
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Value of information based scheduling of cloud computing resources✩

Ladislau Bölöni, Damla Turgut ∗

Department of Computer Science, University of Central Florida, United States

a r t i c l e i n f o

Article history:
Received 8 May 2016
Received in revised form
21 September 2016
Accepted 23 October 2016
Available online xxxx

Keywords:
Cloud computing
Value of information

a b s t r a c t

Traditionally, heavy computational tasks were performed on a dedicated infrastructure requiring a heavy
initial investment, such as a supercomputer or a data center. Grid computing relaxed the assumptions
of the fixed infrastructure, allowing the sharing of remote computational resources. Cloud computing
brought these ideas into the commercial realm and allows users to request on demand an essentially
unlimited amount of computing power. However, in contrast to previous assumptions, this computing
power is metered and billed on an hour-by-hour basis.

In this paper, we are considering applications where the output quality increases with the deployed
computational power, a large class including applications ranging from weather prediction to financial
modeling. We are proposing a computation scheduling that considers both the financial cost of the
computation and the predicted financial benefit of the output, that is, its value of information (VoI).
We model the proposed approach for an example of analyzing real-estate investment opportunities
in a competitive environment. We show that by using the VoI-based scheduling algorithm, we can
outperform minimalistic computing approaches, large but fixedly allocated data centers and cloud
computing approaches that do not consider the VoI.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Weoften forget that computation and networking costsmoney.
We do not see the dollars counted down when we talk on the
cellphone, have the hardware depreciation cost displayed on our
laptops or the power bill showing up on the screen when we
are playing on a gaming PC with a 700 Watt power source
(of course, in a room illuminated by a 7 W LED lightbulb).
Even for high performance computing, where the computation
and networking costs can be substantial, financial considerations
used to come into picture only at the time of the investment
decisions. Once a new supercomputer, data center or Beowulf
cluster had been purchased, users were encouraged to utilize
them to their maximum capacity. The grid computing model
emerging in the late 1990s [1,2] introduced the ability of
requesting computational power on demand, on the analogy of the
power grid. Nevertheless, all grid systems had been financed by
national research foundations and thus, the objective of maximum
utilization remained in place.

Cloud computing introduced a significant change. In some
ways, cloud computing is fulfilling the promise of grid computing

✩ Invited paper.
∗ Corresponding author.

E-mail address: turgut@cs.ucf.edu (D. Turgut).

of providing on demand, on a very short notice, an amount of
computational, storage and networking capacity, normally in the
form of virtualized resources. For instance, computational capacity
can be offered in form of virtual machines or containers. For
instance, virtual machine on demand services provide the user
with a remotely allocated virtual machine, in which the client
can run its own operating system. These services can be public
clouds, fully managed services offered by a third party vendor,
such as in the case of Amazon’s EC2 service [3,4], Rackspace’s
OpenStack on Demand service or VMWare’s vCloud Air service.
In these cases, the cloud provider charges in actual dollars for
the provided, metered computing capacity. The client makes a
request for a computing unit, and in less then a minute, he can
log in and start the computation. While computing, the client
will pay an hourly fee. Once the computation is terminated, the
client discards the virtual machine. Alternatively, companies can
create private clouds in which they are offering similar services for
their internal divisions. This allows companies to more efficiently
share their existing computational resources. Large companies
have developed their internal software architectures to provide
computing on demand (this being, for instance, the case of Google’s
Borg system [5]). Other companies can use available open source
software to provide computing-on-demand solutions, for instance
using OpenStack Nova system [6] for virtual machines on demand,
or ApacheMesos orGoogle’s Kubernetes for containers on demand.

http://dx.doi.org/10.1016/j.future.2016.10.024
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.10.024
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:turgut@cs.ucf.edu
http://dx.doi.org/10.1016/j.future.2016.10.024

2 L. Bölöni, D. Turgut / Future Generation Computer Systems () –

In Borg, company subdivisions need to purchase computing quotas
with actual money, thus the principles of operation are similar to
the one in public clouds.

In such systems, the amount of computation that a client can
obtain is limited, in principle, only by the client’s ability to pay.
For instance, a client can pay $168, and run a parallel computation
on 10,000 computer cores, a computing power that was out of
reach to anyone without a million dollar investment. For variable
and unpredictable loads, such as the sudden popularity and just
as sudden fading of a game or app, cloud computing might be
the only approach that can trace the variations of the computing
demand. Of course, if one would use the 10,000 computer cores
continuously for years, acquiring a private computer center would
be cheaper. However, even for companies that own their data
center, as Google’s Borg example shows, it had been found that the
fine grainmeasuring and accounting can better optimize the use of
the computational resources.

1.1. Applications with elastic computational needs

The way we used to think about performing a computation, is
that we have a certain input data X , a certain computing algorithm
A and we expect that by performing the algorithm on the data we
will create the output B = A(X). For a given algorithm and input,
there is a fixed set of computing resources C necessary to perform
this computation. Depending on the actual hardware performing
the computation, this might take a shorter or longer time, it might
cost more or less, or use more or less energy.

There is, however, a very large class of applications that can
be seen through a different model: by allocating a computational
resource Ci to the process, we obtain an output Bi = A(X, Ci).
Naturally, if we perform two computations C1 > C2 thenwe expect
the corresponding B1 to be ‘‘better’’ than B2 according to some
quality measure. Many popular algorithms used today generate
continuous improvements with additional computational power:
we can run some more Markov Chain Monte Carlo network,
run a particle filter with more particles, train a larger neural
network, perform climate modeling at a finer spatial or temporal
resolution and so on. There can be many reasons for not finishing
a computation to the end: there can be limits on time, on cost,
or simply there is no clear stopping point where we can say that
the algorithm had finished. Most such methods eventually run in
the problem of diminishing returns in the sense that after a while,
adding additional computing power will not measurably improve
or even change the outputs (for a given input). In this paper we
will argue that we do not need to run the computation so far that
no change is observed in the output. We can stop much earlier, at
the point where further computation is not justified by the value
of information that can be obtained from the output.

The remainder of this paper is organized as follows. In Section 2
we discuss related work. In Section 3 we work out a detailed
model for VoI for analyzing investment opportunities. In Section 4
we discuss several possible scheduling algorithms for allocating
computational power to the applications discussed in the previous
section. We present the result of some simulation studies in
Section 5. We conclude in Section 6.

2. Related work

The problem of scheduling computational and networking
resources to computations had seen a significant effort in the last
quarter century. The exact optimization criteria, however, changed
in function of both the nature of resources and the applications that
are running on them. While early batch systems only ensured the
sequential execution of a task on a single computational resource,
the emergence of distributed computing systems with multiple,

usually heterogeneous resources implied that multiple tasks can
be allocated in parallel, and decisions need to bemade aboutwhich
resource is the best fit to which task [7]. The optimization criteria
on these systems could be the expected time to completion of
each task, the overall throughput of the system, as well as various
fairness measures. If the executed tasks are actually collections of
parallel and interacting tasks (meta-programs or workflows), new
challenges had to be taken into consideration, for instance with
regards to the scheduling of network connections or the storage
of temporary data. A modern example of such a scheduler is the
Hadoop scheduler YARN [8].

Cloud computing is a natural development of the previousmod-
els of distributed computing. Beyond the technical innovations re-
lated to virtualization, software defined networks and so on, cloud
computing also represented a newmodel with regards to the own-
ership of the resources. In a typical public cloud, the owner of the
computing resource is not the beneficiary of the computing appli-
cations. On the other hand, the actual beneficiary has little control
over the scheduling decisions — for instance the customer of EC2
does not normally know where the virtual machine she requested
is actually running.

Scheduling and resource allocation can be seen as an optimiza-
tion problem, and thus such a wide range of optimization algo-
rithms had been deployed. To sample just several recent exam-
ples done in the context of cloud computing, Zheng et al. [9] use
a parallel genetic algorithm for the placement of virtual machines
in a cloud computing system. Li, Tordsson and Elmroth [10] use
linear integer programming to allocate cloud resources on pub-
lic clouds, taking into account virtual machine migration as well
as continuously changing pricing schemes, virtual machine types
and performance. Pandey et al. [11] use particle swarm optimiza-
tion to schedule applications on clouds taking into account both
computation and data transfer costs. Abrishami, Naghibzadeh and
Epema [12] schedule application workflows to cloud resources by
analyzing theworkflowas a graph anddetermining its critical path.
Caron, Desprez and Mureşan [13] present an approach to predict
the need for cloud resources by using a short-termmemory of load
patterns.

Whenever we are talking about economic models in terms of
cloud or grid computing, we need to distinguish between systems
that use a market model for efficient resource allocation versus
systems where resources are allocated in exchange for actual
financial resources. It had been found that the introduction of a
synthetic economic model can be actually useful even for system
where no actual money is exchanged [14,15]. More recently,
Frincu [16] describes an approach for scheduling highly available
applications using a cost model (which might not necessarily be
actual financial cost).

The financial aspect of cloud scheduling had received com-
paratively less attention. Bittencourt and Madeira [17] consider
scheduling on hybrid clouds, where some of the resources are al-
located from the private cloud of the customer, while others are
rented on the public cloud. The authors show that their proposed
method can reduce the cost while achieving the predefined exe-
cution deadlines. Wang, Li, and Liang [18] consider the financial
aspects from the point of view of the service provider, who needs
to segment its offerings into different classes — the existing classes
of the Amazon EC2 product and an auction market. They describe
the optimal segmentation model as a Markov Decision Process.

Another aspect of the work described in this paper is that
we assume a certain elasticity in the requirements of the user.
Hwang et al. [19] describe a system where the customer trades off
between long-term reserved resources and on-demand resources.
To optimize its allocation between these two resource types the
user uses a Kalman filter to predict its future resource needs. Yang
et al. [20] proposes a cost-aware auto-scaling approach based on a
workload predicted using a linear regression model.

L. Bölöni, D. Turgut / Future Generation Computer Systems () – 3

Our approach assumes an elastically scalable load where the
computational performance of the application can be directly
mapped to financial value. This allows us to define the value of
information acquired through computation. The concept of value
of information had been previously defined in game theory [21].
Recent work applied this concept to various situations where the
cost of computation and communicationmust be traded against its
benefits [22–25].

Alicherry and Lakshman [26] consider resource allocation
algorithms for cloud systems distributed over a large number
of locations. The cloud users are running applications, for
which they require a specific number of virtual machines
and specify the communication requirements between them.
The main optimization criteria for this paper is to minimize
the communication latency between the VMs allocated to the
same application. The paper proposes efficient 2-approximation
algorithms for selecting the data centers, racks and servers on
which the specific VMs will be allocated.

Cucinotta et al. [27] assume a complex application that requires
both computation and networking, and for whom a specific SLA
is provided describing the quality of service requirements. The
authors assume that there is a choice of network service providers
and cloud (computation) service providers, eachwith their specific
capabilities and prices. The task of the broker is to find an allocation
of the application components and their communication paths in
such a way that overall quality of service requirements are met.
This can be formulated mathematically in the form of a mixed-
integer geometric programming optimization problem, where the
objective is to minimize the cost while meeting the SLA.

The paper [27] is similar to our approach in the sense that it
takes into account the financial cost of operating the cloud system.
However the optimization task is different — while [27] optimizes
the cost for a given application with fixed needs, in our case we
consider applications with elastic needs and optimize the ratio
between the cost of computation and value created.

Konstanteli et al. [28] consider an approach where a set
of horizontally scalable applications whose requirements might
elastically grow or shrink need to be scheduled into a federated
cloud. The scheduling is done through a probabilistic optimization
model which takes into account affinity and anti-affinity rules and
optimizes for eco-efficiency and cost. The proposed optimization
approach also allows the system to take into account predictions
of scaling requirements (for instance based on historical data).
The resulting system can be described through a mixed-integer
linear programming problem. This paper shareswith our paper the
fact that it considers applications that have elastic requirements.
In [28] the optimization is taken place outside the internal logic
of the application: the elasticity is considered to be due to
external factors. In contrast in our approach, we are taking the
perspective of the application: an application might scale up
because computation is momentarily cheap and the benefits of the
computation can be high.

3. Application model: analyzing real-estate investment oppor-
tunities

3.1. Notation and terminology

Table 2 summarizes our terminology and notations used
throughout the paper.

3.2. Investment opportunity at single timepoint

The scenario we are considering is that of an investor analyzing
investment opportunities. Let us assume that the investor is
offered to buy an asset for the price Vcost . Let us assume that the
investment horizon is a year, after which the investor can sell
the investment for Vfuture. The alternative of buying an asset is
for the investor to put the money into a safe investment choice
which guarantees a return of Rsafe. If the investor spent Ccost on
computation to analyze the investment opportunity, and took the
opportunity, his profit will be:

Prinvest = Vfuture − Vcost − Ccost . (1)

If he did not ta the opportunity, his profit would be:

Prdecline = Rsafe − Ccost . (2)

To understand how the investor will make this decision, we
need to understand that at the time of investment, the investor
does not know the Vfuture value, only an estimate Vest , which leads
to the corresponding estimate of the invest profit Pr ′

invest . Thus the
investor will calculate

∆Pr ′
= Pr ′

invest − Prdecline = Vest − Vcost − Rsafe. (3)

A simple decision model would be for an investor to invest if
∆Pr ′ > 0 and to decline otherwise. Note that the investment
decision does not depend on the expended computational cost,
although that comes into the calculation of the actual profit. At the
time of expenditures, the computation is a sunk cost, which should
not influence the outcome (although psychological studies show
us that it often does [29]).

The critical variable influencing the decision is the estimate
Vest . The estimate is a result of computational analysis. Let us
consider that the investment opportunity is a piece of real estate.
The input of the analysis would be public information available
about the real estate (location, square footage, amenities etc.),
information about the environment (comparables, commercial
potential, traffic patterns), information about the markets present
and future (demand for locations, loan interests, taxes, incentives,
trends for demand) and private information the investor might
hold (eg. customers looking for similar real estate and so on). This
information is often available in form of probability chains: if a
certain politician is elected as mayor (p = 0.60), it will implement
a change in the zoning ordinance (p = 0.80), which can trigger the
sale of the building as a commercial space (p = 0.75), increasing
its value. Such chains are too complex for a closed form solution,
but are well suited to particle filter/Markov Chain Monte Carlo
methods. One advantage of such techniques is that they not only
generate an estimate of the value, but they also can infer, through
the distribution of the particles, the probability distribution of the
estimate. Monte Carlo methods have been pioneered in financial
risk calculation by Boyle [30]. Several recent examples dealing
with property value calculations [31–33]. For the remainder of
this paper, we will make the assumption that the analysis will
create a normal probability distribution, which will allow us to
describe the uncertaintywith a single value, the standard deviation
σ .1 In general, the choice of the normal distribution is a justified
choice taken both by the general investment community (eg the
Black–Scholes equation for pricing options [34]) as well as it is
empirically justified by the profile of simulation result histograms
(eg. in [33]).

With this assumption, the decision model becomes somewhat
more complex. The Vest value only denotes the mean of the

1 In analysis which involve binary choices, such as the election of a politician, it
can happen that the distribution will be bi- or multi-modal.

4 L. Bölöni, D. Turgut / Future Generation Computer Systems () –

Fig. 1. The average, high and low estimates for an investment opportunity (with
k = 1, versus its cost. In this case, the investor cannot make a determination to
invest or not with the desired confidence.

Gaussian distribution, which means that if ∆Pr ′
= 0, there will

be an even chance of loosing or gaining a profit. Investors typically
require a higher confidence in success before they invest. One way
to achieve this is to use a ‘‘low estimate’’ for the estimated value,
lowering it with a certain number of σ s: Vlow = Vest − k · σ . With
this approach, if we choose k = 1 we will have a 68% confidence
in making a profit, while with k = 2 a 95.4% confidence. Similarly
we can define a ‘‘high estimate’’ Vhigh = Vest + k · σ .

With this approach, the investor can proceed as follows. It starts
by choosing a certain confidence level k- a choice of k = 2
yielding a higher than 95% confidence might be a good starting
point. The investor performs the computational analysis, yielding
a Vest and σ , and implicitly, the Vlow and Vhigh. If the estimated
profit using the low estimate is positive, the investor decides to
invest. If the estimated profit using the high estimate is negative,
the investor declines the investment opportunity. In between these
two values there is a 2kσ range where the investor cannot make a
determination with the desired confidence (see Fig. 1). If no other
options are available, these opportunities will also not be taken.

Of course, this approach raises the question of how large is
the σ value. The investor will only take opportunities where
the k · σ is larger than the expected profit, thus large σ s can
effectively starve the investor of opportunities to invest. For a given
amount of known data, the value of σ depends on the amount of
computational power spent on the analysis.

Let us develop a plausiblemodel of theσ function of the amount
of computation. In Monte Carlo integration [35], a problem closely
related to ours, the error is estimated as σ = c/

√
N where N is

the number of tests, proportional with the computational power C .
We will need to generalize this formula to take into account some
of the specifics of our problem. For a given computational power C
(assumed to be measured in ECU-hours) we will assume that the
standard deviation takes a form:

σ = k1 +
k2

1 + C
1
k3

. (4)

This formula integrates several intuitions about the nature of
analyzing financial investments. The constant k1 represents that
there are uncertainties that no amount of computation can reduce
— these include unknown factors and genuine random outcomes.
The constant k2 represents the amount of uncertainty that can
be removed by more analysis. Finally, the constant k3 models
the fact that even for the reducible uncertainty, the improvement
might not scale linearlywith the amount of computation. Note that
the formula uses the amount of computation C , not the cost of

Table 1
The on-demand computation costs on Amazon EC2 at several representative
compute units (as of April 2016). ThemXmodels are general purpose, the cXmodels
are compute optimized while the gX are GPU optimized.

Unit type Virtual CPUs Performance (ECU) Cost per hour

m4.large 2 6.5 $0.12
m4.xlarge 4 13 $0.239
m4.2xlarge 8 26 $0.479
m4.4xlarge 16 53.5 $0.958
m4.10xlarge 40 124.5 $2.394
c4.large 2 8 $0.105
c4.8xlarge 36 132 $1.675
g2.2xlarge 8 26 $0.65
g2.8xlarge 32 104 $2.60

Table 2
Notation and terminology.

Vcost The purchase cost of the investment
Vfuture The future value of the investment
Vest The estimated future value of the investment
Vhigh The high estimate of the future value of the investment
Vlow The low estimate of the future value of the investment
Rsafe The safe return on the investment
C The amount of computation analyzing the investment (in

ECU hour)
Ccost The cost of computation analyzing the investment
Prinvest Profit if investing
Prdecline Profit if not investing
σ The standard deviation of the estimated future value
k The confidence level for investment decision level (k · σ)
k1 , k2 and k3 Constants in the function σ(C)

ploss Probability of loosing a pending opportunity to the
competitor, a metric of competition intensity

computation Ccost . How much money an investor uses to acquire
a certain amount of computation depends on many factors. If he
is purchasing them using the Amazon Elastic Compute Cloud, the
cost can be calculated based on Table 1. With the computation
measured in ECU-hours, if the user runs a c4.large machine (with
ECU = 8) for 10 h, the amount of computation is going to be 80 h.

If he is harvesting unused computing cycles on a company
network, the cost can be zero. If a dedicated data center is used, the
cost depends on the equipment amortization costs and the cost of
maintenance.

One of the questions is: do we need a large amount of
computation to make an informed decision, i.e. is Ccost at the
same order of magnitude with the potential profit? Certainly,
it is possible for an offer to be priced such it can be accepted
or declined with minimal computation. However, in an efficient
market, such offers will be very rare. We assume that the seller is
just as competent as the buyers: there is no incentive for the seller
to leave money on the table by pricing the offer too low, or to not
sell by pricing it too high. In fact, the seller has a strong incentive to
price the offer very close to the borderline of the predicted profit
or loss. For such situations, the cost of estimating the profit will be
in the same order of magnitude with the predicted profit.

3.3. Investment opportunity in time and scheduling the computation

Up to this moment we assumed that the investment opportu-
nity appears as a decisionmade at a single timepoint.Wehave seen
that by investing a certain amount of computational power C , the
user approximates the future value with an uncertainty α(C). This
value allows the investor to categorize the investments into three
classes: those that clearly should be taken, those that clearly should
be declined and those about which no confident decision can be
made given the specific α(C).

One way to reduce this uncertainty is to use more computation
C2, with the hope that the uncertainty σ(C + C2) will be small

L. Bölöni, D. Turgut / Future Generation Computer Systems () – 5

enough such that a confident decision may be made. If a decision
still cannot be made, the investor might choose to add additional
computation C3 in the next timestep and so on. Alternatively, the
investor might choose to decline the investment opportunity and
not spend additional computational resources on it.

Other than choosing its confidence level k, the choice of the
scheduling function that determines the amount of computation Ct
allocated to an opportunity at every timestep is the critical choice
that the investor can make in order to impact its profit on the long
run.2

There are several considerations to be taken with regards to
the scheduling function. First, allocating an overly large amount
of computation immediately after the arrival of the opportunity
might allow to make a decision quickly, but it can lead to an overly
large computational cost — the investor might have been able to
make a decision with a smaller outline. This consideration might
make us conclude that adding up the computation gradually in
small Ct increments would be a better choice.

A different consideration applies to the presence of the
competition. If the investor is not alone in the market, the
opportunity will be available to other investors as well. A way to
model this is that at any timestep, there is a ploss probability that a
competitor would grab the opportunity, leading the investor with
the Prdecline value, with all the invested computation cost wasted.
In a highly competitive environment, it is a bad strategy to use too
small Ct increments.

Fig. 2 shows an example of the decision making using the
scheduling process. The evolution of the estimate Vest is shown
in the black line, the low estimate Vlow in green while the high
estimate Vhigh in red. The allocated computation is shown in
the lower graph. As a result of these computations, the σ value
decreases, and thus the lower and higher estimates are getting
closer together. As long as the decision line indicating zero profit is
between the high and the low estimates, the investor cannot make
a decision. In this graph, at timestep 12 the green lower estimate
line crosses the decision line — this gives the investor sufficient
confidence that there will be a profit, and at this point the decision
is made to make an investment. After the investment had been
made, no further computation is scheduled.

4. Scheduling algorithms

4.1. Non-adaptive scheduling algorithms

Before wemove on to the proposed VoI-based scheduling algo-
rithm, let us discuss several non-adaptive scheduling algorithms
the user might describe.
No-cost approach: this model assumes that the user does not
invest in any computational power. Such a user can still perform
the computation on his desktop or laptop machine, a situation we
can approximate with zero cost (compared with the investments).
Naturally, such a user is disadvantaged with regards to the speed
of analyzing the investment opportunity. However, he has the
advantage that computational expenses will not reduce his profit.
Data center: this model assumes that the user has a data center
with a fixed amount of computational power. A typical example
would be a Hewlett Packard modularized data centers POD 240a
which can host about 4400 servers. In general, data centers are
most efficient if they are fully utilized, thus we will make the
assumption that the user will choose to divide the computational
power of the data center evenly among the pending opportunities.

2 Of course, this statement assumes that each investor has access to the same
algorithms and information.

Fig. 2. An investment analysis process ending in thedecision to invest in the offered
opportunity. Upper graph: the evolutions of the estimates in time. Lower graph: the
allocated computation per time unit.

The data center incurs a constant cost, even if there is no
computation performed. Another potential problem is that the
more pending opportunities are there, the less computing power
is available.
Cloud computing (on demand, but not adaptive): this model
assumes that the user uses on-demand cloud computing instances
to analyze the investment opportunity. One of the advantages of
this model is that when there are no pending opportunities, no
cost will be incurred. On the other hand, the user can analyze
an arbitrary number of investment opportunities, and analyzing
multiple opportunities does not limit the amount of computation
the user can spend on each. Lacking other information about the
opportunities, the best choice of the user is to allocate the same
amount of computing power to each opportunity.

4.2. The VoI scheduler

Let us assume that we have a cloud computing account and a
certain opportunity with cost Vcost . How much computation C(t)
should we buy from the cloud provider at time step t? Note that
in the remainder of this discussion we assume that our cloud
computing environment is predictable [36]. The cloud computing
approach we discussed above would be to decide on a fixed value
C and allocate the same value C(t) = C ∀t until the opportunity
is either taken, declined, taken by a competitor or timed out.
Fixed allocation is prone to overallocation (allocating too much
to an opportunity which will not give as a significant profit) and
underallocation (allocation too little computation to a promising
opportunity). Of course, overallocation and underallocation can
only be defined from the perspective of an omniscient observer
who knows Vfuture. The scheduler itself does not know the profit
because this is exactly what it tries to calculate.

Let us analyze the scheduler’s decision from the point of
view of the value of information. The concept of the value of
information we refer in this context was initially introduced by

6 L. Bölöni, D. Turgut / Future Generation Computer Systems () –

Bölöni and Turgut [37,22] in the intruder tracking sensor networks
and later extended into path planning [38] and scheduling [25,24,
23] algorithms in the underwater sensor networks domain.

If the decision to invest had been reached, it means that
the estimate with the sufficient σ had obtained a profit Prinvest ,
which can be seen as the value associated with the information
contained in the estimate. Similarly, if the decision to not invest
had been reached, the value of information is the loss that had been
avoided by declining the opportunity. We can avoid the over and
underallocation of the computing resources if we make the cost of
the computation allocated to the analysis a constant fraction f of
the value of information.

At the first timestep, the scheduling algorithm has no informa-
tion about the profit, thus it can do no better than allocating a con-
stant initial value C(0) = Cinit . Starting from timestep t = 2 we
have an estimate of the future profit and while this estimate is
probabilistic through the current values Vest(t) and σ(t), it can be
used to make decisions about the schedule. To avoid loosing in-
vestment opportunities when the initial profit estimates are close
to zero, in the calculation of the allocated computational powerwe
use a value that overestimates the profit with an optimism term o
measured in units of σ :

Ccost(t + 1) = f ·

Cest(t) + o · σ(t) − Ccost − Rsafe

. (5)

Notice that in contrast with other approaches, this model does
not allocate computation, but money to buy computation with. The
actual amount of computation C(t + 1) allocated at time t + 1 will
be ‘‘whatever we can buy with Ccost(t + 1) money’’.

Finally, the VoI model introduces a new reason to decline an
opportunity. We have seen that a schedule-independent reason
for declining an opportunity is that our estimates tell us with a
predefined degree of confidence that the investment will not be
profitable.With the VoI model, another reason to decline would be
that the VoI decides that it is not justified to invest more money in
computation for this opportunity. If the formula gives Ccost(t) = 0
for a given t , all the future Ccost(t + 1) values will be also zero,
because with no added computation, the values will not change.

5. Experimental study

5.1. Scenario

We implemented the application model of analyzing invest-
ment opportunities as described in Section 3. Table 3 describes the
simulation parameters.

5.2. Calculating the cost of computation

To calculate the cost of the cloud computing approach we will
use the current cost of computing units from Amazon EC2. For the
cost of the equivalent computing power obtained in a local data
center, we will rely on the fact that many analysts assume that the
profit margins of Amazon AWS are about 50% [39], which makes
the data center costs about 50% from the Amazon cost.

Another question is measuring the computation unit. This can
be tricky as different performance factors in the system (cache
size, memory amount, memory speed, GPU, storage amount and
speed) might make a difference in the performance of a specific
application. However, our scenario assumes that all the schedulers
use the same software, which makes suitable to use a common
metric. We will use the ECU metric introduced by Amazon [3]. We
assume that the no-cost scheduler allocates 1 ECU per task.

Table 3
Simulation parameters.

Parameter Value

Scenario

Arrival rate Poisson distributed with λ = 0.01
to 2.00 (opportunities/hour)

Timespan 1000 h
Vcost uniformly distributed $100,000..

$500,000
Vfuture- the future value of the
investment

normally distributed in a range
around Vcost

Rsafe 0
Competition 0.001 to 0.3 (probability/hour)
Cost of cloud computation Amazon EC2 large computing

instances costs of April 2016

Estimation algorithm

k1 0.1 · Vfuture
k2 1.0 · Vfuture
k3 2
Confidence k 2

No cost scheduler

Free computation per opportunity
per time

1 ECU

Data center scheduler

Data center capacity 10,000 ECU

Cloud scheduler

Computation per opportunity per
time

10,000 ECU

VoI scheduler

initial profit estimate Pr(0) 0.001 · Vcost
Optimism o 0.4 · σ

Fraction f 0.01

5.3. Experiment 1: Dependence on the arrival rate

In this study, we measure the performance of the various
scheduling approaches function of the arrival rate of the opportu-
nities λ between 0.01 and 2.0 while keeping the competition level
at 0.1. The experimental results for various metrics are shown in
Fig. 3. Obviously, the most important metric here is the total profit
shown in Fig. 3(a), the only of genuine interest for the investor. We
find that for all the scheduling algorithms except NoCost the profit
increaseswith the number of opportunities, with the VoI algorithm
being clearly the best for all arrival rates, followed by the DataCen-
ter and the Cloud schedulers. At this level of competition, the No-
Cost creates only minimal profit regardless of the arrival rate.

Figs. 3(b), 3(c) and 3(d) help us understand the actual behavior
of the user model. Fig. 3(b) shows us the number of taken
opportunities function of the arrival rate. We find that NoCost
very rarely chooses to take an opportunity. What is interesting is
that the VoI and the Cloud algorithms choose to take effectively
the same number of opportunities. Despite this, the VoI created
a larger profit due to two factors: it picked a higher fraction of
the more valuable opportunities and spent much less on the less
valuable ones. The DataCenter scheduler took a much smaller
amount of opportunities, especially at higher arrival rates, where
its computational power had to be divided between the various
opportunities that need to be analyzed. Note, however, that, this
lower acceptance rate yielded a higher profit, due to the overall
lower cost of the computations.

Finally, Figs. 3(c) and 3(d) show the number of opportunities
lost to the competition and their ratio to the total number of
opportunities that had been presented. What we observe here
is that, in general, the NoCost computing model looses the most
opportunities, because its low computational investment, it takes
a long time to reach a decision, during which time competitors

L. Bölöni, D. Turgut / Future Generation Computer Systems () – 7

(a) Total profit function of arrival rate. (b) Opportunities taken function of arrival rate.

(c) Opportunities lost function of arrival rate. (d) Fraction of opportunities lost function of arrival rate.

Fig. 3. Performance of various scheduling algorithms function of the arrival rate of investment opportunities.

have the chance to grab the opportunity. What is interesting here
is that wastly lower ratio of lost opportunities presented by the
VoI scheduler — this is due to the adaptability of the scheduler’s
allocation. If it sees a promising opportunity, the VoI scheduler
will ramp up the computation much faster than the uniformly
allocating Cloud scheduler; on the other hand, the VoI scheduler is
more ready to decline an unpromising opportunity — both effects
leading to a lower rate of opportunities lost to the competition.

This experiment had shown us that the presence of competition
significantly impacts the profits, leading us to the next experiment.

5.4. Experiment 2: Dependence on the competition

In this study, we vary the competition value ploss which shows
the chance for a given profitable pending opportunity to be taken
by a competitor at any given time slot in a range of 0.001 to 0.3. For
these experiments we kept the arrival rate λ constant at 1.0.

Fig. 4(a) shows the total profit. As expected, what we see here
is that the higher the competition, the lower the profit for all
scheduling algorithms. For very low competition even the NoCost
algorithm can make profit — the decision will eventually be made,
and no computational cost diminishes the cost. Also for a low
competition, DataCenter approach can actually outperform VoI,
primarily due to its cheaper computational power. Starting from a
competition level of 0.05, however, the VoI approach significantly
outperforms the other approaches. What actually see is that for
very high competition, the Cloud approach can actually loose
money! As Fig. 4(b) shows, this is not due to its underperforming
in its computations — in fact, it takes more opportunities than the

VoI approach. The Cloud approach, however, looses a lot of money
by analyzing opportunities which are then lost to the competition.
Both the DataCenter approach with its fixed costs that do not
depend on the number of opportunities and the VoI approach with
its adaptive behavior perform better for high competition.

Finally, Figs. 4(c) and 4(d) show a similar pattern to the
ones in Experiment 1, with the VoI approach loosing the least
opportunities to competition. An interesting pattern can be
observed on Fig. 4(d) while the other approaches stabilize at a high
level of about 50% loss starting from a relatively mild competition
of 0.05, the VoI approach stays lower, but it also increases towards
this level. The reason of this increase is the special treatment of the
first step in the VoI approach. For the timestep, the VoI approach
has no estimate of the VoI, thus only makes a comparatively
small initial investment. If the competition is high, there can be
a significant chance that the system looses the investment in
timesteps 1 or 2 before the VoI behavior ‘‘kicks in’’.

6. Conclusions

The amount of high performance computing performed at
a research institution or business used to be limited by the
available computational facilities. The decision to invest in such
facilities were justified and made years in advance. The advent of
cloud computing made the decision to perform high performance
computation on thousands of computer cores a decision that can
be taken on a minute’s notice. In this paper, we argued that
the ability to make this decision very quickly does not reduce
the need to analyze whether the computational expenses are

8 L. Bölöni, D. Turgut / Future Generation Computer Systems () –

(a) Total profit function of the competition metric. (b) Opportunities taken function of the competition metric.

(c) Opportunities lost function of the competition metric. (d) Fraction of opportunities lost function of the competition
metric.

Fig. 4. Performance of various scheduling algorithms function of the intensity of the competition.

justified or not.We discussed thatmanymodern high performance
computing applications are elastic in term of computational power
— additional computation improves the quality of results, but often
with a curve of diminishing returns. We argue that a convenient
technique to create efficient decision making approaches is to
use the concept of ‘‘value of information’’ - to try to quantify the
amount of financial benefit a certain calculation can gain us, and
use this value when making scheduling decisions.

We illustrate the proposed model with the example of an
investorwho is analyzing real estate investment opportunities.We
compare approaches that assumeminimal, no-cost computational
analysis with the cost of maintaining a private data center,
buying computational power on the cloud and, finally, with a VoI-
informed, cloud-based scheduling approach. We find that the VoI
approach clearly outperforms every other approach across a wide
range of opportunity arrival rates and competition intensity values.

References

[1] F. Berman, G. Fox, A.J. Hey, Grid Computing: Making the Global Infrastructure
a Reality, vol. 2, John Wiley and Sons, 2003.

[2] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: Enabling scalable
virtual organizations, Internat. J. High Perform. Comput. Appl. 15 (3) (2001)
200–222.

[3] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, D. Epema,
A performance analysis of EC2 cloud computing services for scientific
computing, in: Cloud Computing, Springer, 2009, pp. 115–131.

[4] S. Garfinkel, An Evaluation of Amazon’s Grid Computing Services: EC2, S3, and
SQS, Tech. Rep., Harvard University, 2007.

[5] A. Verma, L. Pedrosa, M.R. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes, Large-
scale cluster management at Google with Borg, in: Proc. of the European
Conference on Computer Systems (EuroSys), 2015, pp. 18:1–18:17.

[6] X. Wen, G. Gu, Q. Li, Y. Gao, X. Zhang, Comparison of open-source
cloud management platforms: OpenStack and OpenNebula, in: Proc. of
IEEE International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD’12), 2012, pp. 2457–2461.

[7] T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M. Maheswaran, A.I. Reuther, J.P.
Robertson, M.D. Theys, B. Yao, D. Hensgen, A comparison of eleven static
heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems, J. Parallel Distrib. Comput. 61 (6) (2001)
810–837.

[8] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, et al., Apache Hadoop YARN: yet
another resource negotiator, in: Proc. of the 4th Annual Symposium on Cloud
Computing, ACM, 2013, p. 5.

[9] Z. Zheng, R. Wang, H. Zhong, X. Zhang, An approach for cloud resource
scheduling based on parallel genetic algorithm, in: Proc. of IEEE International
Conference on Computer Research and Development (ICCRD’11), vol. 2, 2011,
pp. 444–447.

[10] W. Li, J. Tordsson, E. Elmroth, Modeling for dynamic cloud scheduling via
migration of virtual machines, in: Proc. of IEEE International Conference on
Cloud Computing Technology and Science (CloudCom’11), 2011, pp. 163–171.

[11] S. Pandey, L. Wu, S.M. Guru, R. Buyya, A particle swarm optimization-
based heuristic for scheduling workflow applications in cloud computing
environments, in: Proc. of IEEE International Conference on Advanced
Information Networking and Applications (AINA’10), 2010, pp. 400–407.

[12] S. Abrishami, M. Naghibzadeh, D.H. Epema, Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds, Future Gener.
Comput. Syst. 29 (1) (2013) 158–169.

[13] E. Caron, F. Desprez, A. Muresan, Forecasting for grid and cloud computing on-
demand resources based on pattern matching, in: Proc. of IEEE International
Conference on Cloud Computing Technology and Science (CloudCom’10),
2010, pp. 456–463.

[14] L. Rodero-Merino, E. Caron, A. Muresan, F. Desprez, Using clouds to scale grid
resources: An economic model, Future Gener. Comput. Syst. 28 (4) (2012)
633–646.

http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref1
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref2
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref3
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref4
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref5
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref6
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref7
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref8
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref10
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref11
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref12
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref13
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref14

L. Bölöni, D. Turgut / Future Generation Computer Systems () – 9

[15] X. Bai, D.C. Marinescu, L. Bölöni, H.J. Siegel, R.A. Daley, I.-J. Wang, A
macroeconomic model for resource allocation in large-scale distributed
systems, J. Parallel Distrib. Comput. 68 (2) (2008) 182–199.

[16] M.E. Frîncu, Scheduling highly available applications on cloud environments,
Future Gener. Comput. Syst. 32 (2014) 138–153.

[17] L.F. Bittencourt, E.R.M. Madeira, HCOC: a cost optimization algorithm for
workflow scheduling in hybrid clouds, J. Internet Ser. Appl. 2 (3) (2011)
207–227.

[18] W. Wang, B. Li, B. Liang, Towards optimal capacity segmentation with
hybrid cloud pricing, in: Proc. of IEEE International Conference on Distributed
Computing Systems (ICDCS’12), 2012, pp. 425–434.

[19] R.-H. Hwang, C.-N. Lee, Y.-R. Chen, D.-J. Zhang-Jian, Cost optimization of
elasticity cloud resource subscription policy, IEEE Trans. Serv. Comput. 7 (4)
(2014) 561–574.

[20] J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao, C. Liu, L. Niu, J. Chen, A cost-aware
auto-scaling approach using the workload prediction in service clouds, Inf.
Syst. Front. 16 (1) (2014) 7–18.

[21] R.A. Howard, Information value theory, IEEE Trans. Syst. Sci. Cybern. 2 (1)
(1966) 22–26.

[22] D. Turgut, L. Bölöni, IVE: improving the value of information in energy-
constrained intruder tracking sensor networks, in: Proc. of IEEE ICC’13, 2013,
pp. 6360–6364.

[23] F. Khan, S. Khan, D. Turgut, L. Bölöni, Scheduling multiple mobile sinks in
underwater sensor networks, in: Proc. of IEEE LCN’15, 2015, pp. 358–365.

[24] S. Basagni, L. Bölöni, P. Gjanci, C. Petrioli, C. Phillips, D. Turgut, Maximizing
the value of sensed information in underwater wireless sensor networks
via an autonomous underwater vehicle, in: Proc. of IEEE INFOCOM’14, 2014,
pp. 988–996.

[25] L. Bölöni, D. Turgut, S. Basagni, C. Petrioli, Scheduling data transmissions of
underwater sensor nodes formaximizing value of information, in: Proc. of IEEE
Globecom, 2013, pp. 460–465.

[26] M. Alicherry, T. Lakshman, Network aware resource allocation in distributed
clouds, in: Proc. of IEEE INFOCOM’12, 2012, pp. 963–971.

[27] T. Cucinotta, D. Lugones, D. Cherubini, K. Oberle, Brokering SLAs for end-to-end
QoS in cloud computing, in: Proc. of IEEE CLOSER’14, 2014, pp. 610–615.

[28] K. Konstanteli, T. Cucinotta, K. Psychas, T.A. Varvarigou, Elastic admission
control for federated cloud services, IEEE Trans. Cloud Comput. 2 (3) (2014)
348–361.

[29] H.R. Arkes, C. Blumer, The psychology of sunk cost, Organ. Behav. Hum. Decis.
Process. 35 (1) (1985) 124–140.

[30] P.P. Boyle, Options: A Monte Carlo approach, J. Financ. Econ. 4 (3) (1977)
323–338.

[31] D. Gimpelevich, Simulation-based excess returnmodel for real estate develop-
ment: A practical Monte Carlo simulation-based method for quantitative risk
management and project valuation for real estate development projects illus-
trated with a high-rise office development case study, J. Prop. Invest. Financ.
29 (2) (2011) 115–144.

[32] O. Hosny, K. Nassar, P.A. Olusola, Decision support system for housing
developers in developing countries under uncertain buyer behavior, J.Manage.
Eng. 28 (3) (2012) 311–323.

[33] M. Holtan, Using simulation to calculate the NPV of a project.
http://www.investmentscience.com/Content/howtoArticles/simulation.pdf,
(accessed 20.09.16).

[34] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit.
Econ. (1973) 637–654.

[35] C.P. Robert, G. Casella, Monte Carlo integration, in: Monte Carlo Statistical
Methods, Springer, 1999, pp. 71–138.

[36] M. García-Valls, T. Cucinotta, C. Lu, Challenges in real-time virtualization and
predictable cloud computing, J. Syst. Archit. 60 (9) (2014) 726–740.

[37] D. Turgut, L. Bölöni, A pragmatic value-of-information approach for intruder
tracking sensor networks, in: Proc. of IEEE ICC’12, 2012, pp. 4931–4936.

[38] F. Khan, S. Khan, D. Turgut, L. Bölöni, Greedy path planning for maximizing
value of information in underwater sensor networks, in: Proc. of IEEE
P2MNet’14, 2014, pp. 39–44.

[39] S. O’Grady, AWS: Forget the revenue, did you see the margins?
http://redmonk.com/sogrady/2010/08/04/aws-margins/, (accessed 20.09.16).

Ladislau Bölöni is an Associate Professor at the Depart-
ment of Computer Science of University of Central Florida.
He received a Ph.D. degree from the Computer Science De-
partment of PurdueUniversity inMay2000, anMSc degree
from the Computer Science department of Purdue Univer-
sity in 1999 and BSc. Computer Engineering with Honors
from the Technical University of Cluj-Napoca, Romania in
1993. He received a fellowship from the Computer and Au-
tomation Research Institute of the Hungarian Academy of
Sciences for the 1994–95 academic year. He is a senior
member of IEEE, member of the ACM, AAAI and the Up-

silon Pi Epsilon honorary society. His research interests include cognitive science,
autonomous agents, grid computing and wireless networking.

Damla Turgut is an Associate Professor at the Department
of Computer Science of University of Central Florida. She
received her BS, MS, and Ph.D. degrees from the Computer
Science and Engineering Department of University of
Texas at Arlington. Her research interests include wireless
ad hoc, sensor, underwater and vehicular networks, cloud
computing as well as considerations of privacy in the
Internet of Things. She is also interested in applying big
data techniques for improving STEM education for women
and minorities. Her recent honors and awards include
being selected as an iSTEM Faculty Fellow for 2014–2015

and being featured in the UCF Women Making History series in March 2015. She
was co-recipient of the Best Paper Award at the IEEE ICC 2013. Dr. Turgut serves as
a member of the editorial board and of the technical program committee of ACM
and IEEE journals and international conferences. She is a member of IEEE, ACM, and
the Upsilon Pi Epsilon honorary society.

http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref15
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref16
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref17
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref18
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref19
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref20
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref21
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref22
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref23
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref24
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref25
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref26
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref27
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref28
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref29
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref30
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref31
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref32
http://www.investmentscience.com/Content/howtoArticles/simulation.pdf
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref34
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref35
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref36
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref37
http://refhub.elsevier.com/S0167-739X(16)30447-2/sbref38
http://redmonk.com/sogrady/2010/08/04/aws-margins/

	Value of information based scheduling of cloud computing resources
	Introduction
	Applications with elastic computational needs

	Related work
	Application model: analyzing real-estate investment opportunities
	Notation and terminology
	Investment opportunity at single timepoint
	Investment opportunity in time and scheduling the computation

	Scheduling algorithms
	Non-adaptive scheduling algorithms
	The VoI scheduler

	Experimental study
	Scenario
	Calculating the cost of computation
	Experiment 1: Dependence on the arrival rate
	Experiment 2: Dependence on the competition

	Conclusions
	References

