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Abstract—This paper considers underwater wireless sensor
networks (UWSNs) for submarine surveillance and monitoring.
Nodes produce data with an associated value, decaying in time.
An autonomous underwater vehicle (AUV) is sent to retrieve
information from the nodes, through optical communication,
and periodically emerges to deliver the collected data to a sink,
located on the surface or onshore. Our objective is to determine a
collection path for the AUV so that the Value of Information (VoI)
of the data delivered to the sink is maximized. To this purpose,
we first define an Integer Linear Programming (ILP) model
for path planning that considers realistic data communication
rates, distances, and surfacing constraints. We then define the
first heuristic for path finding that is fully distributed and
adaptive to the occurrence of new events, relying only on
acoustic communication for exchanging short control messages.
Our Greedy and Adaptive AUV Path-finding (GAAP) heuristic
drives the AUV to collect packets from nodes to maximize the
VoI of the delivered data. We compare the VoI of data obtained
by running the optimum solution derived by the ILP model to
that obtained from running GAAP over UWSNs with realistic
and desirable size. In our experiments GAAP consistently delivers
more than 80% of the theoretical maximum VoI determined by
the ILP model.

I. INTRODUCTION

Underwater exploration and monitoring has emerged as a
vital part of the economy and the safety infrastructure of many
countries. Its applications range from aquaculture to intrusion
detection and prevention, including oil industry deployments,
telecommunications, pollution and climate control, search
missions and the preservation of cultural heritage [1]. The
current, costly approach to underwater monitoring relies on
tethered vehicles, cabled monitoring stations, or simply leaving
instrumentation on site and then retrieving it periodically.
As a consequence, only those applications needed by large
corporations (e.g., telecommunications) and governments (e.g.,
defense) have been implemented. For instance, all continents
but Antarctica are interconnected through thousands of kilo-
meters of optical cables, mostly serving the telecommunication
industry, the only industry able to spend hundreds of millions
of dollars to lay cable on the bottom of the ocean. In recent
years, advances in acoustic and optical underwater commu-
nication have made new underwater monitoring applications
feasible and cost effective. This includes port surveillance

and safety, oil platform monitoring, and protection of cultural
heritage at underwater sites. These applications rely on sensor
nodes mounting cameras and sonar systems that are able to
communicate wirelessly among themselves or with passing
vessels and underwater vehicles in an Underwater Wireless
Sensor Network (UWSN). These applications require nodes
to transfer a large amount of recorded data in a reasonable
amount of time. Acoustic communication, the prevailing un-
derwater communication technology, is insufficient for these
applications because acoustic modems’ data rate is only a
few tens of Kbps. Optical devices allow data rates of several
Mbps [2], [3], but only when nodes are close to each other.
Thus, this type of communication is most useful in scenarios
where statically deployed sensor nodes are visited periodically
by mobile data collectors, which can retrieve the sensed data
through the high speed optical connection [4].

In this paper we consider a UWSN scenario where sen-
sor nodes are deployed underwater for monitoring purposes.
Nodes sense and record data, and wait for an autonomous
underwater vehicle (AUV) to arrive to collect data. In order
to transfer large amount of recorded data, such as videos or
high resolution images, the nodes and the AUV are endowed
with optical communication devices. Nodes are also equipped
with acoustic modems to exchange control information with
the AUV. For instance, if a node has important data to deliver,
it can send a short control packet over the acoustic channel
to the AUV. Periodically, the AUV resurfaces and wirelessly
(RF) transmits the collected data to a collection point (a sink),
located on the surface. Fig. 1 illustrates the networks we
consider in this paper.

The information collected by the nodes varies in size, value
and urgency, depending on the specific application. It is also
unpredictable. It is not possible to know in advance when an
event of interest will happen, and which nodes will detect
it. In any case, the value of information (VoI) of an event is
highest at the moment the event is detected, and it then decays
with time. Therefore, packets reporting an event should be
delivered to the sink as soon as possible: The later the data
reaches the sink, the lower its value. Our goal is to investigate
the theoretical and practical challenges of planning the path
of the AUV to maximize the total VoI delivered to the sink.
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Fig. 1. A UWSN where nodes are visited by an AUV.

We summarize the contributions of this paper as follows:

1) We provide a new Integer Linear Programming (ILP)
model for determining AUV paths that maximize the
VoI of data delivered to the sink. Our mathematical
model provides provable bounds on the best possible
network performance (e.g., the best achievable VoI)
for benchmarking distributed protocols. The model is
independent of sensor deployment strategies, and has
parameters for controlling data generation rate, data
transmission rates, and AUV speeds. Our solution allows
us to compute an upper bound on the maximum VoI
retrievable from networks whose size is comparable to
that of actual (4 to 6 nodes) and desirable (9 to 12
nodes) sizes. To the best of the authors’ knowledge, this
is the first model for AUV path planning that takes into
account the VoI.

2) We define a realistically deployable distributed heuristic
for AUV path planning that adapts to events occurring
at unpredictable locations and times. The AUV chooses
the next node to be visited based on the VoI it expects to
collect at the next location. The information needed to
make this decision is propagated to the AUV using short
event packets transmitted through the acoustic channel.
The AUV plans to visit a node that has sent an event
packet if and only if visiting that node increases the
VoI of the data it will deliver to the sink. Because it
makes decisions based on what is best at the moment,
and adapts the path planning process to new information,
we call our heuristic Greedy and Adaptive AUV Path-
planning, or GAAP for short.

3) We demonstrate the effectiveness of GAAP in delivering
data with high VoI by evaluating its performance in
different scenarios. We start by showing the results of
a comparative performance evaluation of GAAP against
the ILP-based upper bound, termed OPT. The experi-
ments show that GAAP achieves VoI that is remarkably
close to that achieved by OPT. In fact, in scenarios with
variable number of nodes (from 4 to 12) and events,
we observe that GAAP always delivers more than 80%
of the theoretical maximum VoI obtained by OPT. We
further show how selecting the right starting point im-

pacts the performance of GAAP. Finally, to demonstrate
the benefit of VoI awareness, we perform a comparative
performance evaluation of GAAP vs. a simple non-VoI-
aware heuristic where the AUV travels a pre-established
path visiting all nodes. Our results show clearly that,
by explicitly considering VoI for path planning, GAAP
approaches the VoI-optimum paths provided by OPT.

The paper is organized as follows. Section II defines the
problem we consider in detail. In Section III we present an
ILP formulation for solving the problem of AUV path plan-
ning. A distributed heuristic for AUV routing is presented in
Section IV. Performance evaluation and comparisons between
GAAP, OPT and a non-VoI-aware solution is presented in
Section V. Section VI reviews literature on the topics of this
paper. Finally, Section VII concludes the paper.

II. PROBLEM DEFINITION

We consider a scenario where a set S of sensor nodes
(or simply, nodes) S1, . . . , S|S| are statically deployed in a
3D geographic underwater area. Nodes perform surveillance
operations for a given time T . The location of each node
is known (from manual deployment or from localization
techniques [5]), and therefore, given any pair of nodes, so
is the distance between them. The nodes perform continuous
sensing (e.g., taking videos), with node Si storing the sensed
data chunk pit at time t, 0 ≤ t < T . The data piτ observed by
a node Si at a given time τ has a value of information Vpiτ (t),
at time t ≥ τ . Vpiτ (t) is a monotonically decreasing function
of t. The VoI of a data chunk is highest at the moment when
it was sensed Vpiτ (τ); this base value varies depending on the
importance of the information captured in the data chunk.

An Autonomous Underwater Vehicle (AUV) travels from
node to node to collect the sensed information via high-data-
rate optical communication [2], [3], [4]. Specifically, during
T time units the AUV visits some nodes at their locations,
collects some sensed data, and periodically surfaces to offload
what it has collected to a data collection point on the sea
surface (a sink). Communications between the sink and the
AUV happen via high-data-rate wireless communications. The
path the AUV follows is therefore a sequence of runs in each
of which the AUV visits a number of the nodes to collect
some of their data and surfaces to report that data to the sink.
Specifically, during the kth run, the AUV makes a set of visits
{. . . (Si, tki ) . . .}, with node Si visited at time tki .

Let R = {1, . . . , r} be the set of runs performed by the
AUV within time T . Node Si is visited by the AUV during a
set of runs Ri ⊆ R. The AUV might not visit every node in
every run, so in general |Ri| ≤ r. Consider a run k ∈ Ri. Let
pred(k,Ri) be the last run the AUV visited node Si before
run k. Thus, if the runs in Ri are sorted by time, pred(k,Ri)
is the largest run in Ri less than k ∈ Ri. By definition
t
pred(k,Ri)
i = 0 when k is the smallest element of Ri. The

value of information for node Si given a path P of the AUV
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will be:

V(Si, P ) =
∑
k∈Ri

tki∑
h=t

pred(k,Ri)

i

Vpih(tih),

where tih is the time the AUV delivers the packet collected
from node Si at time h to the sink. In other words, the value
of information of the data sensed by node Si and delivered
to the sink by the AUV traveling path P during time T is
given by summing the values of information collected by Si
between two consecutive visits of the AUV when each packet
is delivered to the sink. The AUV must be on the surface
to deliver packets to the sink. After each run, it delivers the
packets it has collected during the run.

The AUV path planning problem is then stated as follow.
Given |S| nodes and their locations, given a set of
surfacing locations, and given the value of infor-
mation of the sensed data, determine the path Popt
(sequence of nodes and surfacing locations) of the
AUV so that the value of information is maximized:

Popt = max
P

 |S|∑
i=1

V(Si, P )

 .

We assume the AUV begins on the surface and it ends on
the surface, since any collected, but undelivered packets will
be worth nothing.

III. A MATHEMATICAL MODEL FOR AUV PATHS

We present a mathematical model for the problem defined
above. We start by defining the sets, the parameters and the
variables used for formalizing our problem.

Definitions, sets and parameters

• T is the length of network operations, in time units
(numbered from 0 to T − 1). Nodes produce data and
the AUV travels to collect and deliver data during this
time. The last time the sink can receive data is T , the
data sent by the AUV at time T − 1.

• S is the set of nodes (and their locations).
• W is the set of surfacing locations.
• N = S ∪ W is the set of all locations to which the

AUV can travel and sojourn to either receive or transmit
packets, respectively.

• ω is a fictitious location, indicating in fact that the AUV
is in transit, i.e., it is not at any actual location in N .

• dij is the time it takes for the AUV to travel between any
two locations i and j in N , in time units. Time distance
dij is easily derived from the known position of nodes
and surfacing locations and from the known AUV speed.

• τi is the shortest travel time for the AUV to go from node
Si ∈ S to some location w ∈W on the surface and vice
versa (assumed symmetrical), in time units.

• A packet is the amount of data that a node produces in
a time unit, in bits.

• uc indicates the number of packets that the AUV can
collect from a node in a time unit.

• ub indicates the number of packets that the AUV can
transmit (broadcast) to the sink in a time unit.

• Vi,t1,t2 is the value of information captured by node Si ∈
S at time t1 and delivered at time t2.

We introduce some notation to make the model easier to
understand and write. For each node Si ∈ S we call the set of
feasible data capture times Ti1. Given a node Si and a capture
time t1 ∈ Ti1, the set of possible delivery times is Ti12. Let F
be the set of all feasible tuples (i, t1, t2) for a node Si, capture
time t1 ∈ Ti1 for a packet at Si and delivery time t2 ∈ Ti12
for the packet captured at time t1. Let F (t2) denote the set of
packet (sensor source, capture-time) pairs that can be legally
delivered at time t2. Let F (i, t2) denote the set of data capture
times t1 of packets from node Si that can be delivered at time
t2. For any location n ∈ N ∪ {ω}, let L(n) denote the times
where it would make sense for the AUV to be at location n.
Finally, we denote with C(τ, i, t) the set of all location-time
pairs (j, τ) such that the AUV cannot be at position j at time
τ if at time t it is at location i. (Detailed definitions of these
sets are provided in the Appendix.)

Variables

• xit1t2 : Binary variable taking the value 1 if a packet
captured by node Si ∈ S at time t1 is delivered at time
t2; 0 otherwise.

• cit1t2 : Binary variable taking the value 1 if the AUV
collects at time t2 a packet captured by node Si ∈ S
at time t1; 0 otherwise.

• znt: Binary variable taking the value 1 if the AUV is at
location n at time t, n ∈ N ∪ {ω}; 0 otherwise.

• yt: Binary variable taking the value 1 if the AUV is on
the surface (at one of the locations in W ) at time t;
0 otherwise. Note that yt is used to make the model
description more succinct, since it is yt =

∑
w∈W zwt.

ILP formulation

The objective function maximizes the value of information
collected from all nodes and delivered by time T .

maximize
∑

(i,t1,t2)∈F

V(i,t1,t2)xit1t2

subject to the following constraints.∑
w∈W

zw0 = 1 (1)∑
w∈W

zwT = 1 (2)∑
n∈N∪{ω}

znt = 1, ∀t = 1 . . . T − 1 (3)

∑
(j,τ)∈C(τ∗,i,t)

zjτ ≤ 1− zit,∀i ∈ N, t ∈ L(i), τ∗ ∈ T ∗ (4)

These first four sets of constraints concern the AUV lo-
cations. Its path should start and end at a location on the
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surface (constraints (1) and (2), respectively). At a given time
the AUV should be either at one location or it should be in
transit (constraints (3)). Constraints (4) enforce travel time.
They state that if the AUV is at location i at time t, it cannot
be in any other location j during the time needed to travel
from location j to i. (Detailed definitions for C(τ∗, i, t) and
T ∗ are given in the Appendix.)

xit1t2 ≤ yt2 , ∀(i, t1, t2) ∈ F (5)

Constraints (5) require that if the AUV is delivering data at
time t2, at that time it must be on the surface.

xit1t2 ≤
t2−τi−1∑

τ=max{τi+1,t1+2}

cit1τ , ∀(i, t1, t2) ∈ F (6)

Constraints (6) force the AUV to collect data from a node
after the node has captured the data, and early enough to get
to the surface in time to deliver it.∑
t2∈Ti12

xit1t2 ≤ 1, ∀Si ∈ S, t1 ∈ Ti1 (7)

With constraints (7) we force a packet to be delivered at most
once.

cit1t2 ≤ zit2 , ∀(i, t1, t2 + τi + 1) ∈ F (8)

Constraints (8) say that in order to collect packets from node
Si ∈ S the AUV must be at Si. If t2+τi+1 is a legal delivery
time, then t2 is a legal collection time.∑
t1∈F (i,t2)

cit1t2 ≤ uczit2−1

∀Si ∈ S, ∀t2 : ∃(i, t1, t2 + τi + 1) ∈ F (9)∑
(i,ti)∈F (t2)

xit1t2 ≤ ubyt2−1, ∀t2 : ∃(i, t1, t2) ∈ F (10)

Constraints (9) and (10) enforce the capacity constraints on
data collection from a sensor and on data transmission to the
sink, respectively.

The remaining constraints concern the domain and defini-
tion of the variables:

xit1t2 ∈ {0, 1}, ∀(i, t1, t2) ∈ F
cit1t2 ∈ {0, 1}, ∀(i, t1, t2 + τi + 1) ∈ F
znt ∈ {0, 1}, ∀n ∈ N ∪ {ω}, t ∈ L(n)

yt =
∑
w∈W

zwt, ∀t = 0 . . . T − 1

IV. GAAP: GREEDY AND ADAPTIVE AUV
PATH-PLANNING

We describe a path planning mechanism for the AUV that is
both distributed and adaptive to the occurrence of new events,
thus allowing for realistic utilization in UWSNs.

We assume that the AUV receives small control packets
from any node in the network through acoustic communica-
tions, directly (single hop communication), via the sink, or
through a simple flooding mechanism. The packets, called

event packets, are meant to convey the value of the event
currently being sensed at a node. The starting point of the
AUV path is set, and so are the possible surfacing locations.
By the end of network operations (i.e., at time T ), the AUV
will be on the surface.

The AUV follows a greedy strategy for visiting the nodes.
Upon receiving an event packet from a node A, it determines
whether changing its current path and visiting node A, col-
lecting and delivering its data, would produce a higher VoI
or not, and bases its decision on that information. Because
the approach to path planning follows a greedy strategy and
it adapts to the dynamic occurrences of events, we named our
heuristic GAAP, for Greedy and Adaptive AUV Path-planning.

More specifically, GAAP makes the AUV move as follows.
Initially the AUV travels from the surface to the closest node,
say A. If while moving towards A it receives an event packet
from another node B, the AUV decides whether to keep going
to A or to plan to visit B depending on the highest VoI
that it would be able to deliver to the sink. In particular, the
AUV considers the times that it takes to travel to A and B,
respectively, and the VoI of the data that A and B produce in
that time (as if both nodes would keep producing data with
that values for that time). It also considers the time it would
take to resurface and to transmit the collected packets to the
sink. Let tA and tB be the total time it would take to deliver
data from A and B, respectively, and let VA and VB be the
VoI delivered to the sink. Then the AUV moves to A if and
only if VAtA ≥

VB
tB

. When it arrives at the selected node, say,
B, the AUV collects all packets that B generated since the
AUV received the event packet from B. In fact, it collects all
packets available at B that maximize the VoI, considering the
time to surface and deliver those packets to the sink. It then
surfaces and offloads the collected packets to the sink. Upon
completing the transmission to the sink, the AUV moves to
the node that, according to the event packets received so far,
can provide the highest VoI, and so on.

The selection of which data packets are to be collected first
from a node or to be transmitted first to the sink is driven by
their VoI: Packets that obtain the highest VoI are transmitted
first.

V. PERFORMANCE EVALUATION

In this section we discuss the results of a simulation-based
performance evaluation of the solutions proposed in this paper.
We first introduce the simulation scenarios and their parame-
ters. We have organized the experiments into three parts. We
start by comparing the performance of GAAP to the upper
bound provided by running the ILP model (termed OPT). We
then show the impact of selecting the AUV starting point on
the performance of GAAP, comparing how GAAP behaves
when starting from different surfacing points, including the
optimal point determined by OPT. Finally, we compare the
performance of GAAP to that of a simple heuristic where
the AUV movements are not VoI aware. This last set of
experiments is performed in networks with varying density
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to show how well GAAP scales with increasing numbers of
nodes deployed in the same geographic area.

A. Simulators and simulation scenarios

The results for OPT have been obtained by solving the ILP
model defined in Section III with the freely available solver
Gurobi (http://www.gurobi.com/) run on Linux-based 64-bit
multiple-core servers with default settings. Each of the three
servers we used has 16 cores, clocked at 2.8GHz, and 64GB
of RAM. The various runs took from a few hours to a few
days to produce the optimal solutions. We implemented GAAP
(Section IV) in a home-grown software framework written in
Java. In all the scenarios we considered, GAAP executions
were extremely fast, never lasting more than few seconds.

All our experiments consider realistic parameters of
UWSNs. We consider topologies with |S| = 4, 5, 9 and 12
wireless underwater sensor nodes deployed over a rectangular
area 2km×3km. Nodes are deployed at a depth chosen at
random between 50m and 100m. Fig. 2 shows the layout of
the topologies we considered as seen from above. We consider
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Fig. 2. The topologies considered in our experiments.

scenarios with |S| surfacing points, located directly above each
of the |S| nodes. We set the AUV cruise speed to 1.8m/s, to
match an Odyssey-IV class vehicle [6].

Each node sends event packets to the AUV over the acous-
tic data channel. Statistical data on the transmission delays
of event packets from a node to the AUV are considered,
consistent with their distance and an acoustic channel data
rate of 10Kbps. We gathered this data by running the SUN-
SET flooding algorithm, a framework for underwater emu-
lation/simulation [7], multiple times. We set the optical and
wireless data transfer rate to 10Mbps. Optical communication
can reach this data rate when the AUV hovers within 100m
of a node [2], [3]. The muddier the water, the closer the AUV
must be to the node.

We simulate a scenario where the nodes use cameras to
take videos for intrusion detection. Surveillance data are
stored as 720p high-definition videos, with a resolution of
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Fig. 3. Event value vs. distance.

1280× 720 pixels at 3 frames/s. Each node produces packets
corresponding to 5 minute of recorded video. Assuming a
video encoded using the standard H.264 codec, a five minute
recording produces a 9MB packet. Timeliness of delivery of
these data is considered very important. For this reason, we
stipulate that the VoI of video packets decays exponentially in
time.

We model event arrival as a Poisson process with arrival rate
parameter λ = 1 hour. Once generated, an event is assigned
a location within the 3D network deployment area randomly
and uniformly. It is also assigned a random duration that is
exponentially distributed, with 1 hour average. We stipulate
that the event is sensed, and therefore recorded and reported,
by only one node, namely, the one geographically closest to
the event location. (Unlikely ties are broken by using the nodes
unique ID.) Events have values varying between 0.4 and 20.
The actual value perceived and reported by the sensing node
depends on the distance from the node and the location of the
event according to a Gaussian-like distribution (Fig. 3). For
instance, an event that happens a few meters from a node will
be reported with its full value (20). If the event happens instead
farther away from the node, its reported value will be lower,
according to the selected distribution curve. For example, at
1000m the value is 9 according to the curve of Fig. 3). The
duration of network operation T is set to 12 hours, and each
time unit lasts 5 minutes.

B. Results: GAAP vs. OPT

Fig. 4 shows the values of the VoI for data delivered by
the AUV in networks with increasing number of nodes. The
results we present here are obtained by averaging over 18
experiments for each displayed bar for both GAAP and OPT.
In each experiment we randomly vary the set of the events
and their location. For the GAAP heuristic, the AUV always
starts at the most central surface location. For the scenario
with 4 nodes we choose one of the four points randomly as a
starting point. As expected, OPT outperforms GAAP because
the ILP instance knows in advance where and when, and for
how long, the events are going to happen and ILP solvers
use a provably complete intelligent search algorithm. The gap
between the two, however, is reasonably low: GAAP obtains
a total VoI 20% lower than that of OPT in networks with 4
nodes, 16.12% lower than that of OPT in networks with 5
nodes, and only 15.84% and 12.5% lower than that of OPT in
networks with 9 and 12 nodes, respectively. Overall, the VoI
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provided by GAAP is never more than 20% lower than that
of OPT.

We observe that the higher the number of nodes, the higher
the retrieved VoI. This is because the higher network density
decreases the distance between a sensing node and an event,
and therefore the event value as perceived by the node is
higher. Moreover, since the nodes are closer to each other,
the AUV needs to travel less between pairs of nodes, and it
is able to make better “predictions” about the VoI it could
retrieve by visiting a node reporting a new event.

C. Results: Impact of the starting point

The first move of the AUV according to GAAP is to travel
to the closest node. So in our experiments we have chosen to
start the AUV at the surface location closest to the center of
the deployment area. All points are equivalent in the 4 node
scenarios, so in that case we choose one of them randomly.
As mentioned above, this choice is quite acceptable, being
a reasonable starting point in the absence of other data and
providing results that are reasonably close to those produced
by OPT. We ran a set of experiments to show the impact
of different choices of the AUV starting point on the VoI
performance of GAAP. In particular, in addition to the VoI
obtained by GAAP and OPT as shown above, we consider the
VoI of data delivered by GAAP to the sink in the following
cases:
• GAAP-B: The AUV starts from the best starting point on

the surface, which is the one determined by OPT.
• GAAP-W: The AUV starts from the worst starting point

on the surface, which is the one that obtains the lowest
possible VoI.

Fig. 5 shows the average VoI for GAAP-W, GAAP, GAAP-
B and OPT in the considered scenarios. The percentages on
top of the GAAP bars indicate the percentage reduction in
VoI compared to that achieved through OPT. We observe that
the performance of GAAP-B is closer to that of OPT than

4 5 9 12
0

2

4

6

8

10

12

14

Number of nodes

V
o
l

 

 

1
8

,7
 %

1
6

,1
 %

1
4

,5
 %

1
5

,8
 %

1
2

,5
 %

 9
,6

 %

1
9

,7
 %

1
5

,8
 %

1
3

,9
 %

2
5

,8
 %

2
0

,5
 %

1
7

,2
 %

 GAAP−W

 GAAP

 GAAP−B

 OPT

Fig. 5. VoI obtained when the AUV starts from different surface points.

that of GAAP, as expected. Especially in denser scenarios (12
nodes and 12 surfacing points), the improvement of GAAP-
B over GAAP is non-negligible: The gap between GAAP-
B and OPT is now 9.6%, a reduction from the 12.5% gap
observed between GAAP and OPT. These results show that
a non-optimal starting point can impose a penalty on the
retrieved VoI from the start, a penalty that GAAP is not able
to recover from as time goes on. This is particularly true in
denser networks where, because of the closer proximity of
events to nodes, the reported VoI is higher, and so is the toll
to pay for starting from a non-optimal starting point.

Starting from the wrong surfacing points leads to noticeable
decreases in performance, as shown by the gaps between
GAAP-W and OPT. The VoI obtained at the sink when the
AUV starts from the worst possible starting point is always
at least 15.8% lower than that obtained by OPT. The gap is
particularly high in small networks (4 nodes and 4 surfacing
points), where it nears 26%. This is because of the low number
of nodes, their locations, and of the greater distances that the
AUV has to travel in the network. Going to the first node from
the farthest location takes a long time, and also takes a lot of
VoI away from the final total.

D. Results: Impact of VoI awareness

The third set of experiments shows that the VoI-aware
approach taken by GAAP for AUV path planning provides
a remarkably good design choice. We have already seen
that GAAP delivers VoI that is never more than 20% lower
than that obtained by OPT. Here we perform a comparative
performance evaluation between GAAP and a simple non-
VoI-aware heuristic, where the AUV travels a pre-established
path visiting all network nodes. The heuristic is modeled as
a traveling salesman problem (TSP) based on the distance
between nodes, so we name it AUV-TSP. According to this
heuristic, the AUV starts from a surfacing point (the same as
GAAP) and visits the closest node, say A. Then, regardless
of the data value, it collects all data produced by node A
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so far, resurfaces, and delivers them to the sink. The AUV
then proceeds to the following node according to the pre-
established path, till the time limit T for network operations
is reached. Our experiments are run over the topologies of
Figure 2 and also on two new kinds of topologies with 18 and
35 nodes deployed as a grid in the 2km×3km area (Fig. 6).
Therefore, our experiments also show that GAAP scales well
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Fig. 6. Topologies with 18 (left) and 35 (right) nodes.

with increasing network densities (number of nodes). The
results we present here are obtained by averaging over 200
experiments for each displayed bar for both GAAP and AUV-
TSP. In each experiment we randomly vary the set of the events
and their location.

Fig. 7 shows quantitative evidence that the VoI-aware ap-
proach followed by GAAP is effective in retrieving higher
values of VoI. The figure shows the average VoI of data
delivered by the AUV to the sink in networks with increasing
number of nodes when the AUV follows paths found by GAAP
(darker color bars) and AUV-TSP (lighter color bars). For all
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Fig. 7. GAAP vs. a TSP-like heuristic.

network sizes we tested, AUV-TSP delivers data whose VoI

is always at least 75% lower than that delivered by GAAP.
The highest gap occurs in networks with a larger number of
nodes, where AUV-TSP performs poorly because following
a pre-established path forces the AUV to visit nodes sensing
events with no relevant value.

The good performance scalability of GAAP is confirmed by
the increasing values of VoI it produces in networks with 18
and 35 nodes. The VoI for data delivered to the sink by the
AUV moving according to GAAP keeps growing, since the
higher network density makes events closer to the nodes, and
therefore their perceived value is higher. As noted before, the
nodes are also closer to each other, which makes the AUV
traveling time shorter.

The performance of AUV-TSP grows from networks with 4
nodes to networks with 5 nodes, going from an average 1.4
of retrieved VoI to an average 1.8 This is because of the
presence of a central node in the topology of networks with
5 nodes (Fig. 2), which shortens the distances traveled by the
AUV. Increasing the network size from 5 to 35 nodes, the
performance of AUV-TSP monotonically decreases, from 1.8
down to 0.9 of retrieved VoI. This is because of the larger
number of nodes sensing events with basically no value that
the AUV is forced to visit. Furthermore, for networks with
more nodes (18 and 35 nodes) we observe that by the end of
the network operations, i.e., by time T , the AUV could not
visit all nodes. As a consequence, potentially highly valuable
data were never retrieved at all.

The results shown in this section demonstrate the effec-
tiveness of the choice performed by GAAP to consider VoI
for path planning. On one side, GAAP obtains a VoI that
is remarkably close to the theoretical optimum provided by
OPT, almost independently of the starting point and on the
knowledge of the occurrence of future events. On the other
side, it easily outperform strategies, such as AUV-TSP, that
are not VoI aware, and scales well to UWSNs with increasing
number of nodes, thus being a viable option for use in real-life
applications.

VI. RELATED WORKS

UWSNs have received significant attention in recent years,
as a challenging application scenario with important practical
applications, and as a powerful motivator for new theoretical
advances. One of the challenges is that each of the alternatives
of underwater communications, acoustic and optical, have se-
rious drawbacks. Because surveillance applications, especially
those involving large production of data (e.g., video, sonar-
generated files), require swift data transfers, many research
projects investigate the combination of different approaches
to data transfer, such as acoustic networking, short-distance
optical transport and physical transport of data with an AUV.
The majority of these projects assume long-distance acoustic
communications supplemented by an AUV collecting data
from the nodes through a free-space optical transmission
and then physically transporting it to the sink. For instance,
Vasilescu et al. [8] and Detweiller et al. [9] describe a system
for long-term monitoring of fisheries and coral reefs. The
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acoustic and optical communication protocols are integrated
into the TinyOS operating system of sensor nodes and very
simple AUVs. A more recent application of a similar scenario
is the system designed at the Woods Hole Oceanographic
institute described in Farr et al. [10], [11]. In particular, [10]
describes the system of integrated optical and acoustic capabil-
ities. In [11] the authors describe an application where an AUV
is sent to offload data from a seafloor borehole observatory.
Hollinger et al. [12] consider an approach where an AUV
visits various neighborhoods in the UWSN. The AUV can
communicate with more than one nearby sensor node using
acoustic communication. However, the probability of packet
loss in acoustic networks increases with distance. This leads
to a formulation of a problem where the path of the AUV must
be determined so that it optimizes the balance between the cost
of the path and the sum of the probabilistically determined
quality of information of the collected data. A variation of this
model that does not consider the presence of the AUV is the
MURAO protocol described by Hu and Fey [13]. MURAO is a
protocol where nodes are divided into two classes: The group
leaders have acoustic and optical modems and coordinate the
group members that have bidirectional optical capabilities and
acoustic receivers, but no acoustic transmitters. The group
leaders play only a coordination role in the data transmission.
The MURAO protocol uses multi-level Q-learning (a variant
of reinforcement learning) to determine the paths. The node
values and reward from the environment is transferred by
dedicated control packets over the optical channels.

One of the characteristics of the UWSN scenario is that the
data rate of modern sensors greatly exceeds the capabilities
of underwater networking channels. It is simply impossible
to transfer all the sensed data in near-real time. Therefore, if
the value of a data chunk varies in time, the system needs to
make decisions about which data chunks are to be transferred
preferentially. We argue that the intellectual framework of
value of information as considered here is an appropriate,
disciplined way to make these decisions. The concept of VoI
was originally proposed in game theory [14]. The intuition
behind the game theoretical definition of VoI is the price
an optimal player would pay for a piece of information. In
artificial intelligence, autonomous agents often need to balance
actions taken to acquire information with actions that actually
further their goals. In these settings, the concept of VoI might
help balance the action of an agent, by preventing it from
wasting its resources pursuing the collection of information of
low value [15]. In the context of sensor networks, a number of
recent projects have introduced similar metrics to model situa-
tions where one either needs to select a subset of the collected
data or choose between transmitting a piece of information or
not. Bisdikian et al. [16], [17] define “Quality of Information”
(QoI) as the degree to which a piece of information is (or is
perceived to be) fit-to-use for a particular purpose. In contrast
to definitions originating from game theory, this definition has
its origins in the enterprise/database/data quality community.
The QoI is usually conceived as a vector of quality attributes
that include accuracy, latency, and spatiotemporal relevance.

Turgut et al. [18], [19] defined a variant called “pragmatic
VoI” as the support the information gives to the decisions and
actions of the operator (without assuming an optimal decision-
maker). In a UWSN setting similar to the one considered in
this paper, Bölöni et al. [20] discuss a scenario where the VoI
is used to balance between the direct acoustic transmission of
digests of large data chunks to the sink and the optical transfer
of the whole chunk to an AUV moving according to a fixed
trajectory. This paper considers the decay of the VoI in time
(in form of an exponential decay function), the fraction of VoI
that is retained by digests of the original data, and introduces
the concept of conditional VoI, which captures the novelty of
a data chunk in the context of previously transferred data.

None of these previous works, namely, those concerned with
path planning for AUVs or those on VoI in networking, tackle
the problem of planning paths for an AUV to deliver the sensed
data with the highest VoI.

VII. CONCLUSIONS

We presented a mathematical model and a distributed
heuristic for path finding for a AUV collecting data with
decaying value from nodes of a UWSN. The heuristic drives
the AUV to visit the node that greedily maximizes the Value of
Information of the data delivered to the sink. Our ILP model
considers realistic data communication rates, distances and
surfacing constraints. Our Greedy and Adaptive AUV Path-
finding (GAAP) heuristic successfully mimics the optimal
paths and obtains VoI of the delivered data that is at most
20% lower than that obtained by the ILP model, as shown by
simulations over networks with increasing number of nodes.
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APPENDIX

We provide details of the sets used for the description of
the ILP model of Section III, omitted in that section to ease
readability.

For each node Si ∈ S the set of feasible data capture times
are Ti1 = 0 . . . T − τi− 3. The soonest a packet from node Si
can arrive at the sink is τi + 3 time units after node Si starts
to capture it. This is the minimum time for the AUV to go
to the surface and then a unit each for capture, transmission

from Si to the AUV and for the AUV to transmit the packet
to the sink. The final time to transmit a packet is T − 1, for
arrival at time T . There is no reason to model packets that
are captured too late to be delivered. Given a node Si and a
capture time t1 ∈ Ti1, the set of possible delivery times are
Ti12 = max{t1 + 1, τi} + τi + 2 . . . T . The earliest a packet
can be collected by the AUV is τi, since the AUV starts on
the surface and must travel to the node. So, packets captured
before this time have the same minimum delivery time as the
packet captured at time τi−1. Any packet captured after time
τi − 1 can be delivered in the minimum time after capture,
which is one unit to transmit the data to the AUV plus the
time for the AUV to travel to the surface plus one time unit
for transmission.

Let F be the set of all feasible tuples (i, t1, t2) for a node
Si, capture time t1 ∈ Ti1 for a packet at Si and delivery time
t2 ∈ Ti12 for the packet captured at time t1. Let F (t2) =

{(i, t1)|(i, t1, t2) ∈ F} be the set of packet (sensor source,
capture-time) pairs that can be legally delivered at time t2.
Let also F (i, t2) = {t1|(i, t1, t2) ∈ F} the set of data capture
times t1 of packets from node Si that can be delivered at
time t2. For any n ∈ N ∪ {ω}, let L(n) be the times where
it would make sense for the AUV to be at location n. For
n ∈ S, we have L(n) = τn . . . T − τn − 1. For n ∈ W , we
have L(n) = 0 . . . T . Finally, L(ω) = 1 . . . T − 1.

The set C(τ, i, t), i.e., the set of all pairs location-time (j, τ)
such that the AUV cannot be at position j at time τ if at time t
it is at location i, is defined in detail as follows: We first define
G(i, t) = {(j, τ) | ∀j ∈ N \ i, τ ∈ [max(t− dij + 1, 0)...t]}
to be the set of all pairs location-time (j, τ) where and when
the AUV cannot be if it is at location i at time t. We then
define τminit (τmaxit ) as the minimum (maximum) time in the set
G(i, t). Finally, the set C(τ, i, t) is defined as C(τ,G(i, t)) =
{(j, τ) | (j, τ) ∈ G(i, t)} as the set of all pairs location-time
(j, τ) such that the AUV cannot be at position j at time τ if
at time t it is at location i. The set T ∗ of appropriate values
for τ∗ as needed in Constraints (4) is defined as the interval
[τminit . . . τmaxit ].


