
YAES - a Modular Simulator for Mobile Networks

Ladislau Bölöni and Damla Turgut
Networking and Mobile Computing Laboratory

Electrical and Computer Engineering Department
University of Central Florida

{lboloni,turgut}@cpe.ucf.edu

ABSTRACT
Developing network protocols for mobile wireless systems is a com-
plex task, and most of the existing simulator frameworks are not
well suited for experimental development. The YAES simulation
framework was specifically developed such that it allows the fast
prototyping of networking protocols, and support real-time experi-
mentation and refactoring. By providing a large set of abstractions
and generic implementations, a number of frequently used tech-
niques such as genetic algorithms or neural networks can be cre-
ated in matter of minutes. Our experience shows that by requiring
only Java programming skills which computer science and engi-
neering students commonly possess, YAES can be a useful tool for
classroom use, as well.

This paper presents the considerations behind the YAES archi-
tecture and provides a description of the system. As a case study,
we present the steps necessary for running experiments on the en-
ergy efficiency behavior of the Weighted Clustering Algorithm (WCA).

Categories and Subject Descriptors: I.6.3 [Simulation and Mod-
elling]: Applications

General Terms: Design, Measurement

Keywords: Simulation, Mobile networks

1. INTRODUCTION
Developing networking protocols for mobile wireless networks

(at any level from physical to application) is a highly complex task.
Formal analysis can only cover certain aspects of protocols. Real-
istic testbeds are costly, create problems of interference, and cannot
be used in the early stages of development. Thus, simulation is the
key component in the workflow of developing new protocols.

The process of developing new networking protocols is illus-
trated in the workflow presented in Figure 1. On the diagram, the
dotted arrow denotes the relationship between the simulation code
and the production code. In an ideal world, the code developed for
the simulation would serve as the future production code. However,
the differences between the virtual machine of the simulator and the
operating system and hardware constraints of the target machines
make this frequently impossible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSWiM’05, October 10–13, 2005, Montreal, Quebec, Canada.
Copyright 2005 ACM 1-59593-188-0/05/0010 ...$5.00.

Formal
model

Protocol
design

Simulation
code

Simulation

Simulation
code

debugging

Production
code Testbed

Standardi-
zation.

Protocol
debugging

Production
code

debugging

Figure 1: The development process of a wireless networking
protocol

It is important to note that protocol development is not linear.
There are several points in the development process where most
likely several iterations are needed. Feedback from the formal
analysis might change the protocol design before simulation. The
simulation process requires several iterations to debug the simula-
tion code and verify that it corresponds to the protocol specifica-
tions. Once the validity of the simulation is trusted, these results
can be used to provide feedback into the protocol design. Once
the simulation results are satisfactory, testbed implementations are
created, with their own debugging cycle. The final goal is, always,
to have a high quality protocol that is suitable for standardization
and widespread use. In general, the larger a feedback loop, the
more expensive it is to correct the flaws found at a certain loca-
tion. Based on this observation, formal modeling appears to be the
easiest way to improve the quality of the protocol design. How-
ever, formal modeling is frequently very difficult or possible only
for some isolated aspects of the protocol.

From Figure 1, we can safely say that in the academic practice,
most of the work happens in the shaded box, until the point marked
with ⊗. Proceeding further from ⊗ involves expenses frequently
out of reach for an academic laboratory, and they are also subject
to market forces and regulatory decisions. The widespread avail-
ability of software radio architectures (such as PraWN [17]) will
allow many researchers to implement real world testbeds, but the
importance of simulation will remain still very high.

The nature of academic (both research and instructional) work
puts additional requirements for the simulators. The simulator frame-
works should allow to quickly try out new ideas, implement and
debug the simulation code, analyse the results and feed the obser-
vations back to the protocol design. Frequently, academic research
involves experimentation with approaches which are not currently
technically feasible: for instance one can design routing protocols
requiring complex decision making before the packets can be for-
warded. For classroom use, a simulator with a fast learning curve
and conforming to the necessary pre-requisites is desireable.



There are a variety of high quality simulation tools available both
in the commercial and academic sides, such as OpNET [16], ns-
2 [15]. In particular, ns-2 was developed in an academic setting
and it is overall a high quality, freely available software, with com-
prehensive libraries. Both researchers and especially educators are
encountering problems using it, due to a number of circumstances.

• Using ns-2 involves two languages (Tcl with object-oriented
extensions and C++). In general, one needs to know Tcl to
set up experiments, while they need C++ in order to develop
new protocols. The interfacing between these two languages
creates additional problems.

• The fact that the main simulation is run from Tcl, which is
loading C++ modules, makes it very difficult for debugging.
There is no easy way to run ns-2 in a C++ debugger or inte-
grated development environment.

• The output of the ns-2 simulation are log files, which need
to be parsed and post-processed in order to extract and inter-
pret the results. This can be done in tools such as MATLAB,
but this introduces the requirement to know yet another pro-
gramming language.

• There is no easy way to ignore some of the components of
the networking stack in order to simplify the simulation in
the early stages of the development. For instance, the bit-
by-bit packet structure is irrelevant for the performance of
many protocols. For many application level protocols, the
underlying MAC and routing protocols are not relevant and
these application protocols simply rely on the existing MAC
and routing protocols. All these, nevertheless needs to be
specified, resulting in additional complexity.

The YAES (Yet Another Extensible Simulator) was designed
such that it serves the needs of researchers and students in the early
parts of protocol development.

The main design principles used are:
• Ability to specify the complete simulator flow from experi-

ment setup to post-processing and evaluation in a single pro-
gramming language. The language of choice was Java. Ex-
perience shows that the compilation of Java code in IDE’s
is virtually instantaneous, eliminating the need of a special
scripting language.

• The YAES simulator is intended to be run inside the Eclipse
IDE environment. This allows for faster development turn-
around time, ability to perform run-time debugging, as well
as more informative error messages. The features of the
Eclipse environment allow one step refactoring for the com-
plete simulation flow - in simulators which employ a mix of
languages, this is obviously not possible.

• Significant effort was made to detect as many programming
errors as possible during compilation time. The YAES core
framework features defensive programming code, with ex-
tended exception handling and fully typed generic classes.
Similar techniques are recommended for user applications.

• Ability to interface with external implementations of abstrac-
tions. Current experimental algorithms research frequently
uses a variety of abstraction for search, learning, and plan-
ning such as neural networks, genetic algorithms, A* search,
and so on. It is desirable to have abstract, generic implemen-
tations for these either in the framework or in well-integrated
external libraries.

Being a new project, YAES currently lacks the library of time
tested, widely used simulation code which more established frame-
works provide. Nevertheless, YAES already contains a relatively
extensive set of library features.

One of the drawbacks of the choice of programming language is

that Java is somewhat slower than C++. However, we have found
that this difference is insignificant for the types of applications con-
sidered. A more valid objection to the use of Java code is that in
this way the simulation code cannot be used as production code.

The remainder of this paper is organized as follows. Related
work is given in Section 2. The architecture of the YAES simulator
is discussed in Section 3. Section 4 presents a case study of the use
of the YAES simulator in the study of the energy efficiency of the
WCA clustering algorithm. We conclude in Section 5.

2. RELATED WORK
The efforts for the simulation wireless networks are directed in

various directions. There are several mature simulation frameworks.
The open source Network Simulator ns-2 [15] is a high quality soft-
ware, and it has a tradition to be used to simulate newly proposed
protocols. Commercial offerings such as the Opnet series of sim-
ulation products [16] and the GloMoSim-derived QualNet [18] by
Scalable Network Technologies. These products offer more ex-
tensive support and more friendly user interfaces, but as mature
commercial products, they are not geared towards supporting early
stage experimentation.

As the high accuracy simulations of mobile wireless networks
are computationally expensive, a significant research direction is
towards the design of parallel simulators such as SWiMNet [6] and
GloMoSim [14]. One research direction is to balance the accuracy
of the simulation with the computational requirements [11]. While
discussing distributed simulations, we also need to note the stan-
dardization efforts of the the HLA (High Level Simulation Archi-
tecture) as specified in the IEEE 1516 standard. This specification
allows the interconnection of multiple, possibly heterogeneous dis-
tributed simulation applications (known as federates).

The new generations of network simulators are considering wire-
less networking as a standard feature, they frequently employ a
Java-based architecture and introduce improvements over various
aspects of the more mature simulators.

The JIST simulator at Cornell [3] and the SWANS wireless net-
work simulator built on top of it presents a high memory efficiency,
allowing to simulate up to a million nodes on a desktop class com-
puter.

The J-Sim [13] project at UIUC is a Java-based open source
wireless network simulation. It is built upon the autonomous com-
ponent architecture (ACA) and the extensible internetworking frame-
work (INET) of J-Sim, and provides an object-oriented definition
of (i) target, sensor and sink nodes, (ii) sensor and wireless com-
munication channels, and (iii) physical media such as seismic chan-
nels, mobility model and power model (both energy-producing and
energy-consuming components).

The SENSE [8] sensor network simulator from Rensselaer is
built on top of the COST general purpose event simulator. It em-
ploys the component-port model, where the simulation is set up
as components which communicate with others only via inports
and outports. During the design of the simulator, the creators con-
sidered three classes of users: high-level users relying solely on
model repositories and network template libraries, network builders
who are designing networks but not interested in extensibility, and
component designers, who are interested in modifying models and
building new ones from scratch.

3. THE ARCHITECTURE OF THE YAES
SIMULATOR

A simulation step simulates the evolution of the described world
over a specified time interval, and records its findings into simu-



lation output parameters. A simulation output parameter is imple-
mented as a statistical accumulator, which can automatically per-
form statistical calculations on the recorded values.

Although it is certainly possible to generate exhaustive logs, we
found the use of real time "tally" style statistical accumulators vari-
ables offer advantages. These variables can be updated at any mo-
ment in the simulator through a command like:

output.update(SENSOR_ENERGY, value);

At the end of the simulation, we have access to values such as
its final value, average value, maximum/minimum value, variance,
confidence intervals, and so on. The statistical accumulators and
related statistical processing is implemented based on the SSJ soft-
ware package [19].

Experiment
setup

Simulation
input Simulation

engine

Simulation
output Experimental

results
Diagrams

Plots

Projection
Integration
Statistical
procedures
Post -
processing

Visualization
engine

Visual images
Animations

Figure 2: Data flow

In practice, many times we want to run a series of experiments
with different parameters. These experiments can be specified in
a pre-assembled set of simulation input parameters, which on their
own, generate a set of output parameters.

In general, to study the behavior of a new protocol, we ask ques-
tions which are answerable by providing cross-sections of the out-
puts of the experiment sets. Examples of these questions are: how
does the average (maximum, minimum,...) queue length varies
when the traffic increases? how often the routing table is updated
when the mobility of nodes increases?

The post-processing component of YAES allows us to provide a
variety of cross-sections on the results of a series of experiments.
The typical way of working is by setting up these cross-sections
very early in the simulation process. This way, the complete work-
flow can be performed in the framework; single “run” command
performs all the processing from the generation of input data to
the generation of graphs and diagrams. (Obviously, the simulation
itself can still take a significant amount of time).

The cross-sections are essentially tracing the evolution of one or
more parameters, while varying one input parameter. This tracing
happens on the previously computed result set. They can be seen
as special purpose database queries. It is planned for a future re-
lease of YAES to provide the storage of the simulation results in an
external SQL database.

One special cross-section operation is the statistical merging of
multiple experiments with the same parameters, but with depen-
dency on random sources. This allows us to generate statistical
information such as maximum, minimum, confidence intervals ac-
cross experiments. The statistical samplers are providing this func-
tionality inside a single experiment. The results can be either writ-
ten in a text file or can generate graphs through the generation of
plots in MATLAB.

4. CASE STUDY
In the following, we present the steps followed to develop a sim-

ulation scenario in YAES. We will put a special emphasis to the
steps where new code needs to be developed, as opposed to the
places where YAES library functions can be used.

The scenario chosen is a simulation study involving the influence
of the parameters of the WCA clustering algorithm over the energy
conservation in a sensor network. While these examples are taken
from an actual study, our emphasis here on the architecture of the
simulator framework and setup of the experiments.

4.1 The weighted clustering algorithm
The weighted clustering algorithm (WCA) [7] is an on-demand

clustering algorithm for multi-hop packet radio networks or in an-
other words, ad hoc networks. Since these types of networks are
dynamic in nature due to the mobility of the nodes, it is essential
to keep the network topology as stable as possible. The aim is to
elect the ideal number of clusterheads to cover the entire network
without causing any severe degradation in the performance. The
algorithm takes into consideration the ideal degree, transmission
power, mobility, and battery power of mobile nodes.

Let us briefly summarize the WCA which selects the cluster-
heads based on the weight ,Wv , of each node v. As detailed in [7],
Wv is defined as

Wv = w1∆v + w2Dv + w3Mv + w4Pv

where ∆v is the degree-difference, Dv is sum of the distances of the
members of the clusterhead, Mv is the average speed of the nodes,
and Pv is the accumulative time of a node being a clusterhead. The
corresponding weighing factors are such that

P4
i=1 wi = 1. That

node v with the minimum Wv is chosen to be the clusterhead. Once
a node becomes a clusterhead, neither that node nor its members
can participate further in the cluster election algorithm. The algo-
rithm terminates once all the nodes either become a clusterhead or
a member of a clusterhead. All the clusterheads are aware of their
one-hop neighbors as well as the ordinary (non-clusterhead) nodes
know their clusterheads.

The first component, ∆v helps in efficient MAC functioning
since it is desirable for a clusterhead to handle a certain number
of nodes in its cluster. The motivation of Dv is to conserve en-
ergy consumption. Since more power is required to communicate
to a larger distance, it makes sense to use the sum of the squares
(or higher exponent) of the distances. The power required to main-
tain communication link from a node farther from the clusterhead
increases much faster than linearly with distance (at least in the far-
field region). Mv represents the mobility of the nodes. Intuitively,
a node with less mobility is preferred to be a clusterhead such that
the network topology will remain stable for longer periods of time.
The last component, Pv , is measured as the cumulative time a node
acts as a clusterhead. It is assumed that all the nodes start with the
same bettery power. In that case, the battery drainage gives a direct
measure of the available battery power.

Initial implementation and simulation studies for WCA were done
in C++ code which was not only difficult to maintain but also to run
comparisons against other existing heuristics such as Lowest_ID
[1, 2, 9], Highest Degree [10, 12], node weight [4, 5], and so on.
Implementing all the protocols in ns-2 would involve flushing out a
number of low-level details, such as packet structure, which is not
relevant from the performance of the protocols.

We have rewritten the code in the YAES simulator, concentrat-
ing only on the components which are relevant for the performance
of the protocol. As a note, the relevant features might not form a
continuous segment in the protocol stack. For the study of clus-
tering protocols, we are interested in physical layer characteristics
such as the geographical location and transmission range. We are
also interested in the flow of messages, as it happens at the network
layer. The details of the MAC protocol, however are less relevant.
Although collisions, retransmissions, and so on can affect the be-



havior of the real world implementation, with some cautionary as-
sumptions (e.g., low transmission frequency), they can be ignored
for the simulation purposes.

4.2 Developing a simulation in YAES
Developing a simulation in YAES involves the development of

the simulation context and the simulation code.
The simulation context is the description of the simulation world.

It needs to be implemented as a class implementing the IContext
interface. In practice, the context of many simulations can be as-
sembled from pre-existing components from the YAES library. In
our case, the environment is composed of a SensorNetwork
class, which contains a set of SensorNode objects. As the clus-
tering algorithms can be added as add-ons to this object, we do not
need to subclass the object SensorNode object.

The initialization step of the context creates a desired sensor net-
work. In this case, we create a network with a random initial distri-
bution of the nodes which is subject to some properties specified in
the simulation input: number of nodes, size of the field, and trans-
mission range of the nodes.

The simulation code is the active part of the simulation describ-
ing the evolution of the environment in time, as well as the actions
taken by the participants. For our chosen simulation, this includes
the mobility model of the nodes, the energy model and, the actions
taken by the nodes in the context of the WCA algorithm. While for
the mobility and energy models are implementations in the YAES
libraries, the code corresponding the WCA algorithm needs to be
developed for the purpose of this simulation. We choose a simple
random waypoint mobility model for the nodes and an energy effi-
ciency model which considers both the power consumption neces-
sary for processing, as well as the transmission power of the nodes.

As we have discussed earlier, the power consumption directly re-
lates to the accumulated time a node acted as a clusterhead due to
additional responsibilities to its member nodes. The distances be-
tween the clusterhead and its members also need to be considered
since the power consumption increases with the distance. In or-
der to account for the communication cost with the member nodes,
the sum of the distances of the members of the clusterhead is also
included.

In the implementation of the WCA algorithm, we do not need to
discuss the implementation details at the level of MAC protocols.
We will simply assume that the MAC protocol will add a constant
fraction to the required communication bandwidth.

4.3 Simulation and visualization
Once the context and a visualization code is developed and as-

sembled, we are ready to assemble an experiment and run the vi-
sualization. To run a single experiment, we need to set the input
variables of the simulation, and then pass the parameters, the sim-
ulation code object, and the simulation context object to the simu-
lation parameters.

SimulationInput sim = new SimulationInput();
sim.set(WCA_W1, 0.7);
sim.set(WCA_W2, 0.2);
sim.set(WCA_W3, 0.05);
sim.set(WCA_W4, 0.05);
sim.set(WCA_OPTIMAL_DEGREE, 10);
sim.set(WCA_FORCED_RECOMPUTE, WCA_FORCED_RECOMPUTE_NO);
sim.set(NODECOUNT, 20);
sim.set(TRANSMISSION_RANGE, 10.0);
sim.set(MAX_DISPLACEMENT, 5);
sim.set(RECORD_DISTANCES, RECORD_DISTANCES_NO);
sim.set(SIMULATION_CODE_CLUSTERING, SC_CLUSTERING_WCA);
sim.set(SIMULATION_CODE_MOBILITY, SC_MOBILITY_RANDOM);
sim.set(SIMULATION_CODE_ENERGY, SC_ENERGY_4THPOWER);
sim.setStartTime(0);
sim.setStopTime(1000);
SimulationOutput sop =

Simulation.simulate(sim, Clustering.class,
ClusteringContext.class);

The result of the simulation is a SimulationOutput object,
which contains all the statistical accumulators set by the simulation
code. In our case, the statistical accumulators collect information
about the failure of the nodes due to the lack of power. For reasons
of convenience, the simulation output encapsulates the simulation
input and the final state of the simulation context as well. Thus,
this object contains the complete state of the experiment for further
processing.

One way for gaining insight into the simulated phenomena is to
visualize the simulation. YAES provides the VisualMap archi-
tecture for this. If we want to visualize an object, we can add it to
the visual map, together with a "painter" object (implementing the
IPainter) interface. There are several painters provided by the
library, but the users might prefer extending them or implementing
custom painters. The libraries already contain painters for networks
and network nodes. For the purpose of this visualization, we added
code for marking the current clusterhead with a double circle, and
showing the node’s transmission range as a shaded area. A snap-
shot of the resulting visualization image is presented in Figure 3.

The visualization appears as an animation during runtime. YAES
can save these snapshots as a series of images, which can be assem-
bled into a video file or animated GIF image with programs such
as Adobe Premiere. Several video files representing simulations
performed with YAES are available on the YAES website [20].

Figure 3: Visualizing the evolution of a sensor network clus-
tered using the WCA algorithm. The larger shaded circles
show the transmission range of the network nodes. The node
color (green, yellow, red) indicates the power level, with the red
nodes being inactive, with no power reserve left. The links show
the connections between the clusterheads.

4.4 Experiment sets. Postprocessing and pre-
sentation.

The visualization of a single simulation run can allow us to trace
the evolution of an algorithm. For many cases however, we are
interested in the result of a potentially large number of experiments.

One reason for multiple experiments is when we want to vary
one or more parameters of the simulation. After this, we might be
interested to extract projections, i.e., the evolution of certain output
values of the simulation in function of other values (which are typ-
ically input variables). Thus, in our case, we might be interested in
the evolution of the moment in time when 10% of the nodes failed,
in function of the w1, w2, w3 and w4 parameters of the WCA al-
gorithm.

Another reason for performing multiple experiments is statis-
tical smoothing. In this case, we are repeatedly running a non-
deterministic experiment to study the spread and the evolution of



certain outputs. Preliminary experiments have shown that the 10%
failure time has a considerable random spread in sensor network
clustering experiments. Therefore, we decided to perform 20 ex-
periments and integrate the results. The code necessary for this
operation is presented below (with the repetitive parameter settings
omitted).

List<List<SimulationOutputParameters>>
outputsToIntegrate =
new ArrayList<List<SimulationOutputParameters>>();

for (int i = 1; i <= 20; i++) {
// 20 repeated experiments with identical inputs
List<SimulationInputParameters> inputs =

new ArrayList<SimulationInputParameters>();
for (double w4 = 0.0; w4 <= 1.0; w4 = w4 + 0.05) {

SimulationInput sim = new SimulationInput();
sim.set(WCA_W4, 0.05);
// ... set other parameters
inputs.add(sim);

}
// run a set of simulations
List<SimulationOutputParameters> outputs =
Simulation.simulationSet(inputs,
Clustering.class, ClusteringContext.class);
// integrate the outputs
outputsToIntegrate.add(outputs);

}
List<SimulationOutputParameters> outputs =
IntegratedSOP.integrateListOfSops(outputsToIntegrate);

We can note that YAES can execute a set of (unrelated) sim-
ulation experiments through a single command. Current work is
being done towards allowing a distributed execution of this com-
mand on a Beowulf cluster. The result of a set of experiments
are a list of simulation outputs. As we are running 20 identical
experiment sets, the result will be a list-of-lists of outputs. This
double list is integrated into a statistically smoothed output by the
integrateListOfSops function.

What remains is to extract from this set of results the data we
are interested in and present it in an appropriate format. The YAES
simulator provides a way to create projections of the output sets and
generates MATLAB scripts which directly plot the required graphs.
In this case, having a statistical result, we are interested in plotting
the average values as well as the confidence intervals of the results.
This can be achieved with the following commands:

List<PlotLineDescription> list =
new ArrayList<PlotLineDescription>();

list.add(new PlotLineDescription(first,
RandomVariable.TYPE_AVG,ENERGY_FIRST_NODE_FAILED,
RandomVariable.TYPE_AVG,
RandomVariable.TYPE_CONFINT_RADIUS, "First failed"));

list.add(new PlotLineDescription(first,
RandomVariable.TYPE_AVG, ENERGY_PERCENT_NODES_FAILED,
RandomVariable.TYPE_AVG,
RandomVariable.TYPE_CONFINT_RADIUS, "10 percent"));

SimulationHelper.generateErrorBarPlotFromPlotDescription
ListWithTitleLabel("results.m", list, outputs,
"Failure times", "w4", "time");}

The result of running this code is the "results.m" MATLAB file.
This can be run directly (no MATLAB programming knowledge is
required) and the resulting graph is presented in Figure 4. A visual
interpretation of this file is that the increase of the w4 parameter in
the WCA algorithm slightly increases the lifetime of the network.
As this parameter controls the influence of the time a node has spent
as a clusterhead, this result conforms to our expectations.

5. CONCLUSIONS
This paper presented the YAES simulation architecture, a soft-

ware targetted towards research and classroom simulation of mo-
bile wireless systems. By targetting simulations which are experi-
mental in nature and involve significant processing outside the net-
working stack, we argued that YAES covers a niche which is insuf-
ficiently addressed in other simulators currently available.

The authors wish to extend thanks to the developers Majid Ali
Khan, Linus Luotsinen, Xin Bai and Kresimir Sivoncik. The work
reported in this paper was partially supported by National Science
Foundation grants MCB9527131 and DBI0296107.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
100

150

200

250

300

350

400

w4

tim
e

Failure times

First failed
10 percent

Figure 4: The influence of the w4 parameter of the WCA clus-
tering algorithm to the time the first failed node and the time to
the moment when 10% of the nodes failed. The bars show the
confidence intervals.

6. REFERENCES
[1] D. Baker and A. Ephremides. The architectural organization of a mobile radio

network via a distributed algorithm. IEEE Transactions on Communications,
29(11):1694–1701, 1981.

[2] D. Baker and A. Ephremides. A distributed algorithm for organizing mobile
radio telecommunication networks. In Proceedings of the 2nd International
Conference on Distributed Computer Systems, pages 476–483, April 1981.

[3] R. Barr, Z. J. Haas, and R. van Renesse. Jist: an efficient approach to
simulation using virtual machines. Softw., Pract. Exper., 35(6):539–576, 2005.

[4] S. Basagni. Distributed and mobility-adaptive clustering for multimedia
support in multi-hop wireless networks. In Proceedings of Vehicular
Technology Conference 1999-Fall, pages 889–893, 1999.

[5] S. Basagni. Distributed clustering for ad hoc networks. In Proceedings of
International Symposium on Parallel Architectures, Algorithms and Networks,
June 1999.

[6] A. Boukerche, S. K. Das, and A. Fabbri. Swimnet: a scalable parallel
simulation testbed for wireless and mobile networks. Wirel. Netw.,
7(5):467–486, 2001.

[7] M. Chatterjee, S. Das, and D. Turgut. Wca: A weighted clustering algorithm
for mobile ad hoc networks. Journal of Cluster Computing (Special Issue on
Mobile Ad hoc Networks), 5(2):193–204, April 2002.

[8] G. Chen, J. Branch, M. J. Pflug, L. Zhu, and B. Szymanski. SENSE: A sensor
network simulator. In Advances in Pervasive Computing and Networking,
pages 249–267. Springer, 2004.

[9] A. Ephremides, J. Wieselthier, and D. Baker. A design concept for reliable
mobile radio networks with frequency hopping signaling. Proceedings of
IEEE, 75(1):56–73, 1987.

[10] M. Gerla and J. Tsai. Multicluster, mobile, multimedia radio network. Wireless
Networks, 1(3):255–265, 1995.

[11] Z. Ji, J. Zhou, M. Takai, and R. Bagrodia. Scalable simulation of large-scale
wireless networks with bounded inaccuracies. In MSWiM ’04: Proceedings of
the 7th ACM international symposium on Modeling, analysis and simulation of
wireless and mobile systems, pages 62–69, New York, NY, USA, 2004. ACM
Press.

[12] A. Parekh. Selecting routers in ad-hoc wireless networks. In Proceedings of
the SBT/IEEE International Telecommunications Symposium, August 1994.

[13] A. Sobeih, W.-P. Chen, J. C. Hou, L.-C. Kung, N. Li, H. Lim, H.-Y. Tyan, and
H. Zhang. J-Sim: A simulation and emulation environment for wireless sensor
networks. IEEE Wireless Communications Magazine, to appear, April 2005.

[14] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: a library for parallel
simulation of large-scale wireless networks. In PADS ’98: Proceedings of the
twelfth workshop on Parallel and distributed simulation, pages 154–161,
Washington, DC, USA, 1998. IEEE Computer Society.

[15] ns-2 the network simulator. URL http://www.isi.edu/nsnam/ns.
[16] Opnet technologies. URL http://www.opnet.com.
[17] PraWN: Programmable for Radio for Wireless Nets. URL

http://prawn.cs.colorado.edu/.
[18] Qualnet by scalable network technologies. URL

http://www.scalable-networks.com/.
[19] Stochastic simulation for java. URL

http://www.iro.umontreal.ca/ simardr/ssj/.
[20] YAES: Yet Another Extensible Simulator. URL

http://netmoc.cpe.ucf.edu/Yaes/Yaes.html.


