
Partial Merging of Semi-structured Knowledgebases

Ladislau Bölöni and Damla Turgut

Department of Electrical and Computer Engineering
University of Central Florida

Orlando, Florida, 32816
{lboloni,turgut}@cpe.ucf.edu

Abstract. Automatizing the merging of knowledgebases is an important step
towards more efficient knowledge management. The cases when two
knowledgebases need to be merged completely into a monolithic result,
however, are relatively rare. Most often, some of the information is irrelevant,
not trusted, or needs special treatment as a belief, opinion or preference. This
paper presents an approach for partial merging of semi-structured
knowledgebases. The merging scheme is based on the partitioning of the
knowledgebases through the use of swimlines and the application of specific
primitive merging algorithms in the partitions thus created. This approach
allows the participants of the merging operation to specify their intentions in the
merging process in an efficient and intuitive way.

1 Introduction

Knowledge management systems are frequently storing information in semi-structured
knowledgebases. These contain a mix of formal and informal information. Knowledge
sharing is one of the key elements of a knowledge management system (in addition to
knowledge discovery, capture and application [1-3]). Despite this, knowledge sharing is
only minimally automatized across organizations. The reasons are both technical and
human. During knowledge capture, companies can enforce the use of a single
knowledgebase. More often than not, however, multiple independent knowledgebases
with restricted access are set up. Transfer of information between the knowledgebases is
typically happening through human interaction: meetings, water-cooler discussion etc.
In these interactions there is a well-controlled flow of information. Decision to share a
piece of information is sometimes the result of long deliberation, involving the potential
beneficial or negative effects of the disclosure. Received information is not accepted
uncritically, but it can be stored as tentative information, or reformulated as second
order knowledge (e.g. knowledge about someone’s opinion about a subject).This article
presents a way of specifying partial merges through the use of swimlines and succinctly
describe several use cases and the resulting algorithms.

2 Knowledge Base Organization. Swimlines

Sharing knowledge is an important part of the knowledge management of researchers.
Examples of knowledge sharing are making presentations, distributing documents or

M.Gh. Negoita et al. (Eds.): KES 2004, LNAI 3214, pp. 1121–1127, 2004.
© Springer-Verlag Berlin Heidelberg 2004

1122 L. Bölöni and D. Turgut

informal conversations. The key difficulties in any knowledge sharing process is
determining what to share (with the associated privacy issues), and how the shared
information is going to merged into the receivers knowledgebase.

Let us consider the example of a researcher working at a university. Researchers
frequently share results with the public-at-large. One the other hand, some data on the
ongoing work is only shared with members of the group or collaborators. Some data
is protected by nondisclosure agreements (NDA's), are military secrets or company
contracts. There are other situations when the data can be confidential: students
grades, paper reviews, etc. The main challenge is to design of a privacy scheme which
is rich enough to handle the complexity of the privacy and trust relationships, and at
the same time simple and understandable enough such that it can be adopted for
everyday use.

We present the organization of the knowledgebase of Kraken, a knowledge
management system developed by our group. The general structure of the Kraken
knowledgebase is a flat collection of entries, each of them represented by a top-level
unique resource identifier (URI). The organization of an entry is shown in Fig. 1.
There are two distinct parts: the content and the metadata. The content of the entry
the unstructured part of the knowledgebase: an arbitrary collection of documents, in
their native format. The metadata of an entry is a set of RDF triples, divided into
chunks. A chunk represents an aspect of the entry, examples being bibliographic
information, calendaring information, notes, summaries and so on.

Metadata

Content

Entry metadata
(RDF)

Person info
(vCard RDF)

Person info
vCard

Bibliography info
(BibTeX RDF)

BibTeX

Opinion
(RDF)

Top level entry identifier To other entries...

Fig. 1. The structure of the kraken entry

The valid format of the chunks is described by associated ontologies written in the
OWL Lite subset of the OWL ontology [4]. For many chunks, there can be one or two
representations in external formats as well. These are usually legacy representations
of the given aspect of the data entry. Thus, for every chunk of data, there is an
internal representation in the Kraken (always RDF), a primary representation that is
used for the editing of the data, and can have several external formats. The primary

Partial Merging of Semi-structured Knowledgebases 1123

representation might or might not be the same as the internal one. In order of a
representation R to be accepted, Kraken needs to have at least a converter from the
primary representation P to R.

2.1 A Swimline Based Data Privacy Model

We define a swimline σ as a boolean function which separates private from public
data.

The usual interpretation is that σ ((s,p,o))=1 if the RDF triplet (s,p,o) is visible,

while σ ((s,p,o))=0 indicates that the triplet is hidden for the purpose of a transaction.
We are especially interested in well-formed swimlines, where the visible part of the
knowledgebase represents a valid knowledgebase, maintaining the same set of
constraints as the original knowledgebase.

To be well formed, for the kraken data model, the swimline is always separating
complete-chunks of data:

This also implies that if a chunk is public, its external format variants are also

public, and conversely, a private chunk remains private in its external formats as well.
In addition, if the top level of an entry is not visible, then the rest of the entry is
hidden as well.

D

E

N

B

O

D

E

N

B

O

User data
swimline

Opinion
swimline

Asymmetric
swimline

Fig. 2. The swimline data privacy model

Figure 2 shows a knowledgebase with three swimlines. The opinion swimline
declares as private only the opinion chuncks, while the rest of the data is public. The
user data swimline, on the other hand declares public only the basic entry data. These
swimlines are symmetric, they are using an identical policy for every entry. Although
this is an appropriate choice for system-wide swimlines, and they can be described
concisely, they are not the only possible choice. The user data swimline in Figure 2,
for example, used different policies for the represented entries.

1124 L. Bölöni and D. Turgut

We define the union and intersection of swimlines as the conjunction and
disjunction of the respective swimline functions. The negation of swimlines,
however, in case of the Kraken data model, does not always give a well formed
swimline.

3 Partial Merging of Knowledgebases

For the purposes of the following discussion, we define an act of knowledge sharing
as set of changes performed in the knowledge receiver, which are determined by the
knowledge source's knowledgebase and the merging scheme used. Merging schemes
are a combination of primitive merging algorithms and partitioning of the
knowledgebases through swimlines.

We propose the following set of primitive merging algorithms:

• No merge (NM): The receiver's knowledgebase will be unchanged.
• Entry Overwrite (EO): Entries are matched against each other. The source entry

completely replaces the receiver entries.
• Chunk Overwrite (CO): Entries are matched. Whenever a chunk exists in the

source entry, it will completely overwrite the corresponding chunk in receiver.
Chunks in the receiver which do not exist in the source are not modified.

• Property Overwrite (PO): Entries, chunks and properties are matched against
each other. If a property exists in the source, it will overwrite the corresponding
property in the receiver. Properties which do not exist in the source but exist in the
receiver are not modified.

• Entry Reference (ER): Entries are matched. If an entry exists both in the source
and the receiver, the source entry is copied as a chunk of the receiver and labeled
with the identifier of the source. If the entry does not exist in the receiver, an empty
entry is created with the same identifier as in the source, and the source entry
attached as a chunk.

• Chunk Reference (CR): Entries are matched. If a chunk exists in the source, it
will be copied to the receiver, and labeled with the identifier of the source. For an
illustration of the application of the ER and CR merging primitives see Figure 3.

The primitive merging algorithms assume the existence of a matching algorithm
which associates entries and chunks which represent the same knowledge entity or
aspect in the different knowledgebases. The algorithm currently used by us is based
on the identity of the URI's and an identity table which contains a set of owl-sameAs
relations. Chunks and properties are always matched by name.

A merging scheme is a combination of swimlines, merging algorithms and a single
matching algorithm. Swimlines can be contributed both by the knowledge source and
knowledge destination. The set of swimlines in a merging scheme divides the merging
scheme into domains. Every domain is characterized by a merging algorithm.

The final purpose of the merging scheme is to satisfy the intent of the participants of
the communication. The communicators express the intent in the form of swimlines.
The motivations of the choice of particular swimlines can be different: willingness to
expose information, trust in its own data, trust in the communication partners data, trust
in the communication partners assessment of its own data and so forth.

Partial Merging of Semi-structured Knowledgebases 1125

E

D E

N

B

SRC:
Entry

SRC:E

SRC:N

D E

N

BE

N

D E

N

B E

N

D E

N

B

SRC:E

SRC:N

Knowledge
Receiver (RCV)

Knowledge
Source (SRC)

Knowledge
Receiver (RCV)

Knowledge Receiver
after merge (RCV')

Entry Reference
(ER)

Knowledge Receiver
after merge (RCV')

Chunk
Reference (CR)

Fig. 3. Entry Reference (ER) and Chunk Reference (CR) merging primitives

Let us now proceed to examples illustrating how the participants in a knowledge
sharing operation can accomplish their sharing intentions through the use of
swimlines.

In our first, simplest example, the knowledge source provides a single, visibility
swimline. The knowledge receiver also provides a single data protection swimline.
The intention of the receiver is to maintain the data below the protection swimline
unchanged.

The merge can still happen through reference merging algorithms, which do not
modify existing data (for example, CR). The data above the data protection swimline
can be modified, and a algorithm such as property merge applied. The resulting
merging scheme is presented in Figure 4a.

Visibility
swimline

Data protection
swimline

CR
NM

PO

NM

Visibility
swimline

Data protection
swimline

CR

NM

PO

Opinion
swimlineNM

Personal data
swimline

NM

CR

Fig. 4. Two examples of merging schemas determined by swimlines

1126 L. Bölöni and D. Turgut

In our second example, both the knowledge source and the receiver provide two
swimlines each. The knowledge source, in addition to the visibility swimline also
provides an opinion swimline, where the information below that swimline is seen as
personal opinion, and requests to be treated as such. The receiver also provides two
swimlines, the data protection swimline, and the definite knowledge swimline. The
receiver considers that it has definite, final knowledge on the data below that
swimline, and it is not interested in new information regarding those aspects. A
merging scheme handling the semantic implications of these swimlines is presented
in the Figure 4b.

4 Related Work

A number of projects proposed ontology merging tools and algorithms, the main
differentiating factor being (a) whether they act at the ontology or the
knowledgebase level and (b) in the amount of user intervention required. In
OBSERVER [6], interoperation across ontologies is achieved by traversing
semantic relationships defined between terms across ontologies and its architecture
is designed for query processing in a global information system. ONION [7]
represents ontologies in a graph-oriented model with a small algebraic set to
facilitate automatic composition. Formal Concept Analysis is performed on
instances of extracted language processing outputs from a domain specific set of
texts to form a suitable ontology in FICA-Merge [8]. PROMPT [9] provides a semi-
automatic approach to merging ontologies and is designed to work with a frame-
based knowledge model. Chimaera [10] is a browser-based editing and merging tool
for creating and maintaining ontologies. The swimline model is positioned as a
more streamlined way to specify the merging rules, although in practical situations,
a user might consider using it together with a more fine grained tool such as
PROMPT or Chimaera.

5 Conclusions

This paper presented an approach for merging semi-structured algorithms based on
the concept of swimlines. We presented how relatively complex, customized
knowledge sharing operations can be presented through a combination of swimlines
and primitive merging algorithms. This model was implemented in the Kraken
knowledge management system.

Significant theoretical and practical challenges remain. From the theoretical point
of view, the properties of the merging schemes need to be investigated: under what
conditions is the merging scheme idempotent, associative, stable? How can we avoid
the explosion of the size of the knowledgebases after repeated reference merging
operations? How can the knowledge sharing operations be extended to multiple
participants?

Partial Merging of Semi-structured Knowledgebases 1127

References

1. Nonaka., I.: A dynamic theory of organizational knowledge creation. Organizational
Science 5 (1994) 14-37

2. Grant, R.: Prospering in dynamically competitive environments: Organizational
capabilities as knowledge integration. Organizational Science 7 (1996) 85--94

3. Grant, R.: Towards a knowledge-based theory of the firm. Strategic Management Journal
17 (1996) 375-387

4. Owl web ontology language reference. URL http://www.w3.org/TR/owl-ref/ (2003)
5. Pottinger, R.A., Bernstein, P.A.: Merging models based on given correspondences. In

Proceedings of the 29th International Conference on Very Large Databases. (2003) 862-
873

6. E. Mena V. Kashyap, A. P. Sheth, and A. Illarramendi, OBSERVER: An approach for
query processing in global information systems based on interoperation across pre-existing
ontologies. In Conference on Cooperative Information Systems, 1996, pp. 14–25

7. P. Mitra, G. Wiederhold, and M. Kersten, A graph-oriented model for articulation of
ontology interdependencies, Lecture Notes in Computer Science, vol. 1777, pp. 86+, 2000.

8. G. Stumme and A. Maedche, FCA-MERGE: Bottom-up merging of ontologies. In IJCAI,
2001, pp. 225–234.

9. N.F. Noy and M. A. Musen, PROMPT: Algorithm and tool for automated ontology
merging and alignment. In AAAI/IAAI, 2000, pp. 450–455.

10. D. McGuinnes, R. Fikes, J. Rice, S. Wilder, An environment for merging and testing large
ontologies. In Seventh International Conference on Principles of Knowledge
Representation and Reasoning (KR2000), 2000.

	Introduction
	Knowledge Base Organization. Swimlines
	A Swimline Based Data Privacy Model

	Partial Merging of Knowledgebases
	Related Work
	Conclusions
	References

