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Abstract—We consider an underwater wireless sensor network
where baseline communication happens over acoustic, multi-
hop routes from the underwater nodes to an on-shore station.
The data collected by the nodes greatly exceeds the baseline
communication capability. At best, the nodes can transmit digests
of their full observations. In order for the sink to receive all
sensed data, an autonomous underwater vehicle (AUV) is sent
to each node for collecting data over short-distance, high data
rate optical connections. The AUV then offloads all collected
information to the terrestrial station via wireless communication
when it surfaces. The observations made by the nodes vary in
size and urgency. The information they provide has an associated
value. Given a path of the AUV, we design scheduling strategies
for the nodes to decide when and how much information (i.e.,
which digest) to transmit via acoustic routes so that the value of
information reaching the terrestrial station is maximized. These
strategies are compared via simulations on realistic scenarios.
Our results show that scheduling algorithms that are able
to locally estimate the value of information of a data digest
provide the delivery of data with a significantly higher value of
information. In contrast, uninformed algorithms, i.e., strategies
that do not consider the value of information at the node level,
provide only a marginal increase over the benchmark case of
using only the AUV for data collection.

I. INTRODUCTION

As the waters cover well over 70% of the earth surface,

exploring the underwater world has always been at the fore-

front of human interests. While accessing the seas and their

depths has been always a challenge, recent advances in com-

munications and sensing technologies have favored remarkable

improvements on the gathering of critical information about

what lies below the surface. For instance, monitoring stations,

deployed and then retrieved periodically for data collection

through expensive expeditions at sea, were progressively sub-

stituted by wired interconnection of the submerged stations,

allowing for real-time information gathering. Since underwater

cabling is extremely expensive, research is now investigating

the use of underwater wireless sensor networks (UWSNs) for

data sensing and communications [1].

This paper concerns the problem of wireless data collection

in a UWSN where a number of sensor nodes (SNs) are

deployed on the ocean floor throughout an area of several

square km. The SNs use a variety of sensors, the highest

data rate being provided by high definition video cameras

(with data rates in the order of several Mbps). SNs have dual

Fig. 1: An UWSN where nodes have dual communication

capabilities.

communication capabilities [2]. The primary communication

mode of the SNs is using an acoustic modem to send data to

a data collection station located on shore. Communication is

multi-hop to an SN that is directly connected to the station.

This mode involves relatively low latency in delivering data,

since as soon as a packet is crafted, it can be transmitted.

However, this form of communication is prone to high BER

and limited to a communication bandwidth currently below

10kbps. For this reason, an SN can transmit at most a digest

of the collected data over the acoustic links. The secondary

communication method involves the use of an autonomous
underwater vehicle (AUV) [3]. The AUV visits the SNs and

downloads their data using high speed/short distance optical

communication [4]. Eventually, the AUV offloads the collected

data by periodically surfacing and transmitting them to the

terrestrial station using over-the-air wireless communications.

Fig. 1 illustrates the considered scenario.

Experience shows that the size, value and urgency of the

information collected by the SNs can widely vary. It is also

unpredictable to establish when and where a valuable event

will happen and which node will be able to sense and report

it. In any case, the original value of the sensed information

decreases with time, and as such it should be delivered to the

terrestrial station, and eventually to the customer, as soon as

possible: The later the data reaches the customer, the lower

its value will be. Therefore, each SN must decide when a less



valuable digest (e.g., a lower resolution link or a photo) of a

sensed data chunk should be sent to the terrestrial station via

an acoustic route, and which digest among many of that chunk

should be transmitted first.

In this paper we develop models for the value of information
(VoI) of data chunks resulting from underwater observation,

investigate the complexity of designing scheduling strategies

for acoustic transmissions, and we design different scheduling

heuristics for the SNs to decide which data chunk to transmit

and when, over the acoustic routes. The overall goal is to

design scheduling strategies that maximize the VoI of the

data delivered to the terrestrial station. Simulation studies on

realistic scenarios show that scheduling algorithms that are

able to locally estimate the VoI of a data chunk provide a

significantly higher VoI of the delivered data. In contrast,

uninformed algorithms, i.e., techniques that do not consider

VoI at the node level, provide only a marginal increase over

using only the AUV for data collection.

To the best of our knowledge, there is no previous re-

search on scheduling strategies for maximizing the value

of information from underwater SNs equipped with acoustic

and optical modems. The scenario considered in this paper

is similar to that described by Farr et al. in [2], [5]. In

particular, [2] describes the system of integrated optical and

acoustic capabilities. In [5] an application is shown where an

AUV is sent to offload data from a seafloor borehole obser-

vatory. The focus of these works is that of demonstrating the

feasibility and effectiveness of deploying optical and acoustic

technologies jointly for efficient underwater communication,

enabling application (e.g., those involving images and videos)

that would not be well supported by acoustic communications

alone. Our work has been inspired by the scenarios described

in these papers.

The remainder of this paper is organized as follows. Sec-

tion II develops a formal model for the value profiles of

information chunks collected by the nodes. A value profile

describes the value of information of the data, its digests of

various sizes, and its decay in time. In Section III, we devise

transmission scheduling algorithms for the SNs. Section IV

reports the results of simulation-based experiments providing

a comparative performance evaluation of the proposed algo-

rithms. We present concluding remarks in Section V.

II. VALUE OF INFORMATION IN UWSNS

A. A formalism for the value of information

The metric of value of information has been originally

proposed in game theory as the price an optimal player would

pay for a piece of information [6]. In the context of sensor

networks, a number of recent projects have introduced similar

metrics to model situations where one either needs to select a

subset of the collected data or choose between transmitting a

piece of information or not [7], [8], [9].

The formalism of the value of information collected in an

UWSN we present will also allow the consideration of the

decay of information in time and the value of digests of

information chunks. We assume that the data recorded at a

given SN is collected in a data chunk D of size |D|. We

denote with tr(D) the time at which the data chunk was

created. Naturally, the information in the data chunk refers

to observations before this time. We denote with D the set of

all possible data chunks.

A digest dig(D, b) of size b is a subset of information of

data chunk D. When b > |D| the digest is assumed to be the

original data chunk itself.

With V(D, t) we indicate the value of information (VoI) of

the data chunk D received by the terrestrial station (customer)

at time t. We will give a pragmatic definition of this value,

by relating it to the value V(a) of the action a taken by the

customer.

Definition 1: The value of information V(D, t) is the sum

of the values of all actions ai of the customer taken according

to a customer strategy s for which the knowledge of D is an

informational prerequisite:

V(D, t) = max
s

∑
ai

V(ai). (1)

By giving a definition of VoI in pragmatic terms, as the

value of the actions taken by the customer as a consequence of

receiving information, we need to consider whether the actions

could have been taken without this piece of information. For

instance, it is possible that the customer received the same

information from another SN, or that it previously received a

digest of the same data chunk.

Definition 2: The conditional value of information
V(D, t|(D1, t1) . . . (Dk, tk)) is the value of receiving data

chunk D at time t given that data chunks Di had been

previously received at time ti respectively.

The value is defined pragmatically as the difference between

the value for a customer who did not receive the previous

values, and one who did. We can immediately infer a property:

Property 1: The sum of the VoI of any combination of

digests is smaller than sending the original data chunk D
at the time of transmission of the first data digest. Let us

consider a series of strictly increasing points in time t1 . . . tn
and corresponding strictly increasing digest levels b1 . . . bn.

Then:

n∑
i=0

V(dig(D, bi), ti|(dig(D, b1), t1) . . . (dig(D, bi−1), ti−1))

≤ V(dig(D, bn), t1) (2)

Proof: Let us consider two consumers C1 and C2 with optimal

strategies. C1 receives the increasing digests at the given points

in time t1 . . . tn, while C2 receives the largest digest bn at the

initial time point t1. By contradiction, let us assume that the

customer C1 receives a VoI strictly higher than C2. However,

since every smaller digest can be extracted from larger digests,

C2 can choose the following strategy: At any point ti extract

the corresponding digest bi and then use the same strategy

as C1. In this way C2 performs the same actions, and thus

obtains the same VoI of C1, a contradiction. �



B. Forms of value of information

We are interested in finding a closed form expression for

the VoI of a digest dig(D, b) at time t. This value is going

to be lower than the initial value V(D, tr) because of the

urgency of information, which makes the VoI decrease in

time, and the summarizability, which describes how the VoI

decreases when the data is replaced with a digest. In the

remainder of this paper we will always assume that urgency

and summarizability are independent from each other. This is

justified by the observation that the urgency depends on the

meaning of the observation (the witnessed real-world event)

while the summarizability of the data chunk largely depends

on the structure of the data. This assumption allows us to write

the VoI in the following form:

V(dig(D, b), t) = dd

(
b

|D|
)
· dt(t− tr) · V(D, t), (3)

where dd is the digest value decay function and dt is the

temporal value decay function. Without loss of generality, we

define dd as the ratio between digest size and original data

chunk size, while we define tr to be the time of the data

collection.

It would be convenient to make the assumption that dd and

dt have unique system-wide definitions. Unfortunately, real-

world experience does not confirm this: The urgency varies

with the observed events and the summarizability varies with

the sensor types and the specific sensing parameters used

by the SN for a given data chunk. We will, however, make

a weaker assumption: We will assume that we know the

parameterized form of these functions. We will call the VoI
profile of a data chunk the triplet of the initial value, the digest

value decay function and the temporal value decay function.

We model the temporal value decay function using an

exponential decay model:

dt(t− t0) = exp(Ptd · (t− t0)), (4)

where Ptd is the temporal decay parameter. In particular,

Ptd = 0 indicates that the information is not delay sensitive,

and Ptd � 0 represents a very fast decay of information. This

model can fit many practical applications of UWSNs.

Let us now consider the form of the digest value decay

function dd. Although the size parameter b might imply a

continuous function, in practice the creation of digests might

imply a combination of different approaches. For instance, the

creation of a digest from a video stream can progress through

reduction of resolution, reduction of frame-rate, extracting key

frames, various techniques for lossy encoding and output of

image recognition and object tracking techniques. Thus, we

can characterize the value in form of a piecewise constant

function, which can be described with a series of number pairs

{(di, vi)}.

C. Conditional VoI

Intuitively, the conditional VoI represents the novel informa-

tion provided by the new digests assuming that smaller digests

have been received previously. If all digests would have been

time

VoI

b3

b2

b1

V(b1,t1)

V(b2,t2 | (b1,t1))

Fig. 2: The conditional VoI is the difference between the

unconditional VoI and the VoI of previously transmitted digests

at the current time.

received at exactly the same moment, the result would be the

difference between the two realized values. However, as the

smaller digests have been received earlier, we will not subtract

their arrival-time values, but the value they would have at the

current moment. Fig. 2 illustrates this with the example of a

digest of size b1 received at time t1 and a larger digest of size

b2 arriving at a later time t2. The conditional VoI is expressed

by the following formula:

V(dig(D, b2), t2|(dig(D, b1), t1)) =

V(dig(D, b2), t2)− V(dig(D, b1), t2). (5)

III. TRANSMISSION SCHEDULING ALGORITHMS

All SNs continually make observations and record them at

specific points in time (D1, t1), . . . , (Di, ti), . . . We assume

that an SN has no memory limitation and can store all the

observation it makes till the AUV comes. SNs use the acoustic

modem to transmit digests of the data chunk they collect.

When the AUV visits an SN, all the data chunks the node has

collected since the previous visit of the AUV are transferred to

the AUV (optically). Whenever a transmission has finished, the

node must schedule a new digest for transmission. Deciding

which digest to transmit and when determines the VoI received

at the terrestrial station. The overall aim of designing a

scheduling algorithm is that of maximizing the total VoI of

the data delivered. Note that the transmission scheduling on

the acoustic link also affects the VoI of the data carried by the

AUV, which carries data whose value is the conditional VoI

of the previously transmitted digests.

In this section we start by investigating the computational

complexity of scheduling digest transmissions over the acous-

tic link, and then we define heuristics for solving the problem.



A. The complexity of scheduling

We start by investigating the complexity of a simplified

version of the scheduling problem. Let us assume that we

have a static collection of data chunks, times and profiles

{(D1, t1, P1) . . . (Dn, tn, Pn)}, and a time interval [ts, td]. No

new chunks will be recorded after td and none of the chunks

or any of the digests have been transmitted prior to ts. We

assume that the node transmits over a uniform bandwidth B.

The scheduling problem we are trying to solve is to find a

schedule, i.e., an ordered list of tuples S = {(ji, bi)}, such that

the i-th transmission on the acoustic link will be the sending

of dig(Dji , bi) at the time:

ti =

∑i−1
j=1 bj

B
. (6)

We want to maximize the total value of information that is

transmitted:

V(S) =
∑
i

V(dig(Dji , bi|Ξi), (7)

where Ξi are the previous transmissions of digests of Dji in

schedule S.

Property 2: The scheduling problem is NP hard.

Proof: Let us assume that the problem is not NP hard. The

optimization version of the knapsack problem, which is known

to be NP hard, can be seen as a case of the scheduling problem

where all the digests are worth zero, and the decay parameter

of the function is zero (no decay in time). Thus, an algorithm

which would solve the scheduling problem in polynomial

time would also solve the knapsack problem, which is a

contradiction. �
Since this simplified version of the problem is computation-

ally hard, so is the problem of scheduling the transmission of

digests from a continuous generation of data chunks. In the

following, we define three practically deployable transmission

scheduling heuristics.

B. Heuristic 1: AUV only (AUVO)

A first solution to our problem of scheduling digests for

acoustic transmissions is that of not scheduling them at all:

Data are delivered to the terrestrial station only by successive

surfacing of the AUV. This heuristic, termed AUV only, or

AUVO, will be used as a benchmark solution against the

following ones, where the use of acoustic modems and multi-

hop underwater routes is allowed. In AUVO, the VoI received

by the customer is the VoI of the data chunks collected by

the AUV at the moment when they were delivered. We notice

that any strategy that through the use of acoustic routes will

succeed in delivering pieces of data chunks before the AUV

delivers them will improve the VoI of the collected data.

Nevertheless, AUVO has some significant practical advan-

tages. For instance, the SNs will be considerably cheaper, as

they will not need to be equipped with expensive acoustic

modems (in the tens of thousands of dollars each); the SNs will

have longer battery life, as acoustic transmissions consume

list := {};
When AUV arrives do

send all full data-chunks from list to the AUV;
list := {};

End
When data chunk D recorded do

create digests dig(D, b) for all b;
list := list ∪ digests ∪ D;

End
When current transmission finished do

list := list sorted by size;
current-transmission = list[0];
list := list[1:end];

End

Fig. 3: Uninformed Progressive Digest scheduling

significant energy resources; finally, the protocol stack of the

node will be considerably simpler, since no underwater MAC

and routing function are needed when communication reduce

to offloading data on the one-hop optical link.

C. Heuristic 2: Uninformed Progressive Digest (UPD)

In the Uninformed Progressive Digest (UPD) strategy an

SN cannot perform a local evaluation of the VoI profile of

the data chunks (hence its uninformed character). However, it

knows the shape of the dt function and also knows that the

steps of the digests are arranged in such a way that the VoI

decreases slower than the size of the digest. This being all the

knowledge a node has, its best choice is to send the smallest

available digests at any given moment, followed by a digest a

step larger, and so on, breaking the ties via the arrival time.

The resulting scheduling algorithm is described in Fig. 3.

D. Heuristic 3: Greedy Average VoI (GAVI)

The Greedy Average VoI (GAVI) strategy assumes that an

SN is able to identify the value profile of the sensed data

chunks. With this information, the strategy greedily maximized

the average VoI transmitted. Scheduling the transmissions

one-by-one, the next transmission will be the one for which

the VoI per unit of time is the highest. The VoI considered

here is the conditional VoI taking into consideration previous

transmissions of the same data chunk. For a static set of data

chunks, GAVI is actually an optimal strategy. However, for a

node which constantly receives new data chunks, it can happen

that a new, higher value digest might have to wait because a

longer data chunk is currently in transmission. The algorithm

is described in Fig. 4.

IV. SIMULATION RESULTS

We demonstrate the effectiveness of our algorithms for

maximizing the VoI of collected data through simulations.

We consider a network with 40 SNs deployed in a grid over

a 6 × 7km2 area of ocean floor at an average distance of

1500m from each other. Each node is outfitted with an acoustic

modem. We make the assumption that the average transfer rate

between a node and the sink is 10kbps. The AUV has been

modeled after an Odyssey-IV class vehicle, with a cruise speed

1.8m/s [3]. As a result, the AUV takes around 13 minutes to

travel between two SNs. Optical communication can reach a



list := {};
When AUV arrives do

send all full data-chunks from list to the AUV;
list := {};

End
When data chunk D recorded do

create digests dig(D, b) for all b;
list := list ∪ digests ∪ D;

End
When current transmission finished do

t = current time;
foreach digest d in list do

estimate V := V(d, t);
estimate ttrans(d) := size(d) / bandwidth;
Vavg(d, t) := V/ttrans(d);

end
list := list sorted by Vavg(d, t);
current-transmission = list[0];
list := list[1:end];

End

Fig. 4: Greedy Average VoI scheduling

TABLE II: Observation classes, base VoI V(D, t) and temporal

decay Ptd.

Type Description V(D, t) Ptd

C1 No specific event 0.2 1.0
C2 Low priority event (for instance, movement

of a shoal of fish or sea mammals)
1.0 1.0

C3 High priority event (the camera captured
divers, AUVs or submarines)

10.0 1.0

data rate of 10Mbps when the AUV hovers less than 100m

from the SN (clear water communication) [2]. In order for the

AUV to download the 1.1GB collected by an SN in a day, it

has to hover or circle around an SN [10] for about 13 minutes.

In this scenario the AUV visits all 40 SNs in fixed order over

the course of a day, then it returns to its dock for refueling

and offloading the data.

We simulate a scenario where the SNs use cameras to take

videos of the deployment area for intrusion detection purposes.

The SNs store surveillance data in the form of 720p high

definition video (for a resolution of 1280 × 720 pixels, at

29.97frame/s). The recordings are partitioned into data chunks

corresponding to 1 minute of recorded video. We assume that

the video is encoded using the standard H.264 codec. We

consider 4 types of digests, each representing one or several

images extracted from keyframes in the video, encoded using

the WEBP codec. We have assigned the dd digest values for

these data based on a subjective evaluation of how much

information can be extracted from the various images and

how useful this information can be for customer. These values,

and the value of other parameters, are listed and described in

Table I.

In order to determine the value profiles of the data chunks,

we divide them into three observation classes C1, C2 and C3,

each of them having different urgency and basis information

levels, as shown in Table II. The distribution of observation

classes is not uniformly random: For instance, intruders have

a tendency to linger longer than 1 minute in the area covered

by a SN. To account for this, we modeled the distribution

Fig. 5: The Markov chain modeling the occurrence of events.

of observations using the Markov chain shown in Fig. 5. We

assume that for the majority of the time, the system will make

observations of unimportant events (C1). Events happen with

a certain probability PE. A fraction HEF of these events are

of high priority. The self transitions Plst and Phst determine

the average length of the events.

In our experiments we varied the fraction HEF of events

with the highest VoI and run the three heuristics AUVO, UPD

and GAVI. For each setting, we have generated 10 scenarios

using different random seeds and averaged the values. Results

are shown in Figure 6.

Fig. 6a shows the total VoI received at the terrestrial station

for different values of HEF. As expected, the VoI increases

with the HEF for all the heuristics because of the high priority

events have higher base information values. The AUVO strat-

egy, which does not perform acoustic transmissions, provides

the lowest VoI, while GAVI, using local knowledge of the VoI

of individual digests, has the highest overall VoI.

We observe that AUVO and UPD show surprisingly close

behavior, especially for lower values of HEF (< 0.15). If the

local evaluation of VoI is not possible, that is, the node is

unable to determine by itself whether it sensed something

urgent and important, it appears more advantageous to rely

only on the AUV for data collection, without using acoustic

routes. We notice that while not noticeably lowering the

VoI, AUVO would significantly lower system costs (e.g., of

acoustic modems) and extend the lifetime of the network. On

the other hand, if local estimation of the VoI is possible, the

use of acoustic communication allows GAVI to double the VoI

of data delivered to the station.

We have also investigated the composition of the VoI

depending on how data reach the terrestrial station. Fig. 6b

and Fig. 6c show the composition of the VoI achieved by UPD

and GAVI, respectively. The Total VoI curve is the same as

the corresponding one in Fig. 6a. This value is the sum of the

VoI of data sent through acoustic routes plus the conditional

VoI obtained via the AUV. Notice that the (non-conditional)

VoI for data delivered by the AUV is the same in both cases

(this is the value of AUVO in Fig. 6a). Looking at the graph

for UPD, we can see that the reason why the UPD and AUVO

strategies are so close in performance for low HEF ratios is

not necessarily because the value carried over the acoustic

links is low, but because the drop from the non-conditional to

the conditional value carried by the AUV almost completely



TABLE I: Digest levels, digest creation methodology and the digest value decay functions.

Type Size b dd Description
720p H.264 @ 29.97fps 7500kB 1 1 High-definition video, full information content
4 keyframes (WEBP q=0.85) 60kB 0.008 0.9 Four keyframes, allow identification of beginning/ending of presence and movement direction
2 keyframes (WEBP q=0.85) 30kB 0.004 0.7 Two keyframes, allow identification of movement direction
1 keyframes (WEBP q=0.85) 15kB 0.002 0.5 Good quality still picture
1 keyframes (WEBP q=0.75) 7.5kB 0.001 0.4 Low quality still picture, quality might impede identification
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Fig. 6: Value of Information: Total and composition function of HEF.

eliminates this gain. This is especially the case when most of

the carried data is not urgent. This gain is instead maintained

by GAVI, where a smarter, VoI-based choice of what to send

acoustically is performed that delivers high VoI data earlier

through acoustic routes.

V. CONCLUSIONS AND FUTURE WORK

This paper concerns the definition and investigation of algo-

rithms for scheduling the transmissions of information with a

given, application-dependent value in UWSNs. In particular, in

scenarios where nodes can transmit data over acoustic multi-

hop routes and also via offloading them to a passing AUV,

we have shown that it is possible to find scheduling strategies

allowing the sensor nodes to acoustically transmit digests of

the sensed data so that the value of information delivered

to the customer is maximized. After proving the problem of

acoustic scheduling computationally hard, we have defined two

heuristics for acoustic data scheduling. These heuristics differ

on the knowledge of the value of information to be transmitted.

Through simulation results, we have shown that scheduling

strategies that are able to locally compute the value of infor-

mation of a data digest, like our GAVI, provide the delivery

of data with a significantly higher value of information. Our

uninformed algorithm, UPD, instead, provides only a marginal

increase of VoI over the baseline case of using only the AUV

for data collection.

In this paper we assumed that the AUV follows a fixed route

to the SNs that is independent of the information collected at

the nodes, and on its value. In fact, the AUV route has a major

impact on the VoI of data delivered to the customer. Future

work on this topic will consider route planning for one and

multiple AUVs for maximizing VoI, as well as a comparative

performance evaluation of different solutions.
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