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SUMMARY

Location estimation of sensor nodes is an essential part of most applications for wireless sensor and actor
networks (WSAN). The ambiguous location information often makes the collected data useless in these
applications. Environmental monitoring in particular, relies on an accurate position estimation in order to
process or evaluate the collected data. In this paper, we present a novel and scalable approach for positioning
of mobile sensor nodes with the goal of monitoring the Amazon river. The actors in the scenario are
stationary and positioned at reachable spots on the land alongside the river whereas sensor nodes are thrown
into the river to collect data such as water temperature, depth and geographical features. The actors are
not equipped with positioning adaptors and they are only aware of their distances from the other actors.
The sensor nodes collect data and forward it to the actors. While floating in the river, sensor nodes are
often multiple hops away from the actor nodes, which makes it challenging to apply traditional positioning
techniques. Through extensive simulations, we show that the nodes can be efficiently positioned using a
multi-hop approach with local information exchange only. The introduced approach is also applied to a
scenario, where monkey swarm monitoring is simulated, to test the generalizability of the algorithm.
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1. INTRODUCTION

Wireless sensor and actor networks (WSANs) are geographically distributed systems with large
numbers of tiny sensor nodes and a limited number of actors [1]. The sensor nodes sense and
observe the events in the environment and the more powerful actors collect and process information
from the sensor nodes and react to the events. WSANs have a broad range of applications such as
environmental monitoring, military surveillance and intelligent transportation. Besides the proper
sensor adapters that detect movements, measure temperature or other environmental features, most
applications require location information to be associated with the collected data in order to deliver
meaningful results [2].

Positioning is defined as the process of estimating the positions of nodes in the environment. The
positioning methods generally use a priori information about the environment such as the positions
of some specific nodes or possible positions that the nodes can be located in the environment
[3]. Other sources for location estimation are the measurements made by the nodes and the
communication among the nodes. The sensor nodes can gather various kinds of information when
equipped with appropriate measurement technologies [4]. The measurements of distance between
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Figure 1. The sensor nodes are floating in a river going through the dense Amazon rain forest and the actors
reside on the accessible spots.

two nodes, network connectivity and direction or angle of signal arrival are widely used aids to
support positioning in WSANs.

The environment considered in this work is a river going through dense Amazon rain forest (see
Fig. 1). The actors are positioned at specific accessible spots on each side of the river, while the
sensor nodes are thrown into the water. As the sensor nodes float, they collect information about the
environment and transmit the collected data to the actors. The data are analyzed at the actors to map
the characteristics of the river. The positioning process is critical in this environment to match the
collected data with the position of a sensor node at a given time. In many scenarios, the collected
data become unusable if not associated with the position and the time.

The river scenario introduces particular challenges such as a continuous change of the
communication topology. Interference techniques and time stamps are used in order to overcome
these challenges and to reveal the paths that the sensor nodes follow through the river. Hence the
main goal of the positioning algorithm is not creating a self-awareness of locations at sensor nodes
but enriching the collected data with positioning information.

The paths of the nodes deliver additional information about the nodes and the environment such
as speed, direction or the structure of the terrain. For instance, the detection of a significant change
in the speed of a majority of the nodes in a certain location of the river may indicate that either the
terrain is more inclined in that area or there exists a small waterfall. Another example would be that
if at a certain point of the river, the differences among the speeds of the nodes are large, some nodes
may have run into obstacles while the others flow through the river without any problems.

The main contribution of this work is the design of an algorithm to enrich the collected data with
localization information even if the sensor nodes are multiple hops away from the actor nodes. For
this purpose, the sensor nodes create a hierarchical network structure. The network organization is
used along with lateration for localization and it is dynamically adapted for energy efficiency. The
accuracy of the event localization is improved by taking the estimation of the paths followed by the
nodes into consideration.

The remainder of this paper is organized as follows. Related work is given in Section II. The
proposed algorithm is presented in Section III. We demonstrate the validity and applicability of our
method with simulations in Section IV and finally conclude in Section V.

2. RELATED WORK

Positioning in WSNs and WSANs has been attracting significant interest in the last decade due to
the realization of low-cost and multifunctional sensor nodes and their deployments in both indoor
and outdoor environments [5]. Although the positioning is significantly important in most of the
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deployed systems, implementation of the algorithms is challenging since the positioning techniques
in WSANs have their particular constraints. For instance, the deployment areas are generally
complex and they have issues such as accessibility, line-of sight, and so on. The measurement
method for the positioning algorithm also needs to be selected according to the environment, the
limited capabilities of the sensor nodes and the conditions of the scenario. The heterogeneous node
structure of WSANs is yet another challenge and requires a clear differentiation in the roles of the
nodes in the network.

The proposed algorithms in this field make use of various approaches such as graph theory [6],
multidimensional scaling [7], distance vectors (DV) [8], particle filters (e.g. [9, 10, 11]), recursive
systems [12] and genetic algorithms [13]. These methods utilize diverse measurement techniques,
the main types of which are time of arrival (ToA) [14], angle of arrival (AoA) [15, 16], received
signal strength (RSS) [17], and distance related measurements.

We adopt a multi-hop positioning approach for our algorithm. There are many well known
multi-hop algorithms such as the distributed hop-by-hop positioning algorithm, APS, proposed by
Niculescu and Nath [8]. APS works as an extension of distance vector routing and GPS positioning
to provide the approximate locations for all nodes in a network where only a limited fraction of
nodes have self location capabilities. An alternative approach by Savvides et al. [18] uses the sensor
nodes, after their positions are estimated, as the anchor nodes in a multilateration algorithm. This
process is called iterative multilateration, which is also employed by Savarese et al. [19]. The critical
observation in these algorithms, which is also true for our algorithm, is that at least three actor
nodes are needed to determine the position of a sensor node. Nagpal et al. [20] organizes a global
coordination system in the network by estimating the Euclidian distance of a hop. The estimation
algorithm uses the number of communication hops of the sensor nodes and the position error is
minimized with imperfect distance estimates. The important theoretical results given by Nagpal et
al. are the critical minimum average neighborhood size for sufficient accuracy and the limit on the
resolution of a coordinate system determined by local communication.

There are studies on computationally efficient sequential algorithms for positioning. In the
sequential positioning algorithm for exact distance measurements by Anderson et al. [6], the sensor
nodes are processed in a predetermined order. Fang et al. [21] extended this work in their algorithm
“Sweeps” and showed that processing sensor nodes in a specific order can be used to characterize
the graph theoretical properties of the network. The Sweeps algorithm relies on the inter-sensor
distances and works only with exact measurements. Location estimation of sensor nodes is very
critical especially when there is no GPS positioning capability at sensor nodes. The Received Signal
Strength Routing (RSSR) algorithm by Boukerche et al. [22] is a GPSless scheme, which makes use
of greedy forwarding. After receiving a query packet from the sink, a sensor node uses RSSI to
forward the packet to the neighbor that received the query with greater signal strength, essentially
the neighbor closest to the sink. Oliveira et al.[12] uses two reference points and the known direction
of the recursion for position estimation in their GPSless localization protocol. The protocol works
with low-density networks and also indicates the node position error based on the distance to the
recursion origin.

In contrast to most of the discussed approaches, the positioning information of actor nodes do not
need forwarding in our algorithm. In other words, since providing self-awareness for the sensor
nodes is not an objective of the algorithm, the sensor nodes are not informed of their position
information. The high mobility of the sensor nodes is the distinct and important constraint for the
particular scenario discussed in the paper.

The organization of the overlay network scheme for assignment of the hop-counts and affiliation
with the actor nodes is a critical part of our algorithm, where clustering is employed as the solution.
The actor nodes function as the permanent clusterheads and the structure allows multi-hop clusters,
which is different than most of the existing clustering algorithms for mobile ad hoc networks (eg.
[23], [24], [25], [26]). KHOPCA [27] is a multi-hop clustering scheme consisting of a set of simple
and easy-to-implement locally acting rules, which has an approach similar to our algorithm, but it
does not fully satisfy the specific requirements of our scenario such as predetermined clusterheads.
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3. MULTI-HOP POSITION ESTIMATION

The main goal of the proposed approach is to enhance the information collected from the river when
estimating the locations of the sensor nodes. The system is not intended to detect a specific event
(e.g. fire or an intruder); instead it is used to monitor the river for a period of time and to create a
detailed set of data for a complete analysis of the river. Therefore, different than most of the existing
localization algorithms, the sensor nodes are not informed about their positions and no computation
is specifically required at the sensor nodes by the positioning algorithm.

3.1. Network layout

The network, N , consists of a set of stationary actors A, a set of mobile sensor nodes S and a sink
node, which is in charge of the data aggregation. The sensor nodes and the actors have transmission
ranges rs and ra, where ra > rs. Obtaining location information by recording positions manually
or through GPS are not viable options for sensor nodes due to their limited resources. Additionally,
thick forest structure may block satellite communication from time to time as the sensor nodes float
in the river. On the other hand, the actors are placed at predetermined accessible spots in the area.
Therefore only actors have a priori knowledge of their positions and each sensor node can directly
communicate only with its immediate neighboring nodes.

The actors acquire additional knowledge about their positions either from an external source or
the position information is encoded as they are placed in the area. The actors are positioned such that
each one has at least one actor or sink in its transmission range. Each actor uses its full transmission
range to communicate with the other actors and the sink. The network among the actors and the sink
is defined as the backbone of the network. The backbone is formed by selectively flooding a packet
originated at sink among actors. Thus, each actor node learns the neighboring actor, which is set as
the destination for packets forwarded to the sink.

3.2. Weighing the nodes

There is no initial configuration on the sensor nodes to affiliate them with the actors. Each sensor
node keeps only a “weight” value for each actor it is affiliated with, which represents the minimum
number of hops required to reach the actor from that sensor node. The sensor node keeps the list of
the weights for its affiliated actors in a “weight table”.

The sensor nodes initially take random weight values between 0 and k − 1 while each actor node
is assigned to a constant weight k. The only data available for a sensor node s as it floats in the
river are the direct neighbors Neigh(s) and their corresponding weights w(Neigh(si)). Hence, the
sensor nodes maintain and update only local information.

When communicating with the sensor nodes and creating the affiliation areas, the actors use the
same transmission range, rs, as the sensor nodes and exchange packets only with their neighboring
sensor nodes. Each actor node encodes the packets transmitted with its ID and weight k. These
values demonstrate that this packet is coming from an actor. Each sensor node updates the weight
values in its records via local updates. Thus the information about each actor is distributed to the
affiliation area of that actor.

A sensor node keeps the maximum weight for each actor it receives packets from, as depicted in
Fig. 2. Hence, a sensor node is capable of being affiliated with multiple actors. When a sensor node
receives a packet from an actor, the packet is retransmitted if its weight is less than the sensor nodes
weight for that actor. Otherwise the sensor node drops the packet to avoid unnecessary traffic and
energy consumption in the network.

The condition, in which a sensor node doesn’t receive any weight updates, is defined as the “loss
of connection” for the sensor node. In that case, the sensor node sets its hop value to the minimum
value defined for the network. Then it operates only in “listening” mode and does not transmit any
packets.

Algorithm 1 describes the state transitions for the node v depending on its actor affiliation. The
weight w of each affiliation corresponds to “k-hop distance” of a node v to an actor a.
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Figure 2. One sensor node affiliated with multiple actors. The sensor is maintaining a list of actor affiliation
and weight.

Algorithm 1 The state transitions of a node v.

1: wa(v): The weight of node v for actor a
2: max(w(Neigh(va))): M
3: if v is a sensor node then
4: if v is not affiliated with an actor node then
5: wa(v) = 0
6: else if M = k then
7: wa(v) = k − 1
8: else if M ! = k & M > wa(v) then
9: wa(v) = M − 1

10: else if M < wa(v) then
11: wa(v) = wa(v)− 1
12: else if Neigh(va) = Empty then
13: wa(v) = 0
14: end if
15: else
16: wa(v) = k
17: end if

The hierarchical structure of the network is created with the step, by which a sensor node
continuously adapts its weight to its local neighborhood. For each of its affiliated actor node, a
sensor node changes its weight to “the highest neighbor weight – 1” unless it already has the same
weight value. Hereby a hierarchical structure is dynamically formed and updated.

The next step covers situations where higher weight nodes, which are not actors and not affiliated
with any actors, attract surrounding nodes with lower weights. According to this step, a higher
weight node successively reduces its weight, finally connecting to an existing actor or until its
weight becomes zero. In a case where node v is not affiliated to a particular actor, its weight is set
to zero.

Fig. 3 shows an example of a sensor node’s weight adaptation according to the algorithm
described above. All the other nodes in this example are assumed to be stationary and k value
for the network is set to four. The mobile node in Fig. 3 is initially not affiliated to any actors, so
its weight is zero. Then the node becomes directly connected to an actor and its weight becomes
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Figure 3. Weight adaptation of a sensor node.
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Figure 4. The weight tables of sensor nodes affiliated with two actors.

k − 1. As the node moves away from the actor node and affiliates with another actor node, its weight
changes according to “the highest neighbor weight – 1” rule. Finally, it ends up not being affiliated
with any actor node, its weight is decreased until it becomes zero and stays there as stated in the last
step.

3.3. Adapting k

One of the characteristics of our algorithm is that the nodes use only local information. The sensor
nodes update their data locally as the network topology changes due to node mobility. The sensor
nodes affiliated with an actor form the “affiliation area” of that actor. In other words, if the neighbors
of a sensor node which are affiliated with an actor, have zero weights, then that sensor node cannot
affiliate with that actor and it is out of the coverage area. When a sensor node is outside of all the
affiliation areas, it is called an “unconnected node”.

The selection of k value of the actors is critical for the traffic and the energy consumption in the
network. In our algorithm, actor nodes adapt their k values according to their observations. In order
to find k, each actor follows the following steps:

• The k is initialized with a high value (depending on the size of the network area) at the actors.
If the k value of an actor changes, the actor announces this change to the other actors via the
backbone.

• As the sensor nodes float into the reception range of actor nodes, they start to form and update
their weight tables as shown in Fig. 4. Actors also keep weight values for the other actors with
the same method.

• Each actor computes a ku value for all of its neighbor actors as follows:

ku =
kn − wn

2
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Figure 5. An example of finding ku in a network with kn = 4.

where kn is the neighbor’s k value and wn is the weight value of the actor for that neighbor
actor. ku represents the minimum number of hops between two actors. The ku values are
updated continuously such that the minimum is kept in the records for each neighbor actor.

• The distances from the neighbor actors are calculated. Actors have their location information,
so the distance (d) between two actors, i = 1, 2, is calculated simply by using the Pythagoras
theorem:

(x1 − x2)
2 + (y1 − y2)

2 = d2

• The actor’s k value is updated with the maximum of the ku values.

An example of deciding on ku vaues in a network with kn = 4 is given in Fig. 5. Actor A
calculates the ku values for Actor B and Actor C depending on the weights of these actors at Actor
A gathered by the network organization. These are the minimum ku values kept in the records for
each neighbor actor.

There are several aspects of k-adaptation which are critical for the algorithm. First, an actor’s
affiliation area is limited by adapting k, which reduces the number of packets that sensor nodes
transmit as they update their weights since they have fewer actors to maintain. As the packet
transmission drops, the energy consumption also decreases in the network. The other important
aspect of k-adaptation is the hop-distance estimation since the values calculated with this method
are used when estimating the locations of the sensor nodes. Moreover, many multi-hop localization
algorithms in the literature become ineffective as the topology becomes irregular. Our algorithm’s
adaptation of k forces sensor nodes to be affiliated only with actors in close proximity which reduces
the negative impacts of the irregular topology.

3.4. Positioning the nodes

Each actor in the network estimates the 1-hop distance (ku) for each actor it keeps a weight value
for. The method described in the previous section is used by the actors for this purpose. The average
of the calculated ku values are used as the 1-hop distance value. Then the average 1-hop-distance,
estimated as d

2ku
, is used for localization purposes.

Since the sensor nodes dynamically keep and update their weights, the hop-distances of the sensor
nodes to the actor nodes are known in the network. The sensor nodes piggyback their weight tables
to the data packets to inform the actor nodes. These weight tables are used to calculate the location
estimation for nodes. The estimated distance of a sensor node to an actor A is calculated as follows:

dA = wA ∗ hA

where dA is the estimated distance to the actor A, wA is the weight of the sensor node for the actor
A and hA is the average 1-hop distance of actor A.
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The distance estimation is based on the number of hops needed to reach from the sensor nodes
to the actor ndoes. Therefore it’s similar to the distance vector (DV) based approach of Niculescu
and Nath’s model [8]. However, Niculescu and Nath’s model is designed for static networks and
additionally, in most of the DV-based solutions, sensor nodes need to assign a fixed memory to save
the locations of all the landmarks, hop-counts to these landmarks and average hop-distance values.
In our approach, a sensor node keeps only the weight values for its affiliated actor nodes. All the
other computation and memory requirements of the algorithm are handled by the actors and the sink,
which is a better-fit for WSAN structure in terms of the usage of memory, computational resources
and energy. Hereby, the information flooding, which is common and intense in DV-based solutions,
is also minimized.

When the sensing sensor node transmits its weight values for three actors, its distances to these
actors are estimated according to the “1-hop distance” value and the weights. Then, its position
is calculated based on the acquired distances and the localization information obtained by the
lateration.

The estimated distance of the sensor node is calculated for each of its affiliated actor and then
these values are plugged into the lateration operation for the estimation of the sensor nodes position.
When a sensor node is affiliated with multiple actor nodes, its position estimation can be represented
with a system of equations, written in matrix form as follows: 2(xn − x1) 2(yn − y1)

...
...

2(xn − xn−1) 2(yn − yn−1)

[
xs

ys

]
=

 (d21 − d2n)− (x2
1 − x2

n)− (y21 − y2n)
...

(d2n−1 − d2n)− (x2
n−1 − x2

n)− (y2n−1 − y2n)


where (xi),yi), i = 1, ...n, are the positions of the n actors and di, i = 1, ...n, are the estimated
distance values. The solution pair of this system, (xs,ys),which minimizes ∥Ax − B∥2, is the pair
that minimizes the mean square error, where 0.5A is the left hand side matrix, B is the right hand
side matrix and x is the vector for (xs,ys) pair. Since ∥.∥2 is minimized, the system is solved with
minimum average error for all positions of the actors that the sensor is affiliated with.

For any vector v, ∥v∥22 is equal to vTv, which can be used to find a solution for x. Therefore, if
the same expression is written for ∥Ax − B∥, an equation for x can be found:

∥Ax − B∥22 = xTATAx− 2xTATB +BTB

This expression is minimized when the mean square error is minimized. Therefore, the gradient
of the expression has to be set to zero considering it as a function of x:

2ATAx− 2ATB = 0 ⇔ ATAx = ATB

This is the normal equation for the linear least squares problem and it has a unique solution.
We use the Cholesky factorization to solve this equation and to get the estimations for x and y
coordinates of the sensor nodes. Accordingly, the resulting matrix is given by:

x = AT (AAT )−1B

The estimations for the coordinates of the sensor nodes are calculated by this method for each
time instance and recorded. Since our goal is not an online location-awareness for the sensor nodes,
the path the nodes followed is estimated after all of these points are calculated. Essentially, the
paths are estimated using the interpolation of these coordinates. Hence, the effect of the errors in
the individual estimates to the paths of the sensor node are minimized.
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Table I. Simulation parameters

Parameter Value

Number of sensor nodes 1–25
Number of actor nodes 25–50
k value 1–5
Total area 250x250 meters
Sensor node transmission range 40 meters
Sensor node floating speed 1.25–1.5 m/s

4. SIMULATION STUDY

In this section, we evaluate our approach by measuring how the estimated location errors vary with
different network and algorithm characteristics. The transmission range of a sensor node is set to 40
meters, a realistic range for a sensor node (Cerpa et al. [25]). The number of the nodes and the value
of k are used as the simulation parameters in the experimental setup. The communication graph
is built according to the system properties specified in Section 3. The actor nodes are stationary,
deployed in the area uniformly at random with the constraint that they are able to form a connected
graph for communication among themselves. Sensor nodes are mobile and they are flowing from left
to right in the watercourse. The communication links among the sensor nodes are open to failure.
Table I summarizes the simulation parameters used in our simulation study.

4.1. Experiment 1

4.1.1. 1-hop clustering . In order to investigate the affect of clustering on the performance of the
proposed algorithm, a scenario with only a single sensor node and 25 actor nodes is considered. The
main purpose of this experiment is to observe the performance difference between 1-hop clustering
and multi-hop clustering. In this scenario, a single sensor node floods from left to right with a speed
between 1.25 to 1.5 m/s and connects to the actor nodes whenever it is in the transmission range.
Hence the sensor node can be connected to multiple actors and the parameter k has no influence on
the location estimation in this experiment.

Figures 6-7 show the exact trajectory of the node on the x and y coordinates respectively. The x-
axis of the figures represents the time steps. The node is moving from 0 to 250m in x coordinate and
for y coordinate the node stays on the position around 110m. The network density is sufficiently high
enough that a position could be calculated for each time step. In other words, the node was affiliated
with four actors for most of the time. In Figures 6-7, the estimated trajectory has been produced
using linear regression over the data set of the estimated positions. The estimated positions are with
an error of 30 meters according to the exact trajectory, but most estimated positions show much less
error. The error is as expected since the transmission range is 40 meters and the estimation is based
on the estimated hop-distance. However, the estimated trajectory of the considered sensor nodes is
within a range of at most 10 meters, but mainly within 5 meters or less.

4.1.2. k-hop clustering . The settings in the 1-hop clustering experiment have been modified such
that 25 actors and 25 sensor nodes are participating in the simulation area and the parameter k is set
to three. In this case, the maximum length from a sensor node to an actor node can be three hops.
In similar illustrations as in Figures 6-7, the accuracy of the location estimation of one of these
25 nodes under the use of local k-hop clustering information is shown in Figures 8-9. The sensor
node is connected to the actor networks via intermediary nodes, where k=3, for most of the time
in this experiment. Therefore multi-hop information is used. The applied algorithm estimated the
hop-distances using far less accurate data. However the results show that the estimated positions are
very close to the exact trajectory. Compared to the previous experiment, the error is only slightly
higher. The main difference is that there are more time steps where there is not enough information
to estimate the position. It should be noted that this result also depends on the real trajectory of the
individual sensor node.
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Figure 6. Estimated x-coordinates and the real trajectory of a sensor node for the experiment 1 with 1 sensor
node and k=1.

4.2. Experiment 2

In this setting, the number of nodes is 50, 25 of which are the actors and 25 are the sensor nodes.
However, in order to get the accuracy for single hop settings, the parameter k is set to 1. The error
distribution is illustrated in Fig. 10. The error has a normal distribution and it ranges from -30 to
30 meters. Hence this error is for the x-coordinate estimation. Since the nodes are floating almost
horizontally, the accuracy on the y-coordinate is appropriate. We can also observe that the number
of estimated points is not as high as in the previous experiment.

4.3. Experiment 3

The multi-hop clustering approach for location estimation is a core part of the contribution of this
paper. In this experiment, in order to investigate the usage of multi-hop clustering, the number of
sensor nodes is increased while the number of actor nodes remains equal. Thus actors that are not in
the transmission range of a single mutual sensor node must make use of the multi-hop information
provided by the passing sensor nodes. The k parameter is set to three allowing the nodes to connect
to an actor through another sensor node. The resulting Fig. 11 shows that the error distribution
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Figure 7. Estimated y-coordinates and the real trajectory of a sensor node for the experiment 1 with 1 sensor
node and k=1.
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Figure 8. Estimated x-coordinates and the real trajectory of a sensor node for the experiment 1 with k=3.
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Figure 9. Estimated y-coordinates and the real trajectory of a sensor node for the experiment 1 with k=3.
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Figure 10. The error distribution of the estimation results for the experiment 2 with k=1.

is similar to the Fig. 10 where the sensor nodes were connected directly to the actor nodes. The
error rate is again normal distribution. However, there are two differences: (i) more positions could
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Figure 11. The error distribution of the estimation results for the experiment 3 with k=3
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Figure 12. The error distribution of the estimation results for the experiment 4 with k=4

be estimated which means that the local multi-hop approach applied in our algorithm is able to
gather more localization estimation than it does with a traditional approach, and (ii) the estimation
accuracy is decreasing. Compared to the experiment 2, where the distribution was in between -30
and 30 meters, the distribution is now in between -60 and 60 meters.

We observe that higher the value of k is, more positions can be estimated by our algorithm.
However, the accuracy decreases at the same time with the increasing k. Therefore the selection of
k is an important issue for the network, which depends on the number of nodes, the environmental
conditions and the application requirements.

4.4. Experiment 4

In this experiment, the settings remained the same as the experiment 3 except for the value of k.
The value of k is increased to five, so clusters with more hops compared to the experiment 3 are
allowed in the network. The error distribution of the experiment is given in Fig. 12. Similarly, Fig.
12 shows that as the value of k becomes higher, the accuracy decreases further while the number of
estimations increases due to further connection chains in the network.

4.5. Experiment 5

The settings chosen in the above set of experiments are to match the requirements of the Amazon
scenario. Common settings, parameters and mobility models have been used to guarantee the
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Table II. Fraction of successful position estimation with respect to network density.

Total nodes Number of actors Fraction of actors Fraction of successful estimations

50 10 1/5 1372/10000
50 20 2/5 2821/10000
50 30 3/5 2882/10000
100 10 1/10 2687/10000
100 20 2/10 6015/10000
100 30 3/10 6249/10000

reproducibility of the results. This configuration is a subject of refinement in future work. The
Amazon scenario also puts restrictions in terms of node speed, node direction, connection behavior
and location of actor nodes on the simulation model. In the next step, we strive to find out how far
the introduced approach can be applied to other monitoring scenarios such as animal monitoring.

The scenario considered in the next set of experiments is a monkey habitat. Monkeys build and
live in a social network. A group of monkeys is often called a “tribe” and a tribe has a strict
social organization and order. It has been interesting for scientists to find out how monkeys interact
and how their affiliations might change without interrupting the daily life of the tribe due to the
presence of cameras or observers. Moreover, the tribe stays at one location temporarily and moves
continuously in their habitat, which makes it even more difficult to monitor the social and moving
behaviors of the tribe.

Some of the parameters are different in the new settings compared to the amazon scenario.
We assume that each monkey is equipped with a wireless sensor such as the ones used in the
Amazon scenario. However, a certain fraction of older and stronger monkeys are equipped with
more powerful sensor nodes acting as actors. On some rare points in the tribe habitat, gateway
nodes are installed to collect data from the actor network when they are in the transmission range.
The communication between sensor nodes and actors is similar to the communication described in
the Amazon scenario. In this new setting, the actors are mobile and the directions of all of the nodes
are subject to change arbitrarily within a given area.

We assume that the monkey mobility pattern is described by the random waypoint model. More
realistic mobility patterns exist in the literature, but at this point we assume the affiliations are
interrupted permanently and we focus on the proposed localization approach.

An appropriate choice of the parameter k was important in the Amazon scenario. The results
show that higher the parameter k, more flowing nodes are affiliated to the clusters and these nodes
deliver more data. In the monkey scenario, the simulation settings have been changed in a way that
the parameter k always remains the same but the fraction of actors compared to the total number of
nodes changes. Table II summarizes the results for successful estimations for different experiments
in our simulation study, where the transmission range of a node is taken as 50 m and the distribution
area is 300 m2.

The results in the Amazon scenario indicate that the number of actors are critical for the success
of the estimation. However, Table II shows that a network configuration with even a small ratio of
actors is able to deliver an appropriate number of estimation results. We understand this effect due
to the increase of the network density implied by the increase of the number of nodes. Comparing
the results for the experiments “50/10” and “100/20” for which the fraction of actor nodes is the
same, we observe that the number of successful position estimation increases drastically while k
remains the same. Therefore the quality of the estimation increases by increasing network density
while keeping the number of actor nodes constant. The positive effect of increase in the fraction
of actor nodes saturates at one point and do not result in a further increase in estimations. The
influences of the network density, fraction of actor nodes and k can be observed in Table II. The
parameter k and the the network density are identified as the factors behind the increased number
of successful estimations. The network density can be increased by either increasing the number of
nodes (while keeping the number actor nodes the same) or by reducing the distribution area. Two
example trajectories and their estimations for a node are shown in Figures 13-14 and Figures 19-20.
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Figure 13. Estimated x-coordinate and the real trajectory of a sensor node for the experiment with 10 actors,
40 sensor nodes and k=4.
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Figure 14. Estimated y-coordinate and the real trajectory of a sensor node for the experiment with 10 actors,
40 sensor nodes and k=4.
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Figure 15. Estimated x-coordinate and the real trajectory of a sensor node for the experiment with 30 actors,
70 sensor nodes and k=4.

It can be observed that the estimation position for sparse networks (or networks with low k
as discussed above) is often not possible, so the example with 50 sensor nodes shows only few
successful estimations, although 40% of all nodes are actors. By increasing the number of nodes,
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Figure 16. Estimated y-coordinate and the real trajectory of a sensor node for the experiment with 30 actors,
70 sensor nodes and k=4.
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Figure 17. 30 sensor nodes with fluid mobility model and 20 static actors.

i.e. by increasing the network density, the number of successful estimations increase in spite of the
fact that the fraction of actor nodes has been reduced.

4.6. Experiment 6

In this experiment, the same setting as in experiment 5 is used and the effect of the mobility of actors
on the estimation accuracy is investigated.

There are two cases with 30 sensor nodes, 20 actors, k = 4 and deployed into the same simulation
area of 300m2. In the first case, the fluid mobility mode is used with static actors and in the second
case the random waypoint model is applied for both sensor nodes and actors. It can be observed
in Figures 17-18 that most of the estimations are in a range of 50 for both cases where the mobile
setting gives a little less efficient results. The accuracy of the estimation is more precise in the
static setting while the estimation error can be too large, making it unusable in the mobile setting.
The more drastic changes observed in the accuracy on neighboring positions is the result of the
influence of mobile actors on the estimation process. The actor mobility causes sudden changes in
the information available to estimate a nodes position, which affects the accuracy.
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Figure 18. 30 sensor nodes and 20 actors with random waypoint mobility model.
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Figure 19. Error distribution in x-coordinates for 100 mobile nodes with 30 actors.

4.7. Experiment 7

Although the accuracy changes drastically due to the mobile actors, the error behavior of the
estimation remains as a Gaussian distribution and similar to the error distribution characteristics
of the static experiment discussed above. Figures 19-20 show the error distributions in position
estimations for 100 mobile nodes with 30 actors.

Although the mobile actors have negative influence on the estimation accuracy, the drastic
changes in the estimation accuracy also provide changes for improvement. When a node is affiliated
with only three actors at time t, the estimation cannot be very accurate. The same nodes position
might have been estimated more accurately (i.e. more than 3 actors could contribute information) at
time t− 1. Due to the drastic changes in the position estimation, it is feasible to detect less accurate
estimation and correct them by using interpolation considering the neighboring points. This way,
the mobile actors can contribute towards making better estimations.

5. CONCLUSION

In this paper, a novel and scalable algorithm for multi-hop localization of mobile sensor nodes
is proposed. The goal of the proposed algorithm is to improve the on-site monitoring of a river
in dense Amazon forest structure with a scalable approach. The particular scenario has its own
challenges, which require robustness and high adaptability to failures and/or additional sensors.
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Figure 20. Error distribution in y-coordinates for 100 mobile nodes with 30 actors.

In order to overcome these challenges, the proposed approach does not create a self awareness of
locations at sensor nodes since all communication in the system is locality preserving. The hop-
counts, sensor node IDs and sequence numbers are used as the information related to localization.
The algorithm is rather simple considering the limited lifetime of the WSANs, but it is possible to
integrate an additional feature such as RSS to increase the accuracy of the results. Through extensive
simulations, we have shown that the localization estimation can be realized using local multi-hop
information. In overall, as the multi-hop chains are allowed to become longer, more positions can
be estimated with the cost of the accuracy. The selection of the maximum hop number is therefore
an issue depending on the requirements of network. The approach is also employed to an animal
monitoring application to see the generalizability of the algorithm. As the future work, we intend
to improve the monkey monitoring appication and use the localization information gained by the
algorithm for data aggregation and dissemination within the network.
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