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ABSTRACT
Location-based applications have become increasingly popular on
smartphones over the past years. The active use of these applica-
tions can however cause device battery drain owing to their power-
intensive location-sensing operations. This paper presents an adap-
tive location-sensing framework that significantly improves the en-
ergy efficiency of smartphones running location-based applications.
The underlying design principles of the proposed framework in-
volve substitution, suppression, piggybacking, and adaptation of
applications’ location-sensing requests to conserve energy. We im-
plement these design principles on Android-based smartphones as a
middleware. Our evaluation results show that the design principles
reduce the usage of the power-intensive GPS (Global Positioning
System) by up to 98% and improve battery life by up to 75%.

Categories and Subject Descriptors
C.3.3 [Special-Purpose and Application-Based Systems]: Real-
Time and Embedded Systems

General Terms
Design, Experimentation, Measurement, Performance, Algorithms

Keywords
Location Sensing, Energy Efficiency, Location-Based Applications,
Smartphone.

1. INTRODUCTION
With the increasing pervasiveness of smartphones over the past

years, several Location-Based Applications (LBAs) have been adopted
by mobile users for always-on contact for social-networking, busi-
nesses needs, and entertainment. Some instances of currently pop-
ular LBAs include mobile social networking [2, 3, 9, 10], health-
care [1], local traffic [7, 22, 23, 29, 36], and local restaurants [6].
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In spite of the increase in processing power, feature-set, and
sensing capabilities, the smartphones continue to suffer from bat-
tery life limitation, which hinders the active utilization of LBAs.
Typical battery capacity of smartphones today is barely above 1000
mAh (e.g., the lithium-ion battery of HTC Dream smartphones has
the capacity of 1150 mAh). Unfortunately, GPS (Global Position-
ing System), the core enabler of LBAs, is power-intensive, and its
aggressive usage can cause complete drain of the battery within a
few hours [14, 17]. While the aggressiveness of GPS usage is spe-
cific to different applications, several LBAs such as local traffic
(e.g., [7]) and social networking (e.g., [9]) particularly benefit from
continuous location updates. Real Time Traffic [7], for instance,
requires continuous GPS location updates. Twidroid [9], a mobile
version of Twitter, features a GPS accuracy booster, which provides
an option to enable/disable continuous GPS sensing.

Numerous solutions have been proposed to improve the battery
life of mobile devices [11, 32–34], but little rigor and attention
has been devoted to the battery-efficient use of LBAs. The LBA
developers are suggested to reduce the use of GPS by increasing
location-update intervals (say, to more than a minute), thus allow-
ing GPS hardware to sleep between successive location-updates.
Such a simple solution can improve battery life by forcing applica-
tions to request location information less frequently, but it has fun-
damental limitations. For instance, although each LBA can save
energy by reducing GPS invocation, the effectiveness of this ap-
proach could be compromised when multiple LBAs are running, as
the asynchronous use of GPS from different LBAs unnecessarily
leads to an increased number of invocations.

In this paper, we present an energy-efficient location-sensing
framework that effectively conserves energy for smartphones run-
ning LBAs. In its core, the proposed framework includes four de-
sign principles: Substitution, Suppression, Piggybacking and Adap-
tation. Briefly, Substitution makes use of alternative location-sensing
mechanisms (e.g., network-based location sensing) that consumes
lower power than GPS. Suppression uses less power-intensive sen-
sors such as an accelerometer to suppress unnecessary GPS sensing
when the user is in static state. Piggybacking synchronizes the lo-
cation sensing requests from multiple running LBAs. Adaptation
aggressively adjusts system-wide sensing parameters such as time
and distance, when battery level is low.

We implement the four design principles on a G1 Android De-
veloper Phone (ADP) as a middleware and evaluate the implemen-
tation extensively via measurements. While the proposed design
principles are general enough to be applied to any software stack,
the middleware implementation allows for better application trans-
parency in the sense that applications can be kept as-is. We choose
Android-based smartphones for prototyping because of the open-
ness of the Android platform [5]. Our evaluation results with the
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Figure 1: Energy Consumption of Gps

implementation show that the proposed framework significantly
saves energy in location sensing. For instance, in various scenar-
ios, our prototype reduces the number of GPS invocations by up to
98%, and thus improves the battery life by up to 75%.

To summarize, this work makes the following contributions:

• We address and explore energy efficiency of location sensing
for resource-constrained smartphones that often run multiple
location-based applications (LBAs).

• We study four design principles tailored for LBAs to reduce en-
ergy consumption in location-sensing on smartphones and show
that the integration of the proposed design principles enables
significant energy savings.

• We prototype the proposed design in Android-based smartphones,
which are open to both practice and research, and demonstrate
the effectiveness through real-life measurements.

The remainder of the paper is organized as follows. Section 2
motivates this work. Section 3 presents the key design principles
and their integrated operation. Section 4 describes our implemen-
tation. Section 5 shows evaluation results of our prototype. Section
6 discusses related work, and Section 7 concludes this paper.

2. MOTIVATION
In this section, we motivate the present work by highlighting re-

sults from a set of experimental evaluations. We demonstrate fac-
tors impacting energy efficiency in location sensing by employing
G1 ADP phones and summarize the limitations of existing smart-
phone usage that prevent energy-efficient location-sensing.

2.1 GPS Energy Consumption
We first assess the impact of using power-intensive GPS on smart-

phones. We consider a scenario where a user is driving with a
traffic-monitoring LBA, called “Real Time Traffic” [7], running.
The application is popularly used to determine traffic speed based
on anonymous collection of users’ locations, speed, and direction
information. While running this LBA (version 1.0.2e(17)) on a
smartphone, we measure instantaneous battery levels of the phone
over an hour, using power-APIs provided by Android Software De-
velopment Kit (SDK).1 For comparison, we also run the same LBA
on the second phone with GPS disabled. For both experiments, we
start with a fully charged battery after charging for the same amount
of time. The screens of the phones are always kept on. The map

1Though the power-APIs of Android SDK only provide coarse-grained
measurement of battery levels, we use them to show macro-scale impact,
which is an interesting factor in this work.

refreshing rate and GPS invocation interval of the LBAs are set to
5 seconds.

Figure 1(a) shows the battery level of the phone during the run.
As shown in the figure, when GPS is used, the battery level drops to
79% within one hour, whereas the battery level with GPS disabled
drops to only 94%. Note that we ran the experiment multiple times
with different setups such as charging time, and we always see the
same trends in battery-level drops across all runs.

We also measure instantaneous power-spikes of GPS sensing
using a digital multi-meter (Agilent 34410A) to see microscopic
power usage. Figure 1(b) shows the power spikes of the phone
(measured once every 50 ms) when an LBA requesting GPS runs.
As shown in the figure, a typical GPS invocation consists of a lock-
ing period and a sensing/reporting period. The lengths of these
two periods are about 4-5 seconds and 10-12 seconds, respectively.
More importantly, the average power draw of the two periods are
about 400 mW and 600 mW, respectively. For a typical battery ca-
pacity of 1000 mAh such high power consumption is very expen-
sive as continuous GPS sensing can deplete the battery in merely 6
hours (i.e., 1000mAh×3.7V

600mW
).

2.2 Multiple Location-Based Applications
GPS power consumption becomes even more significant if mul-

tiple LBAs are running simultaneously.2 Let us consider the fol-
lowing scenario. A user is initially running a social network LBA
such as FaceBook on his phone and is continuously publishing his
locations. After a while, he begins to drive and launches a traffic-
monitoring LBA such as “Real Time Traffic”. Now both LBAs run
concurrently. Assuming both applications invoke GPS sensing ev-
ery 2 minutes (i.e., with 2-minute invocation interval), GPS ideally
needs to wake up every two minutes. However, if these two appli-
cations are not synchronized on GPS sensing, then GPS might need
to wake up every one minute.

Figure 1(c) shows the impact of multiple LBAs with two sce-
narios. In the first scenario (‘One application’), there is one LBA
that runs and requests GPS sensing every 2 minutes. In the second
scenario (‘Two applications’), two LBAs run without synchroniz-
ing GPS sensing requests. As shown in the figure, when one LBA
is running, the battery level drops to about 92% after 1 hour. How-
ever, with two LBAs running, the battery level drops to 87%.

To better understand the results, we plot the GPS invocation
events during the first 10 minutes for both scenarios in Figure 2(a).
As shown in the figure, when the sensing events of multiple ap-
plications are not synchronized (‘Two LBAs’), the GPS is indeed

2Smartphones such as those based on Android or Symbian support multi-
tasking. The background LBAs still triggers location sensing.
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Figure 2: Energy consumption of Gps and Net

invoked for a total of 10 times rather than the desired 5 times (‘One
LBA’), thus causing more energy consumption than when multiple
LBAs are synchronized.

2.3 Multiple Sensing Mechanisms
Today’s smartphones support multiple location-sensing mecha-

nisms (or location providers). Android, for example, supports two
mechanisms: GPS and Network-based triangulation. Network-
based mechanism collects information about reachable cell tow-
ers (or WiFi access points) from a mobile device and determines
its location by retrieving a location database. For simplicity, in the
following presentation, we use ‘Gps’ and ‘Net’ to refer to these two
location-sensing mechanisms, respectively. We use the capitalized
notation GPS to refer to the physical device of Global Positioning
System.

These two mechanisms have different accuracy and power con-
sumption levels. In Figure 2(b), we show the power consumption
of each mechanism, as one LBA is running with a location sensing
interval of 15 seconds. The Net mechanism uses GSM cell towers
to determine locations as both WiFi and 3G are turned off for both
experiments. Net only causes the battery level to drop to about 93%
and consumes much less power than Gps does (i.e., 83%).

We also perform experiments to show the two mechanisms’ ac-
curacy. As shown in several prior studies, Gps can achieve an accu-
racy of as high as 10m in outdoor areas, while Net’s accuracy varies
depending on environments. To further understand such charac-
teristics, we also perform experiments to calculate Net’s accuracy
as follows. Due to the lack of a more accurate measure, we use
Gps as ground truth to measure the accuracy of the Net. We per-
form experiments in an urban area around Silicon Valley, Califor-
nia. Net accuracy is measured as the average distance between the
Gps-reported location and Net-reported locations. We observe that
Net achieves an accuracy of about 30 meters to 100 meters during
most of the time. Although Net still provides much coarser accu-
racy than Gps does, such accuracy might be sufficient for many
LBAs (e.g., weather information).

2.4 Sensing Intervals
For many mobile platforms including Android, applications are

allowed to explicitly specify the location sensing granularity in
terms of updating time interval and distance interval. Intuitively,
larger time and distance intervals can help save energy. In some
scenarios, particularly when the battery level is low, LBAs can co-
operate by explicitly increasing location-sensing intervals of time
and distance (e.g. updating every 1 minute or 20 meters rather than
every 30 seconds or 10 meters). To study the impact of adapt-
ing sensing intervals, we consider two LBAs with GPS invocation

intervals of 15 seconds and 2 minutes, respectively. Figure 2(c)
shows the battery level. As shown in the figure, by simply enlarg-
ing the update interval from 15 seconds to 2 minutes, the applica-
tion can help conserve 9% of the battery in an hour.

2.5 Problem Characterization
Figure 3 summarizes the problems identified above and addi-

tional intuitions in the energy efficiency of location sensing.

• Static use of location sensing mechanisms: In many cases, mo-
bile platforms lack the dynamic selection of location sensing
mechanisms. Many smartphones today support two major types
of location-sensing mechanisms—Gps and Net. These sensing
mechanisms have performance tradeoffs in terms of accuracy,
power consumption, and availability. However, mobile plat-
forms tend to statically use their sensing mechanisms, and this
can lead to energy inefficiency in many scenarios.

• Absence of use of power-efficient sensors to optimize location-
sensing: Depending on specific environments (e.g., inside build-
ings) or contexts (e.g., phones being static), certain location-
sensing operations may be impossible or unnecessary to per-
form, and blindly requesting location sensing can lead to bat-
tery power wastage. The environment and context information,
interestingly, can be obtained by using other types of sensors
that are more power-efficient. Many smartphones are typically
equipped with multiple sensors such as accelerometer and ori-
entation sensors, which consume much less power than those
used for location sensing. Therefore, leveraging these sensors
can optimize location sensing and conserve energy.

• Lack of cooperation among multiple LBAs: When multiple
LBAs run and request location sensing independently, they are
not aware of each other, and their location-sensing operations
are not coordinated. This results in redundant location sensing
invocations and causes unnecessary energy consumption.

Figure 3: Problem characterization
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• Unawareness of battery level: When the battery power level is
low, users are usually willing to tolerate degradation of location-
accuracy or, at least, seek such an option in favor of longer
operation time. Current mobile platforms, including Android,
typically lack advanced battery-aware location management to
strike a balance between location sensing accuracy and opera-
tion life-time.

3. DESIGN PRINCIPLES
To overcome the limitations characterized in the previous sec-

tion, we present four design principles and their integrated opera-
tions in a smartphone. Furthermore, we discuss performance trade-
offs in employing these design principles.

3.1 Sensing Substitution (SS)
Current smartphones lack the capability of selecting the most ap-

propriate location sensing mechanism on-the-fly to strike the per-
formance balance amongst energy consumption, availability and
accuracy. LBAs are allowed to choose location-sensing mecha-
nisms at the moment when they register their location-sensing re-
quests to underlying systems. For instance, current Android SDK
1.5 allows an application to specify criteria indicating the appli-
cations’ requirement about accuracy, power consumption, bearing
(e.g. direction) and speed. Based on such criterion, the underlying
framework chooses the most appropriate mechanism (e.g. Gps or
Net). Thereafter, the chosen mechanism will always be invoked,
irrespective the changing environment or context.

Lack of dynamic selection of location sensing mechanisms leads
to energy inefficiency as well as failure in satisfying LBA require-
ments. For example, in certain indoor environments and dense ur-
ban areas, Gps may not be able to provide accurate location infor-
mation. Similarly, the performance of Net is heavily affected by
the environment. For instance, in certain urban areas, studies have
shown that Net can achieve as much accuracy as Gps does. On the
other hand, in rural areas with only a few cell towers available, Net
shows low accuracy. Thus, with static selection of location sensing
mechanisms, applications may not be able to effectively function,
especially when the user moves around with LBAs running. For
example, when Gps is used, applications expect to receive accurate
location information all the time. However, if the environment pre-
vents Gps from working, continuously invoking GPS apparently is
wasteful in terms of battery energy. The same is true for using Net.

Our solution to these problems is a dynamic selection approach
which we refer to as “Sensing Substitution (SS)”. SS can choose the
most appropriate location sensing mechanism on-the-fly. Specifi-
cally, SS is context-aware and can learn the characteristics of the
location providers along the routes where phones move. It then per-
forms location sensing in a more energy efficient manner by choos-
ing the best sensing mechanism, given the context. Because typ-
ical mobile users routinely follow certain routes (e.g., commuting

between offices and home) and visit familiar locations (e.g., restau-
rants, malls), and because these places exhibit consistent location-
sensing related environment characteristics, such as GPS, signal
strength and the number of APs, utilizing the environmental infor-
mation can assist in choosing the most appropriate location provider.

To achieve dynamic selection of location providers, SS relies
on learning environmental characteristics such as the availability
and accuracy of location providers (e.g., Gps and Net). For this
reason, the design of SS includes a location-sensing characteris-
tic profiler. The profiler monitors and stores relevant information,
including current locations, visit frequency, and sensing character-
istics (e.g., availability, positioning accuracy) of location providers.
The profiled data consists of a list of entries, and each entry corre-
sponds to a profiled area which we refer to as M-Area. M-Areas
represent physical areas with geographical boundaries. In particu-
lar, the locations in the same area exhibit similar location-sensing
characteristics. We will detail the rationale and data structure of
M-Area in Section 4.7.

Based on the profiled areas, SS dynamically decides an optimal
location-sensing mechanism as follows. For ease of illustration,
we consider Android platform and show the high-level operations
of SS as shown in Figure 4. Specifically, let’s assume that the cur-
rently registered location-sensing mechanism is Gps. When the
user moves into an area where Net is available and its accuracy
can fulfill the LBA’s requirement, then the LBA uses Net to replace
Gps. As shown in Figure 4(a), SS first attempts to decide the most
appropriate M-Area. Then, it checks Net’s availability and accu-
racy. If Net’s accuracy can satisfy the requirement of the LBA, SS
performs substitution. Similarly, as shown in Figure 4(b), when the
current location-sensing mechanism is Net and the phone moves
into areas where Net is not working, SS invokes Gps, instead of
Net. Since GPS consumes more power, SS uses less frequent GPS
sensing to maintain the same level of energy consumption.

The profiler can be designed to automatically obtain profiling re-
sults, including physical location and availability/accuracy of loca-
tion providers. To ensure higher degree of accuracy and energy effi-
ciency, the profiler design also includes the following mechanisms.
(i) The profiler may also involve users to explicitly control the pro-
filing process. For example, users may specify the area boundaries
of the profiler. (ii) The profiler calibrates either periodically or con-
ditionally, depending on the changes in the profile characteristics.
Essentially, whenever there is need to run profiling, the process will
be invoked on demand. For instance, when the user moves to a new
city to join a new job, the profiler will detect that change and proac-
tively initialize the profiling process to accommodate the environ-
mental change. In particular, when the profiler is first initialized,
it performs profiling. After that, the profiling process keeps moni-
toring the necessity of performing profiling again. The necessity is
measured by an opportunistic verification process. Specifically, it
is periodically invoked to measure the location-sensing character-
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istics and compare them with the information stored in the profiler
database. If the comparison results in a large discrepancy value, it
indicates that another profiling is needed. Also, because the peri-
odic verifications are enabled when other location-sensing requests
exist and because the verifications are piggybacked on the location-
sensing results of the existing requests, they do not incur additional
sensing overheads.

3.2 Sensing suppRession (SR)
Smartphone users may use the phones in various scenarios, and

continuous location sensing may often not be needed. For instance,
when the smartphone is in static state such as being put on a ta-
ble in an office, continuous location sensing is unnecessary. It is
desirable to “suppress” the sensing from energy efficiency stand-
point. The design principle of Sensing suppRession (SR) is to de-
tect phones’ mobility state by using less-power-intensive sensors
and to suppress unnecessary invocation of location sensing. The
basic mobility-state information is whether the phone is static or
moving, but it can contain more sophisticated information such as
moving speed and direction.

The fundamental requirement of this design principle is to learn
the mobility state (e.g., static or moving) of a phone with energy-
efficient sensors. There are many existing research efforts ( [35],
[27], [24]) that attempt to profile users’ mobility pattern. For exam-
ple, SoundSense [27] uses the microphone to determine the user’s
logical location. In this work, we are primarily interested to use
low-power sensors to suppress high-power location sensing. Specif-
ically, we attempt to use sensors such as accelerometer and orien-
tation sensors to profile smartphones’ states. Other sensors such
as camera and microphone used by the mentioned works, typically
consume much more power than the low-power sensors, and thus
are not considered in this work.

A challenge that arises is to ensure the correctness of mobility
state detection. False positives (i.e., falsely detecting that the phone
is moving while it is not) will lead to the unnecessary location
sensing, while false negatives will bear more serious consequences
on LBA performance for changing locations. We propose various
methodologies to reducing these errors, particularly the false neg-
atives. First, a configuration option is exposed to a user, allowing
the user to manually enable/disable a suppression option. Second,
the aggressiveness of suppression is automatically adjusted based
on information such as the confidence levels of the learned mobil-
ity context. The confidence levels reflect the familiarity with the
current mobility contexts such as commuting routes. Third, sup-
pression is adjusted based on the application requirements. For
example, if the application requires very coarse-grained location
information, suppression will be invoked. Fourth, a verification
mechanism is employed to verify the correctness of the detection.
Briefly, location sensing is periodically invoked for verification pur-
pose even in a suppression mode.

3.3 Sensing Piggybacking (SP)
Sensing Piggybacking (SP) is designed to improve the energy ef-

ficiency of location sensing when multiple LBAs are concurrently
running. It can re-use the existing sensing registrations by piggy-
backing new sensing requests on existing ones, thus eliminating
some location-sensing invocations. For example, let us assume that
an existing LBA registers GPS location-sensing every 2 minutes.
When a new LBA starts and requests Gps with the same time inter-
val, it can simply piggyback on the existing registration requests,
thus avoiding separate sensing. Reducing the number of separate
sensings can help save the energy associated with sensing as the
sensing hardware can go to sleep between consecutive invocations.

Figure 5: Sensing Piggybacking

Applications may request and register location sensing in var-
ious ways, as supported by the underlying framework or system.
Android platform, for example, allows application designers to per-
form two types of sensing registrations. In the first type, the ap-
plication statically registers a location listener to the underlying
framework, and the framework periodically notifies the listener of
location updates based on the specified parameters such as time in-
terval and distance interval. This method is simple, but it relies on
the underlying framework for GPS to sleep between two sensing
invocations. For example, if a Gps request takes 30 seconds to per-
form one invocation of sensing and if the specified time interval is
more than 30 seconds, then the framework can turn off the GPS and
put it into sleep to conserve energy.

The other type of registration is to explicitly register/unregister
GPS requests to enable hardware sleeping. For instance, if the pre-
ferred location update interval is 1 minute, the application can reg-
ister/unregister the request every one minute. Assuming unregister-
ing Gps will turn GPS off, this method does not rely on the underly-
ing framework to support energy conservation through GPS sleep-
ing. The downside of this method is the increased complexity of ap-
plication design. It needs more involvement from the applications
by requiring the application to control when to start and stop loca-
tion sensing. But such involvement also gives the user/application
more control over when and how to perform location sensing. For
instance, the user may require different degrees of accuracy and
frequency when performing locations sensing in different scenar-
ios. Such requirements are hard to satisfy with single-time regis-
tration and not supported by current APIs and systems. We refer
to the first type of registration as One-time Registration, while the
second type as Multi-time Registration. For One-time Registration,
depending on the mobile systems, optimizations might be applied
to save energy. Whether and how to apply the techniques depends
on the GPS location management of multiple registrations. Specif-
ically, when there are multiple sensing registrations, the underly-
ing location manager needs to accommodate multiple registrations
with different sensing requirements. For example, if there are two
registrations with 2-minute and 1-minute update interval, respec-
tively, the location manager may combine these two registrations
by simply considering the finer one, i.e., every 1 minute.

In this work, we focus on Multi-time Registration, as mobile
platforms such as Android have already employed mechanisms to
synchronize the location sensing actions for One-time Registra-
tion scenarios. For Multi-time Registration, we propose to piggy-
back the otherwise wasteful sensing on other sensing invocations.
Specifically, we present Sensing Piggybacking (SP) with respect
to the following two scenarios which involve the joining of a new
LBA. We assume the joining LBA has location sensing require-
ment of (G1, T1, D1), where G1 is the granularity of sensing (e.g.,
fine (or Gps) and coarse (or Net)), T1 is the minimum time interval
and D1 is the minimum distance interval for location updating. We
also consider the cases where other applications are running when
the LBA joins. We use (Gf , T2, D2) to denote the finest existing
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Gps registration, where T2 and D2 are the finest sensing intervals.
Similarly, we use (Gc, T3, D3) to denote the finest Net registration.

• The joining LBA has Gps request: When a new Gps regis-
tration with (T1, D1) comes, the currently registered requests
(Gf , T2, D2) are retrieved. (i) If Gps requests have been regis-
tered so far with (T2, D2) and if (T1, D1) > (T2, D2), SP does
not invoke sensing in response to the new request, but wait for
the next sensing of (T2, D2) request. Statistically, the new reg-
istration request waits, on average, for T2

2
time. If (T1, D1) <

(T2, D2), the new request is registered immediately. (ii) If only
Net requests are registered, then SP immediately registers the
new Gps request. Figure 5 illustrates one piggybacking sce-
nario where both Gps and Net registrations have been main-
tained. The joining LBA requests Gps, and the new registration
is delayed to piggyback on other Gps registrations.

• The joining LBA has Net request: When a Net registration with
(T1, D1) comes, the current registered requests are checked.
(i) If there are Net requests registered so far and (T1, D1) >
(T3, D3), SP waits for the firing of next sensing. On average,
the new request waits for T3

2
time. (ii) If only Gps requests are

registered, then SP checks to see whether Gps registrations sat-
isfy its requirement. If so, SP uses the current one; otherwise, it
registers a Net request.

3.4 Sensing Adaptation (SA)
There are different ways to save phone battery power and each of

these focus on adapting a specific phone attribute. Such measures
may include adjusting the screen light, sleep-time, or even the vol-
ume of ringtones. In the present work, we focus on energy-saving
methodologies in the context of location sensing.

The key rationale behind the Sensing Adaptation (SA) princi-
ple is to adapt the location sensing frequency based on the current
battery level, driven by user’s general preference of longer phone-
operating time over higher location accuracy. Except for running
several accuracy-critical applications, users are most likely willing
to trade accuracy for longer battery life. For instance, when the bat-
tery level is low and a user is running Twitter on his mobile phone
and using the Gps for the location sensing, the user would gener-
ally be more willing to run the LBA with less-accuracy in return
for longer phone use time.

SA is designed to respect the preference for longer operation
time. When the battery level is low, SA is invoked to adapt the lo-
cation sensing parameters to save energy. SA can be implemented
in three ways: (i) changing the sensing frequency or interval, (ii)
changing the sensing distance interval, and (iii) adjusting the ag-
gressiveness of other design principles. The first two ways adapt
the sensing intervals of location requests and registrations. For
newly joining LBAs, this can be done by hooking into the regis-
tration process and directly changing the registration requests. For
already-running LBAs, SA needs to remove existing registrations
and add new registrations with adjusted parameter values. Specifi-
cally, when the battery level is low and the user wants to conserve
energy, the sensing time and distance intervals will be increased
correspondingly based on two adaptation functions ftime and fdist,
respectively. Denoting the requested time update interval, distance
interval, and current battery level by Ti, Di, and Lb, respectively,
Ti and Di can be obtained by (Ti, Di) = (ftime(Lb), fdist(Lb)).
Furthermore, users may be given the opportunity to manually input
the desired adaptation degrees rather than using pre-defined ones.
For this, the user can be greeted by a GUI interface that solicits user
input for controlling the adaptation degree.

Figure 6: Integrated Operations

3.5 Integrated Operation
So far we have separately described four design principles to im-

prove energy efficiency. The four design principles can work to-
gether for better energy saving in various scenarios. We show the
integrated operation for an exemplary scenario in Figure 6. In the
scenario, the user is initially in motion and the battery level is high.
After the user starts LBA-1 at time T0, SS begins to work. After the
second LBA starts at T1, SP becomes operational. When the user
becomes static, SR kicks in. When the battery level becomes low,
SA comes into play. As the user starts moving again, SR stops, and
SS is invoked if possible.

3.6 Inherent Tradeoffs
So far we have presented four design principles and their inte-

grated operation to save energy associated with location sensing.
These design principles essentially trade accuracy and timeliness
of location sensing for energy saving. Along these lines, we do
note that some applications might be sensitive to the location ac-
curacy and sensing timeliness, regardless of the battery level and
power consumption. Examples of such applications include health-
care and military LBAs. For these applications, all adaptation tech-
niques have to respect application requirements. Thus, one way to
safely perform the adaptation without violating the application re-
quirement is to be application-aware and application-specific. In
other words, the four design principles can be selectively adopted
by application designers, when LBAs are developed. For instance,
an LBA can be designed to detect the phone’s mobility state and
perform SR when possible. In this way, the decision about whether
to apply a specific design principle and how to apply is made by the
designer, and the application requirement regarding location sens-
ing accuracy is not violated.

However, the aforementioned application-layer adoption has an
associated implementation cost and is not scalable, particularly be-
cause of a plethora of existing and future applications. Realizing
this, we propose another adoption model—a middleware approach—
which maintains transparency of application requirements. We will
elaborate on this functionality in Section 4. With the middleware
approach, smartphone users are explicitly asked to decide whether
to apply a design principle or not to maintain application require-
ment about accuracy. Practically, users may be greeted with an
user-interface asking the preferred action. Users can even be given
finer controls such as deciding the adaptation parameters.

The primary reason for users’ involvement is to equip them with
final decision-making authority. For any LBA, different users may
require different levels of location accuracy. For example, given a
health-care LBA, a healthy teenager may think that high location-
accuracy is unnecessary, while an elder patient may think other-
wise. Furthermore, even for the same application and the same
user, the importance of location accuracy may also vary. For in-
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stance, when a person is sick, the health-care LBA becomes more
important. A more intelligent design is to remember or even pre-
dict the users’ selection, thus reducing the users’ overhead in such
decision making. We see this enhancement as part of future work.

4. SOFTWARE ARCHITECTURE AND
SYSTEM IMPLEMENTATION

We now present the software architecture of a system that incor-
porates the design principles discussed in the previous section. We
explain its detailed system implementations on Android Develop-
ment Phones (ADPs).

4.1 Architecture and Deployment Model
Even though our solution can potentially be applied to any mo-

bile platform that deploys location-based services, we specifically
present the architecture on Android OS for the ease of presentation
and the concreteness. Such a selection is also justified by Android’s
open nature and increasing popularity. Note that the architecture
and design principles can also be implemented on other platforms
such as Symbian, Windows Mobile. As illustrated in Figure 7, the
system is realized as a middleware solution, residing between appli-
cations and underlying Linux kernels. Specifically, Android plat-
form includes Application Framework that packages many useful
classes in Java. The solution is implemented inside the Android
Application Framework by modifying existing classes as well as
creating new classes. As illustrated in Figure 7, SA supplies the
other three design principles with adaptation information, and all
principles work closely with several existing components such as
LocationManager and SensorManager in Android Framework.

With this deployment model, the adoption of the proposed so-
lution on Android phones is through a new system image, which
includes both new Application Framework and embedded applica-
tions. Users may choose to re-compile the source code to obtain
the new system image or simply download the system image from
Internet, and then update the phones with fastboot utility provided
in Android SDK to flash the phones.

4.2 Implementation Overview
We prototype the proposed solution on G1 Android Developer

Phone (ADP1) with OS version 1.5 Cupcake. All the four design
principles are implemented in Java inside Android Framework. The
prototype contains Graphic User Interface (GUI) which allows a
user to enable, disable and finely configure the prototype. Fig-
ure 8(a) shows the interface for enabling/disabling the adaptive
location-sensing framework. The interface is implemented inside

(a) Enable/Disable interface (b) Configuration

Figure 8: Two prototype interfaces

the default “Security & location” setting menu of G1 phones. The
new menu item, called “Smart Energy Saving”, has been added.
Figure 8(b) shows the configuration interface for the desired SA
degree in time (TIME) and distance (DIST). The interface also
shows the expected battery saving time with the current LBA re-
quests and SA degrees. Briefly, the prototype first calculates the
expected number of saved GPS invocations with SA. Then, assum-
ing a typical operation of making a phone call and its associated
power level, the prototype estimates the improved battery life from
the saved energy.

With current Android APIs, GPS is invoked through a major
function call, requestLocationUpdates(), which takes at least four
input parameters: LocationProvider (i.e., Gps or Net), reporting
frequencies in term of time and distance, and an PendingIntent or
LocationListener. Our prototype mainly captures this function call
and embeds intelligence inside the function as well as other rel-
evant functions. Specifically, SS may substitute another Location-
Provider for the requested one, SR may freeze the further execution
of the function when necessary, SP may piggyback the current call
on existing registrations and freeze further execution of the func-
tion call, and SA may adjust reporting frequency based on battery
level or user preference.

We illustrate the high-level operations of the four design princi-
ples, as well as the major data structures, information flows and
the function calls in Figure 9. SP is hooked into the location-
sensing registration function, requestLocationUpdate(). Whenever
the framework detects a new location sensing registration, SP records
the registrations into Registration State and obtains the piggyback-
ing time by checking this state. SA and SR are implemented in
separate threads, and their invocations are triggered by battery level
changes and timers. SA registers for battery change updates with
Broadcast Receiver. SR periodically checks the user’s mobility
state for the purpose of registering or unregistering sensor readings.
SS reads the state of Area Profiles, periodically determines the cur-
rent M-Area and selects the most appropriate location provider.

4.3 Sensing Substitution (SS)
SS aims to determine the most appropriate location provider on-

the-fly. Specifically, when Net is available and currently Gps is
being used, SS may decide to use Net to replace Gps for location
sensing. The decision of whether to perform SS is controlled by the
user with a pop-up dialog informing the Net accuracy and asking
for actions. Similarly, when Net is being used and becomes un-
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available, SS may turn to Gps. Since Gps consumes more power,
Gps is requested with reduced location update frequency to main-
tain the same level of power consumption as Net.

In order to perform dynamic selection of location providers and
accommodate the mobility of the phone, SS needs to be invoked
periodically. The Handler class in Android SDK is used to imple-
ment a separate thread inside the LocationManager Class for this
purpose. As shown in Figure 10(a) line 1-2, whenever the task is
invoked, SS attempts to determine the most appropriate M-Area
where the phone resides. After finding such an M-Area, SS then
determines the available location provider with getProvider() call.
Specifically, the prototype captures the registration of the provider,
and records the registered provider, the listener, the registered time
update interval and the distance interval. This information is used
for new registrations (with the same interval values and the same
listener). If the available provider is Net, the requested provider
is Gps, and Net can satisfy LBA’s requirement (Lines 3-4), then
SS unregisters the current provider and registers the available one
(Lines 5-6). If the available provider is Gps and the requested
provider is Net, then SS unregisters Net and registers Gps appro-
priately (Lines 7-10).

Area Profiles are initialized with training data and updated by
monitoring the sensed environmental characteristics when running
LBAs. A separate profiler process keeps running when the user
carries the phone and moves around. The process records GPS lo-
cations, network-based locations, and the time. The profiled data
are stored in files, and then further extracted into M-Areas. Area
Profiles are read into the memory whenever the instance of Loca-
tionManager is created. Profiled locations are organized as a list of
M-Areas, each of which has the same characteristics of the two lo-
cation providers. In other words, locations inside the same area has
the same physical characteristics of Gps and Net (i.e., availability,
accuracy, precision). The structures and operations of the M-Areas
are presented in Section 4.7.

To reduce false negatives of area determination, the prototype
uses both current location and mobility properties to decide the
current M-Area. The mobility properties include current moving
speed and direction. For each invocation of SS, if the current lo-
cation is inside the same M-Area and if the moving direction and
speed suggest that the user will be in this area for a while, then the
M-Area is determined to be a candidate M-Area. If multiple can-
didate M-Areas exist, the most appropriate one is chosen based on

a set of criteria including visiting frequency, most recent visit time
and area size.

4.4 Sensing suppRession (SR)
SR monitors user’s context with less-energy-intensive accelerom-

eter and orientation sensors. When the user is in a static state, the
prototype saves energy by suppressing the new location sensing.
When LBAs are running and the location services are registered,
a thread is created to monitor and identify whether the phone is in
static or moving state. If the current state is static, then the current
location sensing registration is removed; if the state is non-static,
SR re-registers the previous sensing request, as shown in Figure
10(b) (Lines 8-12). The thread is invoked periodically (e.g., every
1 minute) and the reading for each invocation lasts for several sec-
onds. The reason for doing so rather than continuous monitoring
is that otherwise the continuous sensor reading and computation
become expensive in terms of energy consumption. However, the
disadvantage of periodic reading as compared to persistent reading
is that short-term static states might not be detected. Thus, periodic
invocations work better for long-term static states.

Inside the thread, the prototype reads accelerometer and orien-
tation sensors to detect mobility (Lines 1-7). The basic rationale
is that whenever there is change of the state, these sensors will
see a large variation in readings. As the motion sensors may re-
port updates quite frequently (e.g., 20 times per second), the user
state is detected to be static only when both microscopic state and
macroscopic state are static. Microscopic state is determined by
finer successive sensor readings, while macroscopic state is deter-
mined by coarser reading changes (e.g., 2 second). We notice that
both microscopic and macroscopic detections are necessary since
there are scenarios where slow changes (i.e., macroscopic) happen,
but such changes cannot be detected by microscopic checking. For
instance, the most infrequent sensor reading rate (i.e., by supply-
ing SENSOR_DELAY_NORMAL in the registerListener() call) on
Android platform is about 10-20 times per second, as observed in
our experiments. When the state change is slow, simply compar-
ing two continuous readings does not allow detection of the state
change. Furthermore, to reduce the false negative (i.e., mobility
being detected as being static) probability, our prototype takes one
step further. If no mobility is detected, then the user state is consid-
ered to be transiently static, and this state has to sustain for certain
period before inferring that the state is static.
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(a) Sensing Substitution (SS)
Variables

provider: Requested location provider
SetArea: Profiled M-Areas
Areaprev: Previous M-Area
Areacur: Current M-Area

1 Obtain most recently sensed location
2 Determine Areacur based on SetArea

3 If provider == Gps
4 If Areacur’s Net can satisfy LBA
5 Unregister the corresponding Gps
6 Register a new Net
7 Else // provider == Net
8 If Gps is not available AND Net is available
9 Unregister the corresponding Net
10 Register a new Gps
11 End
12 End

(b) Sensing suppRession (SR)
Variables

Statecur: Current motion state (static or moving)
Stateprev: Current motion state (static or moving)
Statemicro: Micro transient motion state
Statemacro: Macro transient motion state
StateGps,Reg: Currently requested Gps state

1 Obtain motion sensor readings
2 Determine Statemicro and Statemacro

3 If Statemicro and Statemacro == static
4 Statecur = static
5 Else
6 Statecur = moving
7 End
8 If Stateprev and Statecur == static
9 Unregister the corresponding Gps
10 Else
11 Register a new Gps based on StateGps,Reg

12 End
13 Stateprev = Statecur

(c) Sensing Piggybacking (SP)
Variables

StateGps: Gps registration state
StateNet: Net registration state
time: Requested location sensing frequency
dist: Requested location sensing distance

1 Received requestLocationUpdate(provider, time, dist,...)
2 Store information about provider, time, distance
3 Check validity of StateGps and StateNet

4 If provider == Gps
5 Compare StateGps to time and dist
6 If StateGps allows piggybacking
7 Delays the registration to enable piggybacking
8 End
9 Else // provider == Net
10 Compare StateNet to time and dist
11 If StateNet allows piggybacking
12 Delays the registration to enable piggybacking
13 Else
14 Compare StateGps to time and dist
15 If StateGps allows piggybacking
16 Delays the registration to enable piggybacking
17 End
18 End
19 End

(d) Sensing Adaptation (SA)
Variables

Batcur: Current battery level
Batthr: Battery level threshold to trigger SA
ftime: Function to adjust time parameter
fdist: Function to adjust distance parameter

1 If provider == Gps AND Batcur < Batthr

2 time = time * ftime

3 dist = dist * fdist

4 Obtain user preference
5 If SA is allowed
6 Unregister the current Gps
7 Register a new Gps with time and dist
8 End
9 End

Figure 10: Pseudo-code : (a) Sensing Substitution, (b) Sensing suppRession, (c) Sensing Piggybacking, and (d) Sensing Adaption

4.5 Sensing Piggybacking (SP)
LBAs request location sensing through a registration function

call of requestLocationUpdates(), which takes several parameters
including the location provider, time interval and distance inter-
val. The essential idea of SP is to force the incoming registration
request to synchronize with existing location-sensing registrations.
SP predicts the next sensing registration request from currently run-
ning LBAs and asks the incoming LBA to delay the registration.
SP learns and maintains the location-sensing registration history,
stored in two array lists—one for Gps and the other for Net. Each
element of the lists contains three values: registration time, time
interval and distance interval.

SP first needs to determine the validity of the maintained states.
Since the prediction of future registrations is based on historically
maintained states, the states can be outdated because the requesting
LBAs might stop running or change the registration. A state is valid
only when the most recent registration time recorded is no more

than certain time earlier than the current time. The default threshold
value for determining the validity is 200% of the time interval. In
other words, if the predicted registration which is supposed to occur
after T time does not come in 2T time, then the state is invalid,
indicating either the application changed the registration pattern or
the application has stopped running.

As shown in Figure 10(c), SP is hooked into the registerLoca-
tionUpdate() function in the LocationManager Class of Android
Framework. When receiving the above function call, SP checks the
validity of the maintained registration state (Lines 1-2). If the state
is invalid, the request is passed through and is added to the regis-
tration history by the addReg() function. If the state is valid, then
SP determines the piggybacking time (i.e., the delay) with getPig-
gyTime() function (Lines 4-16). The current prototype determines
the piggybacking time in six different usage scenarios, based on the
currently maintained registration-state types as well as the incom-
ing new registration type. In the following, we will discuss each
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of the six scenarios below. For simplicity, we use the notation of
{(Maintained states), Incoming state} to denote each scenario. We
use (t, T0, D0) to denote the incoming request, where t is the time,
T0 is the requested update time interval, and D0 is the requested
distance interval. For the maintained states, we use (Gps, T1, D1)
to denote the Gps state with the finest time interval being T1 and
finest distance interval being D1. We use (Net, T2, D2) to denote
the Net state with the finest time interval being T2 and the finest
distance interval being D2.

• {(Gps), Gps}: The prototype checks whether the (Gps, T1, D1)
state is valid. If so, then it compares (T1, D1) to (T0, D0). If
T1 < T0 and D1 < D0, then piggybacking is enabled, and the
piggybacking time is calculated.

• {(Gps), Net}: As Net typically has coarser location information
than Gps, the operations are similar to the ({Gps},Gps) scenario,
but the comparison is between (T2, D2) and (T0, D0).

• {(Net), Net}: Similar to {(Gps), Gps} case by replacing Gps
with Net.

• {(Net), Gps}: Since Gps is typically finer than Net, the request
cannot piggyback on existing Net registrations. The new regis-
tration is passed through immediately.

• {(Gps, Net), Gps}: Similar to {(Gps), Gps}.

• {(Gps,Net), Net}: The prototype firstly checks the Net state,
which is similar to that of {(Net), Net}. If not possible to pig-
gyback, then it checks the Gps state, which is similar to {(Gps),
Net} scenario.

4.6 Sensing Adaptation (SA)
The operations of SA are shown in Figure 10(d). SA is invoked

when Gps is used and the phone’s battery level is low. When the
battery level is below a user-specified threshold (e.g. 20%), SA de-
termines the preferred adaptation degree for both time and distance
intervals of Gps registrations (Lines 1-3). SA also asks a user’s in-
tention on whether to perform SA or not. If adaptation is enabled,
the user can choose the preferred adaptation degrees. The proto-
type then functions based on the decision and values provided by
the user (Lines 4-7).

SA learns the current battery level information with Android
power-APIs. It registers a BroadcastReceiver to handle the Intent
of ACTION_BATTERY_CHANGED. The function used to regis-
ter is registerReceiver(), which is a method of the Context class in
Android SDK. Because of this, the prototype piggybacks the regis-
tration on an existing application in Android platform: SecuritySet-
tings, which is extended from Context. Specifically, in the onCre-
ate() method, SecuritySettings registers the BroadcastReceiver and
an IntentFilter. Whenever the battery level changes, the receiver is
notified and appropriate information is recorded.

Applications running on Android platforms are essentially in-
dependent in the sense that each application has a private direc-
tory and each application runs in a separate Java virtual machine.
For communication between activities within a single application
and between different applications, Android SDK provides several
mechanisms including shared preferences, content providers and
database. Unfortunately, none of these mechanisms works neatly
for the communication between application layer and framework
layer. Our prototype uses files (under /proc) as the intermediate
media for these two layers to communicate. Specifically, appli-
cations and frameworks both access the same files under the data
directory of the system, which can be obtained by getDataDirec-
tory() call. There are various types of data that need to be shared.
For simplicity, we use a separate file for each type of data.

Figure 11: Merging operations

4.7 Mobility Profiling
Both SR and SS use the M-Area structure to organize the lo-

cations. Each M-Area contains three types of properties. The
first type is boundary property. Each M-Area is a rectangle area
bounded by a starting point, an ending point, and a width value.
The points are specified with latitude and longitude coordinates.
The second type is usage property. M-Areas also contain the num-
ber of visits and the last visit time (i.e., LastTime). The third type
is provider property. M-Areas also maintain the sensing character-
istics, such as availability and accuracy, of Gps and Net.

The construction of M-Area consists of the two steps. Initially,
each M-Area is constructed as a rectangle, based on the two neigh-
boring location readings from the mobility traces. Later, M-Area
can be merged and replaced. Two M-Areas can merge into one
when they have compatible boundary-related properties and same
provider-related properties. There are two types of merging scenar-
ios: Horizontal and Vertical. Horizontal merging occurs when the
starting point of one M-Area is adjacent to the ending point of the
other M-Area or the starting point is inside of the other M-Area.
Vertical merging occurs when the two neighboring areas have ad-
jacent starting-points and ending points. When conditions are met,
merging is performed and the properties of the new M-Area are
updated. The two merging operations are illustrated in Figure 11.
Specifically, the starting/ending points and the width are updated
to represent the new M-Area. The LastTime is updated to the more
recent LastTime of the previous two M-Areas, and the Frequency
is set to be the average of the two Frequency values.

One important design issue is the size of the profiled M-Areas.
Since the size impacts the efficiency of processing speed and sup-
pression effectiveness, there is a performance tradeoff with regard
to the number of M-Areas maintained. Specifically, increasing the
size results in higher suppression probability. However, it also oc-
cupies more storage space and inflates the processing time. We
propose to adjust this size based on the hardware capability of the
smartphones. If smartphones can afford to provide more space and
process the operations sufficiently fast, maintaining in general more
M-Areas benefits Sensing Substitution. In addition, replacement
mechanism that only maintain higher-utility M-Areas can be eas-
ily applied to alleviate the storage concern and maintain scalability.
The prioritization is enforced in the following order: Frequency,
LastTime, and Area size.

5. PERFORMANCE EVALUATION
We evaluated the effectiveness of our prototype. We first model

the energy saving when each of the four design principles is ap-
plied. Then, we show the effectiveness of each design principle by
considering a typical scenario where each design principle works.
Finally, we evaluate the integrated operations of the prototype and
show its aggregated saving.
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5.1 Analysis
We analyze energy-saving benefits coming from reduced GPS

invocations. For simplicity, we assume that LBAs request r number
of GPS invocations per hour by default and that the energy cost
of per-GPS invocation is Eg . Similarly, we use En to denote the
energy cost of per-Net invocation, and use Eo to denote the energy
cost of running each design principle in an hour. The energy-saving
benefits are expressed in the reduced number of GPS invocations
and, for a more concrete understanding, they are translated into the
extended battery life when other tasks are performed. Specifically,
we choose the representative task of making phone calls, and the
power consumption level of the task is denoted by Pc. We use Ng

to denote the number of GPS invocations reduced by each design
principle in an hour, and use Tc to denote the extended operation
time, when making calls.

• Sensing Substitution Assuming pu percentage of GPS invo-
cations are replaced by Net invocations:

Ng = rpu , and Tc =
rpu(Eg − En) − Eo

Pc

• Sensing Suppression Assuming ps percentage of GPS invo-
cations are suppressed, we have,

Ng = rps , and Tc =
rpsEg − Eo

Pc

• Sensing Piggybacking Assuming pg percentage of otherwise-
independent GPS invocations can piggyback on other invo-
cations. We have,

Ng = rpg , and Tc =
rpgEg − Eo

Pc

• Sensing Adaptation Assuming the time-interval adaptation
degree is dt(%), we have,

Ng = r(1 − 100

dt
) , and (1)

Tc =
r(dt − 100)Eg − Eo

dtPc
(2)

We now show exemplary values based on experiments and as-
sumptions mentioned above. Our measurements show that each
GPS invocation costs about 9 Joules (i.e., 150 mA×3.7V×15 sec-
onds). The average energy overhead of running the design princi-
ples on our smartphone prototype is negligible (i.e., a few mW),
compared to GPS sensing power, so for simplicity in the follow-
ing presentation we ignore this cost. Next, though the power level
of making phone calls varies on different phones and conversation
scenarios, we choose an averaged value of 600 mW, measured in
an ADP. For an LBA requesting Gps every half minute, we have
r = 120. Thus, with SA and dt = 300, the energy saved per
hour is Es = 120 × 2

3
× 9 = 720 (J) with Equation 1. We have

Tc = 720
0.6

= 1200 (seconds) with Equation 2. In other words,
with SA, for every hour of running an LBA, about 20 minutes of
phone-call time can be saved.

5.2 Sensing Substitution (SS)
We evaluate SS by asking a person, who carries a smartphone,

to walk along a route. The route is manually split into four ar-
eas with pre-defined different characteristics of Gps and Net. For
ease of evaluation, we pre-set the characteristics of the four areas
as follows. In Area 1, both Gps and Net are available, with Net
being much less accurate than Gps. In Area 2, both Gps and Net
are available, with Net having accuracy similar to Gps. In Area 3,
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Figure 13: Sensing Substitution

only Gps is available. In Area 4, only Net is available. We run
an LBA requesting Gps updates every 5 seconds. The substitution
checking thread uses an interval of 15 seconds. We then record the
events of SS and location updates in Figure 12. As shown in the
figure, in Area 1, Gps is used to perform location updating. As the
user moves into Area 2, Gps is replaced by Net, since Net has ac-
curacy similar to Gps’s. Then, as the user moves into Area 3, the
component substitutes Gps for Net, since only Gps is available. Fi-
nally, when in Area 4, Net again replaces Gps to perform location
sensing.

Figure 13 shows the recorded GPS invocation times and im-
proved battery life in our experiments. Because SS replaces Gps
with Net only when Net provides the desired location sensing ac-
curacy, we vary the location accuracy required by LBAs from 50
meters to 300 meters. We set the Net accuracy according to the
traces collected from a particular user who commutes along a walk-
ing route. The user lives and works in Bay Area of California, USA.
As shown in the figures, with coarser requirements, the number of
GPS invocations decrease. While 50-meter accuracy requirement
does not see much improvement, 300-meter requirement effectively
reduces the number of invocations by about 50%. Correspondingly,
improved call-making time increases as accuracy requirements be-
come coarser.

5.3 Sensing suppRession (SR)
SR is invoked only when the phone is in static state. We con-

sider a scenario where an LBA is running and user’s mobility states
vary between being static and moving. The State-Checking thread
is invoked every 1 minute. Figure 14 shows the various events such
as thread invocations, starting and stopping of the application, and
the user’s mobility. As shown in the figure, the phone is initially
static. After LBA starts, accelerometer is invoked. Since the phone
is not moving, the State-Checking thread puts the phone into a sup-
pression mode, after a while. Once the phone starts moving, the
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Figure 15: Sensing Suppression

thread detects the mobility and takes the phone out of the suppres-
sion mode. Finally, after the application stops, the accelerometer is
unregistered.

Figure 15 shows the recorded GPS usage with varying GPS in-
tervals requested by LBAs. Note that we put the phone into static
state for half of the entire period (i.e., 30 minutes in a hour). We
plot the improved battery life when making calls in Figure 15(b).
SR effectively suppresses about half of the GPS sensing, which im-
proves the battery life when making calls by up to 400 seconds.

5.4 Sensing Piggybacking (SP)
SP can help reduce the number of GPS invocations by piggy-

backing GPS sensing requests from multiple LBAs. We run two
LBAs concurrently but with different starting time. Both applica-
tions request GPS sensing every 2 minutes. Figures 16(a) and (b)
show the sensing updates received by the two applications. We see
that when SP is not working, GPS is invoked for a total of 10 times
in 10 minutes, while when SP is used, GPS is only invoked 6 times.
Note that in Figure 16(b) the last two GPS invocations notify both
applications about the new location updates.

Figures 17(a) and (b) show the GPS invocation times and im-
proved battery life time during experiments. We vary the GPS re-
questing frequencies of LBAs from every 1 minute to every 3.5
minutes. With SP, the number of GPS invocations is reduced by
half, and correspondingly, call-making time is improved by up to
910 seconds.

5.5 Sensing Adaptation (SA)
We evaluate SA by considering two scenarios with different bat-

tery levels. We set the adaptation degree for time interval to dt =
200. The Gps location updates received by the applications are
plotted in Figure 18. As shown in the figure, the LBA requests the
location sensing updates every 1 minute, and with this component,
the update interval is increased to every 2 minutes.

Figure 19(a) shows the GPS invocation times at low battery level.
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Figure 16: Sensing Piggybacking (Events)
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Figure 17: Sensing Piggybacking

We vary the adaptation degree from 100% (i.e., without SA) to
350%. We observe that no-adapting results in about 60 times of
GPS sensing, as requested by the applications. The higher adap-
tation degree results in the less number of GPS invocations, and
specifically, with dt = 350, GPS is only invoked 15 times. As
shown in Figure 19(b), SA helps improve call-making time by up
to 650 seconds per hour.

5.6 Integrated Results
We also evaluate the effectiveness of integration operations in

energy saving. We run two LBAs concurrently at low battery level
to enable corresponding components of SA and SP. The adaptation
degree is set to be 200%. The two LBAs request GPS sensing with
same frequency of every 30 seconds, but start with 15-second dif-
ference. We use the traces collected from a particular user who
commutes along a route in the Silicon Valley, California. We also
vary the user states to invoke the SR. Specifically, we vary the time
length of the user being static. The GPS usages are plotted in Fig-
ures 20. We see that by default GPS is invoked about 240 times per
hour. By invoking all the four components, GPS invocations can
be reduced to about one-fifth even when the phone is constantly
moving (i.e., SR is not invoked). Even more significant reduction
on the number of GPS invocations can be achieved when the phone
is put in longer static state (i.e., up to 98%). Also, with our proto-
type, improved call-making time is more than 2,700 seconds for all
considered scenarios.

Even though the above evaluation results show the savings in
terms of GPS invocation times and predicted operation time, it is
also necessary to show the improved battery life since operating the
design components (e.g. computation) also consumes energy. We
show the improved battery life with our prototype with a scenario
where two LBAs are running, each requesting GPS every 1 minute.
The two LBAs start with 30-second difference. To show the ef-
fect of SA, we invoke the component for all battery levels, i.e., the
battery level threshold is set to 100%. A user carries the phone
and walks along the commuting route with different moving/static
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Figure 19: Sensing Adaptation

time. As shown in Figure 21(a), our prototype can improve the
battery life from 81% to 92% after an hour.

We also use the LBA of Real Time Traffic to measure the ef-
fectiveness of our prototype. Using the same configurations as
described in Section 2. The user carrying the phone follows the
commuting route and spends half time walking and half time being
static. The instantaneous battery level results are shown in Figure
21(b). We observe that our prototype can improve the battery life
from 79% to 88% after an hour—up to 75% improvement.

5.7 Profiling Results
To evaluate the location-sensing characteristic profiler in SS, we

ask three users to carry phones with our prototype installed, and
we continuously obtain their location information on a daily basis
for 3 weeks. The users live and work in the Bay Area of California,
U.S.A. We show part of a M-Area map (defined in Section 3.1) both
before and after the merging operations in Figure 22. We see that
there are totally 5 M-Areas before merging, and these areas result
in 3 new M-Areas after merging.

The profiling process has several pre-defined parameters for ex-
tracting and merging M-Areas. One of the parameters is the initial
width of extracted M-Areas. The setting of this value particularly
affects the merging operations since only adjacent M-Areas can be
merged. A larger width value encourages merging and leads to
smaller M-Area sets, while the accuracy of the M-Area extraction
might be compromised since all the locations inside the same M-
Area are supposed to have the same characteristics. As shown in
Figure 23(a), setting the width to 10 meters rather than 30 meters
increases the resulting M-Area set by more than 70%.

We also measure the Net accuracy with profiled data of 3 users,
and we show CDF in Figure 23(b). We see that for the locations
visited, more than 70% of locations have a Net-accuracy finer than
100 meters. This suggests that for an LBA requiring location accu-
racy coarser than 100 meters, SS can be invoked most of time.
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Figure 20: Integrated Results
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6. RELATED WORK
Recently, the use of smartphones (e.g., iPhones, Windows Mo-

bile, Symbian and Android) becomes pervasive. These smartphones
are equipped with location sensing capability to enable LBAs. As
mentioned before, to the best of our knowledge, existing mobile
platforms including Android do not employ techniques similar to
our designs to improve energy efficiency of LBAs, although appli-
cation developers partially adopt similar concepts (e.g., increasing
sensing interval).

As users are increasingly adopting a wide variety of LBAs on
smartphones [2, 4, 10], several research efforts have been made to
the design and use of LBAs. For example, work in [22, 23, 29,
36] presents traffic monitoring designs. BikeNet [18] describes an
extensible mobile sensing system for cyclist experience mapping.
StarTrack [12] extracts users’ sequences of locations in the form of
tracks so that other applications can take advantage of the informa-
tion. Other works aim to improve the performance of positioning
mechanisms such as GPS. For instance, Skyhook [8] improves the
response time of positioning by combining the unique benefits of
GPS, cell-tower triangulation and WiFi positioning.

Since typical smartphones are equipped with multiple types of
sensors, applications that take advantage of these sensors are boom-
ing, and many existing works attempt to detect and extract users’
states and context based on the readings from these sensors [13,15,
21,25]. Many approaches have been proposed to combine the infor-
mation obtained from sensors including Bluetooth, accelerometer,
audio, camera and GPS [16, 20, 24, 28, 35].

Realizing the battery shortage problem of mobile systems, vari-
ous solutions have been proposed to save energy [11,32]. The chal-
lenges and general approaches for energy management on handheld
devices are described in [34]. Turducken [33] presents a hierarchi-
cal power management architecture for mobile systems.

To address the power consumption problem of GPS sensing, some
works attempt to trade accuracy of GPS for energy [14, 17, 19, 26,
30]. Work [14] proposes to use accelerometers to sense movements
for saving energy, and the mechanism bears similarity with Sensing
suppRession. ENloc [17] addresses the optimal location sensing
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Figure 22: Merging Operations
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Figure 23: Profiling Results

problem given an energy budget. Micro-Blog [19] proposes to bal-
ance the competing goals of accurate location coordinates and long
battery life by infrequently using more accurate, but power-hungry
localization services such as WiFi to offset the error introduced by
less accurate, but more power-efficient localization services (e.g.,
GSM localization). These two works share certain features with
Sensing Adaptation. In addition, work [31] selects between two
data services driven by history, which bears the idea of substitu-
tion. Parallel to our work, a-Loc [26] presents a method to dy-
namically trade-off location accuracy and energy, using probabilis-
tic models of user location and sensor errors. A-Loc chooses the
most energy efficient location sensor to meet application accuracy
requirements. The accuracy requirements may be specified explic-
itly by the applications, or automatically determined by a-Loc for
important classes of applications such as mobile search and social
networking. Work [30] proposes to trades-off location accuracy
for reduced energy use by using a combination of spatio-temporal
location history, user activity, and celltower-RSS blacklisting to se-
lectively activate GPS only when necessary to reduce position un-
certainty. The work also proposes sharing position readings among
nearby devices using Bluetooth in order to further reduce GPS acti-
vation. Though sharing certain degree of similarity with the above
approaches, our work differs from them in the exact usage scenarios
and detailed designs. In particular, compared to these approaches,
our work provides a comprehensive energy-saving solution tailored
for smartphones running multiple LBAs, and it has been imple-
mented as a middleware on an Android smartphone.

7. CONCLUSION
In this paper, we consider the problem of energy efficient location-

sensing on smartphones. We first identify four critical factors that
affect energy efficiency of location-sensing with GPS through ex-
tensive experiments. These factors are static use of location sens-
ing mechanisms, absence of use of power-efficient sensors to opti-
mize location-sensing, lack of sensing cooperation among multiple
LBAs, and unawareness of battery level. We then present an adap-
tive location-sensing framework that includes the design principles
of Sensing suppRession, Sensing Substitution, Sensing Piggyback-
ing, and Sensing Adaptation to reduce the usage of GPS in vari-
ous scenarios. We implement these design principles as a middle-
ware on Android-based smartphones by modifying the Application
Framework. Our evaluation results on the implementation show
that our prototype can significantly reduce the GPS usage by up to
98% and improve battery life by up to 75%.
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