-
guish between traffic that is crawling on a congested road
and moving freely on a fast road. The results for the Ban-
galore validation traces are summarized in Table 7.

In conclusion, with a high density of cell towers, as is the
case in many of the rapidly growing cities of the develop-
ing world, we believe a simple strongest signal-based algo-
rithm can provide reasonably accurate and energy-efficient
localization and speed estimates. Note that, if the training
database is sparse or out-of-date, the SS-based localization
may not find a match in the database for a location estima-
tion. In order to increase robustness, we have also designed
and evaluated a Convex Hull Intersection (CHI)-based lo-
calization scheme that matches on subsets of towers seen
currently rather than matching exactly as used in the SS
scheme. For details, please refer to [35].

8. TRIGGERED SENSING
Besides making efficient use of individual sensors, there

is the opportunity for energy savings by employing sensors
in tandem. A low-energy but possibly less accurate sensor
could be used to trigger the operation of a high-energy and
possibly more accurate or complementary sensor only when
needed. Of the sensors in our current prototype, we deem

the GSM radio and the accelerometer as low-energy sensors,
and GPS and the microphone as high-energy sensors (see
Table 2).

The GSM radio is always kept on. The GSM radio is then
used in conjunction with the accelerometer to trigger GPS
and/or the microphone when needed. Specific instances of
triggered sensing in Nericell include the following:

Localization: GSM-based localization is used to trigger
GPS to obtain an accurate location fix on a feature of inter-
est. Consider a phone that detects a major pothole in the
road using its accelerometer measurements (Section 5.4.3).
Since it uses GSM-based localization by default, the phone
has an approximate idea of the location of this pothole. The
next time the phone (or another participating phone, assum-
ing information is shared across phones) finds itself in the
same vicinity based on GSM information, it triggers GPS
so that an accurate location fix is obtained on the pothole.
The energy savings can be very significant, depending on the
specific setting. For example, if the GPS is triggered when
the GSM location estimate is within 500 m of the desired
latitude/longitude and turned off when the desired location
has been passed, then on a 20 km long drive, GPS would
need to be turned on only 3.2% of the time (averaged over
10 runs).

Virtual reorientation: The accelerometer (Section 5.2.2)
and also user activity detection (Section 5.3) is used to de-
termine that a phone’s orientation may have changed and
hence the virtual reorientation procedure needs to be re-
peated. GPS is then triggered at such a time to help detect
the braking episodes needed for reorientation (Section 5.2.3).
We could optimize this further by using GSM localization or
the accelerometer to determine that the phone is likely in a
moving vehicle (based on changes in the GSM/accelerometer
measurements) before triggering GPS.

Honk detection: Braking detection (Section 5.4.1) could
be used to trigger honk detection. If significant levels of
braking as well as honking are detected, it might point to
traffic chaos.

We defer an evaluation of these triggered sensing tech-
niques to future work.

9. IMPLEMENTATION
We have implemented all of the algorithms described in

the paper, most of these on the HP iPAQ smartphone run-
ning Windows Mobile 5. The virtual reorientation algorithm
runs on the HP iPAQ by gathering measurements from the
Sparkfun WiTilt accelerometer via a serial port interface
over its Bluetooth radio. The algorithm is implemented in
Python and C#. The audio honk detection algorithm also
runs on the HP iPAQ. This is implemented in C# and in-
vokes an FFT library for the discrete fourier transform and
the Windows Mobile 5 coredll library for capturing the
microphone input.

The GSM localization algorithm is the only one that does
not currently run on the iPAQ, since the iPAQ does not ex-
pose the necessary cell tower information. The cell tower
information used in our traces is obtained on the rebranded
HTC Typhoon phones based on reading a fixed memory lo-
cation, that has been obtained via reverse-engineering and
is well-known [20]. The localization algorithms are currently
implemented in Perl and can easily be ported to the iPAQ,
if and when the necessary cell tower information becomes
accessible. At this time, we have implemented a simple C#



Power (mW) % Time active
Audio 223.2 5

Honk Detection 63.3 5
GPS 617.3 10

Reorientation of accel values 20.9 100
Bump & Brake Detection 9.3 100

Accelerometer 1.65 100

Table 8: Energy requirement of Nericell during a
drive

program to obtain GPS information from the GPS receiver
on the iPAQ and use this for our localization needs.

Finally, we have also implemented detectors for identi-
fying user interactions, thereby pausing accelerometer and
microphone-based sensing when the sensor data is invalid.
This implementation is on Windows Mobile 5, which pro-
vides the necessary hooks to intercept keypad and mouse
events, and also access to call log information for both in-
coming and outgoing calls.

9.1 Energy Costs
We performed micro-benchmarks (see Table 8) in order

to estimate energy usage of the sensing components of Ner-
icell under typical usage. We base our calculation on an
estimated drive time of four hours per day and assume that
GSM-based localization triggers can help identify the driv-
ing events. We assume that brake and bump detection are
active throughout the four hours while audio and GPS are
triggered only due to specific events such as during braking
or re-orientation respectively. Based on these assumptions,
Nericell would reduce the battery lifetime of the HP iPAQ
by 9.7% to approximately 22 hours, resulting in very limited
impact to the user of the smartphone.

10. CONCLUSION
Nericell is a system for rich monitoring of road and traffic

conditions using mobile smartphones equipped with an array
of sensors (GPS, accelerometer, microphone) and communi-
cation radios. In this paper, we have focused on the sens-
ing component of Nericell, specifically on how these sensors
and radios are used to detect bumps and potholes, braking,
and honking, and to localize the phone in an energy-efficient
manner. We have presented techniques to virtually reorient
a disoriented accelerometer and to use multiple sensors in
tandem, with one triggering the other, to save energy. Our
evaluation on extensive drive data gathered in Bangalore has
yielded promising results. We have a prototype of Nericell,
minus GSM-based localization, running on Windows Mobile
5.0 Pocket PCs.

In future work, we plan to do a deployment of Nericell on
a modest scale, perform experiments on multiple types of
vehicles, and investigate the application of machine learning
to robust honk detection.

Acknowledgements
Several people wrote useful pieces of code that we have bor-
rowed in our prototype of TrafficSense: Ramya Bharathi
Nimmagadda (detecting user interaction with a phone), Nilesh
Mishra (extracting GSM tower information), and Pei Zhang
(a rudimentary TrafficSense server). The drivers of Japan
Travels as well as Kannan and Srinivas endured several hours
of driving experiments with patience. Ranjita Bhagwan, Ge-
off Voelker, our shepherd Sam Madden and the anonymous

reviewers of Sensys 2008 provided insightful comments that
have helped improve this paper. We thank them all.

11. REFERENCES
[1] AirSage Wireless Signal Extraction (WiSE)

Technology. http://www.airsage.com/wise.htm.

[2] Bangalore Transport Information System.
http://www.btis.in/.

[3] California Center for Innovative Transportation:
Traffic Surveillance.
http://www.calccit.org/itsdecision/serv and tech/Traffic
Surveillance/surveillance overview.html.

[4] Freescale MMA7260Q Accelerometer.
http://www.sparkfun.com/datasheets/Accelerometers/
MMA7260Q-Rev1.pdf.

[5] Global cellphone penetration reaches 50 pct.
http://investing.reuters.co.uk/news/articleinvesting.aspx
?type=media&storyID=nL29172095.

[6] HP iPAQ hw6965 Mobile Messenger Specifications.
http://h10010.www1.hp.com/wwpc/au/en/ho/WF06a/
1090709-1113753-1113753-1113753-1117925-
12573438.html.

[7] India adds 83 mn mobile users in a year.
http://timesofindia.indiatimes.com/Business/India
Business/India adds 83 mn mobile users in a year/
articleshow/2786690.cms.

[8] INRIX Dynamic Predictive Traffic.
http://www.inrix.com/technology.asp.

[9] Intelligent Transportation Systems.
http://www.its.dot.gov/.

[10] Mobile boom helps India reach Internet goal before
time.
http://economictimes.indiatimes.com/articleshow/
2341785.cms.

[11] Nericell project webpage.
http://research.microsoft.com/research/mns/projects/
Nericell/.

[12] OnStar by GM. http://www.onstar.com/.

[13] SmartTrek: Busview.
http://www.its.washington.edu/projects/busview
overview.html.

[14] SparkFun Wireless Accelerometer/Tilt Controller
version 2.5.
http://www.sparkfun.com/commerce/product info.php?
products id= 254.

[15] Telecom Regulatory Authority of India (TRAI) Press
Release, July 2008.
http://www.trai.gov.in/trai/upload/PressReleases/
592/pr25july08no67.pdf.

[16] D. Burke et al. Participatory Sensing. In World
Sensor Web Workshop, 2006.

[17] L. Buttyan and J.-P. Hubaux. Security and
Cooperation in Wireless Networks. Cambridge
University Press, 2007.

[18] R. Chandra, J. Padhye, A. Wolman, and B. Zill. A
Location-based Management System for Enterprise
Wireless LANs. NSDI, 2007.

[19] R. Chang, T. Gandhi, and M. M. Trivedi. Vision
Modules for a Multi-Sensory Bridge Monitoring
Approach. In IEEE Intelligent Transportation Systems
Conference, 2004.



[20] M. Chen, T. Sohn, D. Chmelev, D. Haehnel,
J. Hightower, J. Hughes, A. LaMarca, F. Potter,
I. Smith, and A. Varshavsky. Practical
Metropolitan-Scale Positioning for GSM Phones. In
Ubicomp, 2006.

[21] Y. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm.
Accuracy Characterization for Metropolitan-scale
Wi-Fi Localization. In MobiSys, 2005.

[22] D. J. Dailey. SmartTrek: A Model Deployment
Initiative. Technical report, May 2001. Report No.
WA-RD 505.1, Washington State Transportation
Center (TRAC), University of Washington,
http://www.wsdot.wa.gov/Research/Reports/500/
505.1.htm.

[23] D. Ellis. Detecting alarm sounds. In CRAC workshop,
Aalborg, Denmark, 2001.

[24] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden,
and H. Balakrishnan. The Pothole Patrol: Using a
Mobile Sensor Network for Road Surface Monitoring.
In MobiSys, 2008.

[25] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and
A. Schmidt. Micro-Blog: Sharing and Querying
Content through Mobile Phones and Social
Participation. In MobiSys, 2008.

[26] H. Goldstein. Classical Mechanics, 2nd Edition.
Addison-Wesley, 1980. (Section 4.4 on ‘The Euler
Angles’, pp. 143–148).

[27] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work,
J.-C. Herrera, A. M. Bayen, M. Annavaram, and
Q. Jacobson. Virtual trip lines for distributed
privacy-preserving traffic monitoring. In MobiSys,
2008.

[28] D. Hoiem, Y. Ke, and R. Sukthankar. SOLAR: Sound
Object Localization and Retreival in Complex Audio
Environments. In IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP),
2005.

[29] B. Hull, V. Bychkovsky, K. Chen, M. Goraczko,
A. Miu, E. Shih, Y. Zhang, H. Balakrishnan, and
S. Madden. The CarTel Mobile Sensor Computing
System. In SenSys, 2006.

[30] W. D. Jones. Forecasting Traffic Flow. IEEE
Spectrum, Jan 2001.

[31] H. Kim, N. Moreau, and T. Sikora. Audio
Classification Based on MPEG-7 Spectral Basis
Representations. IEEE Transactions on Circuits and
Systems for Video Technology, May 2004.

[32] A. Krause, E. Horvitz, A. Kansal, and F. Zhao.
Toward Community Sensing. In ACM/IEEE
International Conference on Information Processing in
Sensor Networks (IPSN), 2008.

[33] J. Krumm and E. Horvitz. Predestination: Where Do
You Want to Go Today? IEEE Computer Magazine,
Apr 2007.

[34] C.-T. Lu, A. P. Boedihardjo, and J. Zheng. AITVS:
Advanced Interactive Traffic Visualization System . In
ICDE, 2006.

[35] P. Mohan, V. N. Padmanabhan, and R. Ramjee.
Trafficsense: Rich monitoring of road and traffic
conditions using mobile smartphones. Technical
Report MSR-TR-2008-59, Microsoft Research, 2008.

[36] V. Otsason, A. Varshavsky, A. LaMarca, and
E. de Lara. Accurate GSM Indoor Localization. In
Ubicomp, 2005.

[37] A. Rahmati and L. Zhong. Context for Wireless:
Context-sensitive Energy-efficient Wireless Data
Transfer. In MobiSys, 2007.

[38] T. V. Ramachandran. How should spectrum be
allocated? The Economic Times, Nov 2007.
http://economictimes.indiatimes.com/Debate/
How should spectrum
be allocated/articleshow/2520807.cms.

[39] B. L. Smith, H. Zhang, M. Fontaine, and M. Green.
Cellphone Probes as an ATMS Tool. Technical report,
Jun 2003. Smart Travel Lab Report No. STL-2003-01,
University of Virginia,
http://ntl.bts.gov/lib/23000/23400/23431/
CellPhoneProbes-final.pdf.

[40] A. Varshavsky. Are GSM Phones THE Solution for
Localization? In WMCSA, 2006.

[41] E. W. Weisstein. Euler Angles. MathWorld – A
Wolfram Web Resource.
http://mathworld.wolfram.com/EulerAngles.html.

[42] J. Yoon, B. Noble, and M. Liu. Surface Street Traffic
Estimation. In MobiSys, 2007.

Appendix A: Estimating the Angle of Pre-rotation
Since the only acceleration experienced when stationary or
in steady motion is along Z, aX = 0 and aY = 0. For a
well-oriented accelerometer, we would also have ax = 0 and
ay = 0. However, for a disoriented accelerometer, the pre-
rotation followed by the tilt implies that x and y would, in
general, no longer be orthogonal to Z, so ax and ay would be
equal to the projections of the 1g acceleration along Z onto
x and y, respectively. To calculate this, we first consider
the pre-rotation and decompose each of ax and ay into their
components along X and Y , respectively. Then when the
tilt (about Y ) is applied, only the components of ax and ay
along X would be affected by gravity.

Thus after the pre-rotation and the tilt, we have: ax =
cos(φpre)sin(θtilt) and ay = sin(φpre)sin(θtilt). So,
tan(φpre) =

ay

ax
which yields Equation 2 for estimating φpre.

Appendix B: Estimating the Angle of Post-rotation

We can compute a
′

X by running through the steps of pre-
rotation, tilt, and post-rotation in sequence, at each step
applying the decomposition method used in Appendix A.

Starting with just pre-rotation, we have a
′pre

X = axcos(φpre)+

aysin(φpre) and a
′pre
Y = −axsin(φpre) + aycos(φpre). After

tilt is also applied, we have a
′pre−tilt
X = a

′precos(θtilt) −

azsin(θtilt) and a
′pre−tilt

Y = a
′pre

Y (a
′pre−tilt

Y remains un-
changed because the tilt is itself about Y ). Finally, after

post-rotation is also applied, we have a
′

X = a
′pre−tilt−post
X =

a
′pre−tilt

X cos(ψpost)+a
′pre−tilt

Y sin(ψpost). Expanding this we

have, a
′

X = [(axcos(φpre) + aysin(φpre))cos(θtilt)−
azsin(θtilt)]cos(ψpost)+[−axsin(φpre)+aycos(φpre)]sin(ψpost).

To maximize a
′

X consistent with a period of sharp decel-

eration, we set its derivative with respect to ψpost,
da

′

X
dψpost

, to

zero. So −[(axcos(φpre)+aysin(φpre))cos(θtilt)−azsin(θtilt)]
sin(ψpost) + [−axsin(φpre) + aycos(φpre)]cos(ψpost) = 0,
which yields Equation 3 for estimating ψpost.


