Sens
A Decentralized Me

Philip Shibly




What is SensEvent?

* An avenue for sharing media between users which does
not rely on ownership of the composite of media.

- Users can upload media taken from an event and
share it with common participants of that event.

* A way to develop a more complete picture of an event,
from a time perspective and a spacial perspective.

- Participants of the same event has access to all of
the media uploaded, so a more “complete”
picture of an event can be presented to each
user.



Motivation

The need to present a composite of media to all users.

Remove any notion of “ownership” of the media or the event — presents a
persistence obstacle.

Those who “host” an event would naturally be the ones aggregating the media, but
don't forget about the guests as well. How do they aggregate the media without
passing around a URL or tagging a user in a picture?

What if an event doesn't have a “host” or an “owner” such as a Magic basketball
game where people from all social groups participate?

- What if the police need to gather evidence from the event, and an
aggregated source of photos from multiple points of view were
accessible?

- What if one circle of users miss important data about an event, but is
present in another circle of users data?

Remove the need for logging into a separate website to create a profile and to see
your event's media.



Approach

Build an app that lets users share events and
presents media to all users in different ways.

Strip JSON metadata from the media such as
geo-location and time.

Backend aggregation of media from all users
associated with each event

Re-host media in different formats requested
by the user.



Design Features

Application login

TableView of Events
MapView of Events

Add new Events

Delete yourself from an Event
Take/Select/Upload media

Backend Server

Metadata stripping

Thumbnail previews

Push/Pull to server via pList web-requests via XM

Host media as user requests it




Difficulties

e Needed to learn xcode

» Successfully pull out metadata on the
backend... actually... setting up the whole
backend.

« Staying within the proper MVC design.



Lessons Learned

Have to remove ALL warnings in xcode! They will come back to bite you.

NSZombie excellent for identifying memory leaks — remember no
stack/heap difference in xcode, so alloc,dealloc,assign, and release are
important.

Clean code and sticking to MVC prevents dealloc'd object referencing.
Using web-requests via pList XML is much easier than using CoreData.

Apple did an excellent job in taking care of all the low-level API
(CoreLocation, MapKit... basically all of Foundation).

UllmagePickerController strips out EXIF latitude/longitude metadata but
leaves the tags there. | don't know why Apple does this?

- Need to use Core Location separately and send that data as well.



Future Work

Change the way users add Events by adding feature of taking a photo of -

= Develop a vision system (or integrate existing one) to translate

Link logged in user with the UUID of the device they are on.
Allow users to push an event to a specific UUID to “invite” them to an event.

= Requires subscribing with Apple's push notification service (APNs), getting

Get Rid of the Server!

- Think outside the box! Create Event and store its info on the cloud... automate in

Use existing API's

- ASIHTTPRequest instead of NSURL
= Three20

Carry the same color scheme throughout the app.

- Customize the TableViews

Customize TabBar icons and Navigation ltems.
Implement ability to upload multiple photos.

Resize/Stretch photos not taken for the iPhone screen size, and scale down quality of photos for iPhone.

Pretty much... build an awesome product.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

