

SensEvent
A Decentralized Media Application

Philip Shibly

What is SensEvent?

● An avenue for sharing media between users which does
not rely on ownership of the composite of media.

– Users can upload media taken from an event and
share it with common participants of that event.

● A way to develop a more complete picture of an event,
from a time perspective and a spacial perspective.

– Participants of the same event has access to all of
the media uploaded, so a more “complete”
picture of an event can be presented to each
user.

Motivation

● The need to present a composite of media to all users.

● Remove any notion of “ownership” of the media or the event – presents a
persistence obstacle.

● Those who “host” an event would naturally be the ones aggregating the media, but
don't forget about the guests as well. How do they aggregate the media without
passing around a URL or tagging a user in a picture?

● What if an event doesn't have a “host” or an “owner” such as a Magic basketball
game where people from all social groups participate?

– What if the police need to gather evidence from the event, and an
aggregated source of photos from multiple points of view were
accessible?

– What if one circle of users miss important data about an event, but is
present in another circle of users data?

● Remove the need for logging into a separate website to create a profile and to see
your event's media.

Approach

● Build an app that lets users share events and
presents media to all users in different ways.

● Strip JSON metadata from the media such as
geo-location and time.

● Backend aggregation of media from all users
associated with each event

● Re-host media in different formats requested
by the user.

Design Features

● Application login

● TableView of Events

● MapView of Events

● Add new Events

● Delete yourself from an Event

● Take/Select/Upload media

● Backend Server

– Metadata stripping

– Thumbnail previews

– Push/Pull to server via pList web-requests via XML

– Host media as user requests it

Difficulties

● Needed to learn xcode
● Successfully pull out metadata on the

backend... actually... setting up the whole
backend.

● Staying within the proper MVC design.

Lessons Learned

● Have to remove ALL warnings in xcode! They will come back to bite you.

● NSZombie excellent for identifying memory leaks – remember no
stack/heap difference in xcode, so alloc,dealloc,assign, and release are
important.

● Clean code and sticking to MVC prevents dealloc'd object referencing.

● Using web-requests via pList XML is much easier than using CoreData.

● Apple did an excellent job in taking care of all the low-level API
(CoreLocation, MapKit... basically all of Foundation).

● UIImagePickerController strips out EXIF latitude/longitude metadata but
leaves the tags there. I don't know why Apple does this?

– Need to use Core Location separately and send that data as well.

Future Work

● Change the way users add Events by adding feature of taking a photo of a QR.

– Develop a vision system (or integrate existing one) to translate the QR code into an event and link the user to that event.

● Link logged in user with the UUID of the device they are on.

● Allow users to push an event to a specific UUID to “invite” them to an event.

– Requires subscribing with Apple's push notification service (APNs), getting certificates, SSL, etc.

● Get Rid of the Server!

– Think outside the box! Create Event and store its info on the cloud... automate in password-protected Google Images or Flikr.

● Use existing API's

– ASIHTTPRequest instead of NSURL

– Three20

● Carry the same color scheme throughout the app.

– Customize the TableViews

● Customize TabBar icons and Navigation Items.

● Implement ability to upload multiple photos.

● Resize/Stretch photos not taken for the iPhone screen size, and scale down quality of photos for iPhone.

● Use Threading

● Pretty much... build an awesome product.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

