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Abstract—Smart grids integrate intelligence, automation, and
communication into the electrical grid infrastructure, primarily
through the use of smart meters. These meters play a crucial
role in collecting and transmitting data, either to the cloud,
which may cause delays, or to the edge, where meters are
closer to the data source. In this paper, we propose Q-Balance,
a neural network-based solution for optimizing computational
resources at the edge, thus minimizing service processing time. Q-
Balance utilizes the Multi-Layer Perceptron (MLP) technique to
estimate response times for requests processed by computational
resources. Evaluation results demonstrate that Q-Balance can
significantly reduce the average response time, achieving up to a
65% reduction compared to the Min-Load approach at the edge
and up to 79% in the cloud.

Keywords: Edge Computing, Neural Network, Smart Grid,
Smart Meter;

I. INTRODUCTION

ccording to the US Department of Energy, global energy
Aconsumption has exhibited a consistent annual growth
rate of 2.5% over the past two decades [1]. This notable
escalation in energy consumption underscores the necessity of
transitioning from conventional electrical grids to the Smart
Grid paradigm. Smart grids seamlessly combine automation
and bidirectional communication to facilitate the exchange
of information concerning energy production, transmission,
distribution, and consumption. By leveraging bidirectional
communication, as well as employing sensors and actuators,
smart grids can intelligently enhance the overall management
of electrical grid resources [2] [3].

One essential device for monitoring data in a smart grid is
the smart meter, used to gather real-time information such as
the smart home electricity consumption. Real-time measuring
has enabled significant advances in many fields, including en-
ergy disaggregation, energy consumption pattern analysis and
prediction, demand response, and user segmentation [4]. En-
ergy disaggregation, or non-intrusive load monitoring (NILM),
is a technique employed to analyze and segregate aggre-
gate electricity consumption data into specific information
regarding the usage of individual appliances, eliminating the

necessity for additional per-appliance measurements. NILM
can be used by Home Appliances Usage Scheduling Tech-
niques (HAUST). HAUST intelligently shifts or schedules the
operation of home appliances to times when energy rates are
lower or renewable production is higher, setting the demand
response to avoid periods of peak consumption [5]. HAUST
can also lead to reduced billing and increased efficiency of
electricity consumption.

Despite the substantial contributions of smart meters to
smart grid applications, they are susceptible to reliability
issues, prolonged delays, and failures in data collection, lead-
ing to the occurrence of missing or erroneous data [6]. The
presence of missing data poses a challenge to maintaining
an accurate energy usage model, which can subsequently
result in increased overall costs. Additionally, the possibility
of data loss arising from transmission failures or fraudulent
activities during the data transmission and measurement pro-
cess emphasizes the criticality of effectively addressing this
issue [7]. In these scenarios, since the reported value is not
accurate, it is considered a missing value, which can generate
inconsistencies, misinterpretations, and undesired results when
used by HAUST.

To overcome missing data problems, data imputation tech-
niques may replace missing data with substituted values in
the pre-processing phase, keeping the main characteristics of
the original values. According to Shin et al. [8] and Weber
et al. [4], handling missing data represents one of the most
challenging tasks during the data pre-processing phase, as
erroneous values have the potential to introduce bias into the
dataset. Due to the continuous data stream of smart meters,
the edge computing paradigm arises as a natural solution
to offload network and processing data [9]. Edge computing
relies on a distributed architecture with storage and processing
capabilities, closer to the end devices, such as smart meters.

However, as the number of smart meters increases, the
workload generated by data imputation techniques on edge
nodes also tends to rise. Inefficient allocation of resources
under such circumstances can lead to increased response



times, emphasizing the significance of effective load-balancing
algorithms in this infrastructure. Numerous load-balancing
algorithms have been proposed in the literature for smart grids.
However, to the best of our knowledge, Q-Balance is the
first approach to address the simultaneous challenges of data
imputation and load balancing.

Q-balance (Queue — Balance) adopts a learning-based
resource allocation approach, which ensures the balanced
utilization of heterogeneous resources by estimating the ex-
ecution time for data imputation tasks. The algorithm takes
into account the available resources on each server and aims to
optimize the allocation of computational resources, minimiz-
ing execution time and enhancing overall system performance.
Considering the continuous nature and unknown size of data
gaps, Q-Balance utilizes a MultiLayer Perceptron (MLP) to
determine the server with the lowest estimated execution time
for receiving requests.

This paper contributes in three main ways. Firstly, it ad-
dresses a combined problem involving data imputation tech-
niques and load balancing approaches. Secondly, it introduces
a load balancing method using a MultiLayer Perceptron (MLP)
for data imputation at edge nodes. Thirdly, it enhances edge-
based approaches, leading to reliable data and quicker re-
sponse times, thereby improving data imputation capabilities
for NILM and HAUST applications.

II. RELATED WORK
A. Data Imputation

Data imputation consists of filling in missing data with
substitute values. Services that use the data produced by
the smart meters, such as NILM and consequently HAUST,
may have their results compromised due to the absence of
information caused by problems in the data collection step. As
a consequence, these services can produce inconsistent results
due to data gaps, making the data imputation service a relevant
tool for reducing inconsistencies.

Moritz et al. [10], point out different data imputation
techniques and we highlight three of them, namely (i) Simple
Moving Average (SMA): data imputation method by simple
moving average, a technique widely used in signal process-
ing; (ii) Seasonally Decomposed Missing Value Imputation
(SEADEC): deals with data imputation through seasonal de-
composition of the time series; and (iii) Singular Spectrum
Analysis (SSA): attaches importance to implicit information
present in the datasets to be analyzed, such as noise and
trend. The recovering process of gaps present in datasets
occurs through the decomposition of observed data followed
by a reconstruction process, which replaces values considered
to be invalid without disregarding aspects such as trends,
seasonality, and noise.

B. Load Balancing in Edge Computing

Based on a three layer sensor-fog-cloud infrastructure,
Ashraf et al. [11] introduce a smart grid management model
and present a comparative analysis of three load balanc-
ing algorithms for scheduling electricity requests in fog

servers: Round Robin (RR), Active Monitoring Virtual Ma-
chine (AMVM) and Throttled. RR, Throttled and Weighted
Round Robin (WRR) were studied by Naeem et al. [12],
and a three-layer infrastructure was proposed for efficient
resource usage and energy management to satisfy the energy
requirements of residential users. Similarly, Zahoor et al. [13]
present a cloud-fog model used for resource management in
a smart grid with three load balancing algorithms: Throttled,
RR and PSO.

The previous work on NILM is often based on a cloud
computing approach, where samples are transferred directly
from the smart meter to the cloud for further analysis. This
implies low sampling rates to maintain a low bandwidth, lim-
iting the final performance obtained in identifying individual
loads. Moving NILM to the edge of the network offers many
advantages such as reduced operating cost and reduced power
consumption while minimizing privacy concerns [14].

Tabanelli et al. [15] present hardware enabling the use of
NILM at the edge of the network capable of managing data
rates at high sampling frequencies. Real-time implementation
of the algorithms for the processing of electrical signals and
classification of NILM loads demonstrate the viability in nodes
in the network edge. Yining et al. [16] propose a data interplay
between cloud and edge, where experimental results show
that it can effectively improve the accuracy and reliability of
NILM.

As the relevant NILM problem, we emphasize that the
HAUST problem is out of the scope of our work. We assume
that the Q-balance’s output serves as input for those problems.

III. Q-BALANCE
A. Architecture Overview

Q-Balance is a learning-based resource allocation approach
specifically designed for edge resources, implemented as a
Multi-layer Perceptron (MLP) neural network. Its primary
objective is to optimize resource utilization by accurately
predicting the execution time of data imputation tasks and
assigning requests to the most suitable resource. In the context
of a heterogeneous and dynamic environment, Q-Balance
leverages MLP to fulfill the following functions: (i) continu-
ously monitor and evaluate the availability of resources at each
edge node in the cluster upon the arrival of data imputation
requests; (i) estimate the expected processing time for the
requested data imputation tasks; and (iii) forward the request
to the edge node with the lowest estimated response time. The
system’s data flow is illustrated in Figure 1.

The workflow in shown in Figure 1 is activated upon the
arrival of a new data imputation request. Upon receiving the
request, the data analysis service, as outlined in Algorithm 1,
determines the most suitable data imputation method and
subsequently forwards the request to Q-Balance for resource
allocation. Q-Balance, as presented in Algorithm 2, retrieves
the current CPU load information from each edge node within
the cluster. By considering this information along with an
analysis of the data imputation method, Q-Balance deter-
mines the optimal edge node capable of performing the data
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Fig. 1. Q-balance Workflow.

imputation task and forwards the request accordingly. The
selected edge node then proceeds to execute the designated
data imputation method, and upon completion, delivers the
updated and complete time-series data back to the requester.

Algorithm 1 Data Imputation Service

Input: request ;
Output: result ;
gapLength <— checkGap(request)
method < decisionTree (gapLength)
result <— QBalance(method, request)
return(result)

// Data imputation request
// Time-series imputed
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Algorithm 2 Q-balance

Input: method ;

Input: request ;

Output: result ;

QBalance (method, request):
nodesStatus[] <— NodesCpuLoad()
estimatedNodeTimes[] «+— MLP(nodesStatus, method)
destinationNode < getSmallerTime(estimatedNodeTimes)
result <— destinationNode.run(request, method)

return result

// Imputation Method
// Data imputation request
// Time-series imputed
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B. Data Modelling

Q-Balance takes as the input a time-series data collected
by a smart meter. The data is represented as Ty(t) =
{t(1),t(2),...,t(N)}, where N represents the time at which
each t(¢) occurred. Thus, the sensing rate determines the
granularity of the dataset in NILM and HAUST services.

We model energy consumption as in [17], which is defined
by Ts(n) = sw(s) +¢(n) + I. Each observation is represented
as the sum of a square wave function (sw(s)), given by the
seasonal behavior, a lognormal function (e(n)), representing
the consumption variability, and a trend (I), representing a
stationary process, e.g. over time the trend will converge
to mean equal to zero. To simulate a data failure, a gap
of size L was introduced into each time-series, resulting
in a gap of size N in each, which the gap frequency is
given by ¢ = {N — L — 1}. On the other hand, the
data imputation task measures the accuracy of each imputa-
tion method with the Root Mean Square Error (RMSE), as

RMSE — \/(%) Z?:l(Tsfomplete _ Tszmputed)z. RMSE
indicates how close the imputed values are from a complete
series, penalizing large errors.

Q-balance considers a set of nodes D = {d},d5, ..., del},
where I = {e,c} is the location of node ( edge or cloud),
and a set of workloads W = {wy,ws, ..., ww |}, where |D|
and |W| are the number of nodes and workloads, respectively.
Therefore, the objective function that minimizes the processing
time of data imputation tasks is given by Eq. 1, such that the
sum of the workloads processing times (w) at each node (n)
is the smallest for that moment (m).
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IV. EVALUATION AND PERFORMANCE ANALYSIS

We conduct a thorough evaluation of Q-Balance by mea-
suring the performance of its data imputation and load bal-
ancing algorithms. Initially, we assess the data imputation
performance by comparing the effectiveness of various algo-
rithms across different gap sizes present in the original data.
Subsequently, we comprehensively evaluate the load balancing
performance through extensive experimentation.

A. Data Imputation Experiments Setup

The data imputation task operates in containers, enabling the
definition of the maximum amount of CPU that the service can
use. Available resource on the edge node, before executing
the method, is represented by the AwailableC PU attribute,
which is defined through usage quotas that simulate the CPU
idleness.

We assume a T'; with NV = 1350 observations, representing
90s at a sensing rate of 15Hz, enough to accommodate
consumption patterns. Each observation of the series t(n) was
constructed considering three individual components. For the
first component, we used the square wave function represent-
ing the seasonal behavior with an angular frequency equal to
15. For the second, we used a random function ¢, defined by
a lognormal distribution. According Kuusela et al. [17], the
variability of residential energy consumption is well described
by log-normal distributions, even when measured on different
time or population scales. The last component is given by
a stationary trend I representing the energy consumption



behavior. Therefore, the data adopted in the experiments can
be represented by Ts(n) = square(15) + e(n) + I.

To compare the data imputation methods, 100 synthetic
time-series were created, modifying the seed of generation of
the random component e. Within each time-series, a data gap
of size L was introduced in order to simulate a failure of data
absence. Starting from a series with a gap size L = 15, for
each of the experiments, we increment the gap size L by 15
until L = 600, thus generating gap size variations of 1 to 40
seconds. The location of the gap within the series is indicated
by ¢, given by ¢ = (N — L —1). We observe the mean_time
variable and RM SE variable for each result.

B. Data Imputation Analysis

Analyzing the average processing time, Figure 2(a) shows
that SSA algorithm is approximately 28 times slower than
SMA algorithm and about 25 times slower than SEADEC.
SSA obtains a higher average processing time due to the
complex steps involved in constructing the time-series, which
is helpful in achieving greater accuracy for larger gap sizes.
Despite the SMA having a slower average processing time than
the SEADEC, both are statistically equal due to the confidence
interval of SMA mean varying between 0.007s and 0.0104s,
and SEADEC having an average of 0.0100s.

Based on RMSE, we built a DT (Decision Tree), see
Figure 2(b), to determine the best fitting algorithm for different
gap sizes (L). For L smaller than 68, SMA algorithm achieved
the lowest RMSE, meaning that it is the most suitable for this
gap size range. In gaps with L between 68 and 127, SEADEC
was the most desired method. For L greater than 127, DT
indicates the use of SSA.
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Fig. 2. a) Average processing time (s). b) Decision Tree.

DT results from Figure 2(b) were used as a primary input
for the construction of the data imputation service and are
directly related to the load-balancing experiment shown next.

C. Load Balancing Experiments Setup

MPL in Q-balance was modeled with two dense layers
of 128 and 256 neurons, respectively, using the activation
function ReLU(Rectified Linear Units). The Adam optimizer
was chosen with the parameter 8 € (0.9,0.999). The learning
rate chosen was 0.01, and the Mean Square Error (MSE) was
used as a loss function. As input to the MLP, we define four

environment attributes that influence the decision to forward
the request to the nodes: (i) Node - an identifier used to specify
the node where the requested method is executed; (i) Method
- represents the data imputation algorithm being executed; (iii)
Available CPU - indicates the amount of available resources
on the node prior to executing the request. To generate the
training and test datasets, we employ Algorithm 3 and record
the attribute (iv) Response Time, which denotes the total
time elapsed from the request being sent until receiving the
response. Each set of the four attributes represents different
scenarios that the MLP learns to identify.

For each node and for each method, it was sent 3200 total
data imputation requests. To simulate a 95% CPU load, where
the load balancing is most important and ensure the load
increase smoothly, we assume a quota of only x = 5% of
the CPU for executing the method and for every 100 requests,
the quota was increased by v = 1%. After reaching 20%, we
increment by  per iteration until we reach 100%. Thus, total
of 57,600 scenarios were recorded for training and testing the
MLP. In the training and testing stage, 85% of the scenario
data were used for training the network and 15% for testing
by cross-validation ShuffleSplit with n_splits = x.

Algorithm 3 Dataset Generation
Output: Training and test dataset

1 Nodes = [df, d$, dS, dg, df, dS]

2 Methods = [SMA, SEADEC, SSA]

3 TS = [Ts(t) = {¢(1),t(2),...,t(100) }]

4 foreach Node in Nodes do

5 foreach Method in Methods do

6 available_C'PU + x

7 while available_C'PU < 100% do

8 for i in seq(0,100) do

9 ‘ sendRequest(No, TS[z], Method)

10 end

11 if available_CPU < 20% then

12 | available_CPU < available_CPU + v
13 else

14 | available_CPU < available_CPU + x
15 end

16 end

17 end
18 end

D. Load Balancing Analysis

Initially, we carried out several experiments to verify the
effectiveness of the Round-Robin (RR) and Min-Load (ML)
load balancing algorithms, observing the average response
time for each of the methods in all scenarios. The difference
between the RR algorithm and the ML algorithm is that
instead of the request distribution following a circular list,
ML distributes the requests based on the load percentage of
the nodes. With the load information of all nodes, ML assigns
the requested request to the server with the lowest load value.

We divided the environment into two real scenarios. In the
edge scenario, the requests are performed only on the available
resources in the edge (df,ds,ds,d5), shown in Table 1. In
the cloud scenario, the requests are performed only on the
available Cloud resources (dS, dS), shown in Table IL

To simulate high and medium workload scenarios, the
average arrival interval rates of requests were set to 0.1s



TABLE I
EDGE RESOURCES

TABLE II
CLOUD RESOURCES

Edge resources Cloud resources (Google)

Node: dy ds dg dg Node dy ds
Arch.: x86_64x86_64x86_64 armv7l Location: us-centrall europe-northl
CPU(s): 4 4 2 4 CPU(s): 8 4
Vendor: Intel AMD Intel ARM Vendor: Intel Intel
max GHz: 3.0 32 2.1 1.2 max GHz: 34 34

and 0.2s, respectively. We use an exponential distribution to
describe the behavior of the request arrival interval in each
scenario. Ten replications of each set of experiments were
performed with different seeds. Each replication had 1000 data
imputation requests with L = 67 and L = 600 to simulate
the imputation requests that use SMA and SSA, respectively.
These gap size values were defined based on DT rule shown
in Figure 2(b).

Figure 3 shows the average response time of ML and RR
algorithms. The top part shows the result of the average
response time with a high workload, in which the request
arrival rate is 0.1s. In this scenario, ML-Edge obtained the
best values, considering both SMA and the SSA. At the
bottom part, we see the results with the request arrival rate
of 0.2s. In this case, the load requests in the edge decrease
the average response time by 1.1s and 1.2s for SMA with the
load balancing ML-Edge and RR-Edge, respectively, and 2.4s
for the SSA algorithm combined with ML-Edge.
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Fig. 3. Min-Load and Round-Robin, confidence level = 95%.

Due to requests dispatched by RR without any balancing
control, nodes with less computational power become over-
loaded, generating request queues and, consequently, increas-
ing their response times. Therefore, we applied the 2* factorial
design to evaluate the performance as described in Table III
with the factors and their respective levels used.

Since ML presented lower response times, we chose it as
a baseline for planning experiments using Q-balance (QB).
As levels of the data imputation algorithm factor, we have
chosen the SMA and SSA algorithms. To verify the influence
of the request rate, we chose the request rate factor, where we
defined the rates 0.2s, for the medium workload scenario, and
0.1s, for the high workload scenario. Finally, in the resource
location factor, we used the Cloud and Edge servers detailed
in Tables I and IIL

TABLE 111
FACTORS AND LEVELS.
Factor Levels
Load Balancing Algorithm (A) | Q-balance | Min-Load
Data Imputation Algorithm (B) SMA SSA

Request rate (C) 0.2 0.1
Resource Location (D) Edge Cloud

Response time was adopted as the response variable. Each
experiment was replicated 10 times, where 1,000 data imputa-
tion requests were sent in each replica, resulting in 160,000 to-
tal experiments. A factorial design was used because it brings
advantages such as the possible evaluation of all factors, thus
being able to determine their influences/effects and interactions
among factors.

Figure 4 shows the normal graph of standardized effects
for the 2% factorial design. As factors B and C move to the
right of the normalized red line, the increase in the value
obtained from the response time variable occurs. The most
significant effects in increasing the response time appear in
Data Imputation Algorithm (B) and Request rate (C). This
result is due to SSA imputation algorithm having more phases
in the time-series reconstruction and consuming much more
CPU time than the SMA. Furthermore, it shows that the
change in the rate of sending requests is the second factor
that most influences the response time, since the system has
a larger overhead in the rate equal to 0.1s in relation to
0.2s. However, as the interaction between the AD factors,
Balancing Algorithm*Resources Location, are to the left of
the normalized line, we see a decrease in response time. This
fact suggests that an efficient load balancing through edge can
reduce the average response time for the tested scenario.

Figure 5 provides an overview of the results of the average
response time in the design of experiments. In the execution
of the algorithm SMA, the balancers QB-Edge and ML-Edge,
being statistically equal, have the smallest response times.

For SSA data imputation algorithm with a rate equal to
0.1s, the difference between QB-Edge and the other balancing
policies is quite expressive, 4.4s against 12.5s for ML-Edge,
QB-Cloud 21.5s and ML-Cloud 20.6s. With the rate equal
to 0.2s in the execution of the SSA Algorithm, the QB-Edge
algorithm has the lowest average response time of 2s, ML-
Edge has the same average at 2.4s. In cloud nodes balancing,
QB-Cloud has an average of 5.7s, and ML-Cloud has an
average of 3.6s.

In the cloud scenario, QB-Cloud underperforms due to the
delay caused by the cloud’s higher latency, mainly in the
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request rate of 0.1s. On the other hand, even when the system
becomes overloaded, meaning request rate equal to 0.1 and
data imputation algorithm SSA, QB-Edge appears as the best
alternative for balancing requests, reaching an average of 65%
smaller than ML-Edge and 79% smaller than ML-Cloud. In
relation to ML, due to its characteristic of always picking the
server with the lowest percentage of load, its results regarding
the average response time in environments with less workload
are statistically equal to QB-Edge.

V. CONCLUSION

The proliferation of numerous services, particularly those
specific to smart grids such as data imputation for smart me-
ters, running at the network edge with diverse characteristics
presents a challenging load balancing problem. In this paper,
we propose Q-Balance, an intelligent load balancing scheme
that operates effectively in a dynamic and heterogeneous edge
environment using a MultiLayer Perceptron (MLP). Q-Balance
accurately predicts the optimal edge node for processing a set

of data imputation tasks within a reduced timeframe. Our al-
gorithm surpasses existing techniques, considered as baselines
in the literature, even when confronted with various workload
scenarios, both at the edge and in the cloud. Consequently,
Q-Balance demonstrates its efficacy in efficiently operating
within a heterogeneous and dynamic edge architecture.
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