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Path Finding for Maximum Value of Information in
Multi-modal Underwater Wireless Sensor Networks
Petrika Gjanci, Chiara Petrioli, Stefano Basagni, Cynthia A. Phillips, Ladislau Bölöni and Damla Turgut

Abstract—We consider underwater multi-modal wireless sensor networks (UWSNs) suitable for applications on submarine surveillance
and monitoring, where nodes offload data to a mobile autonomous underwater vehicle (AUV) via optical technology, and coordinate
using acoustic communication. Sensed data are associated with a value, decaying in time. In this scenario, we address the problem of
finding the path of the AUV so that the Value of Information (VoI) of the data delivered to a sink on the surface is maximized. We
define a Greedy and Adaptive AUV Path-finding (GAAP) heuristic that drives the AUV to collect data from nodes depending on the
VoI of their data. For benchmarking the performance of AUV path-finding heuristics, we define an integer linear programming (ILP)
formulation that accurately models the considered scenario, deriving a path that drives the AUV to collect and deliver data with the
maximum VoI. In our experiments GAAP consistently delivers more than 80% of the theoretical maximum VoI determined by the ILP
model. We also compare the performance of GAAP with that of other strategies for driving the AUV among sensing nodes, namely,
random paths, TSP-based paths and a “lawn mower”-like strategy. Our results show that GAAP always outperforms every other
heuristic in terms of delivered VoI, also obtaining higher energy efficiency.

Index Terms—Underwater networking, Value of Information, Autonomous Underwater Vehicle, multi-modal communications
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1 Introduction

The ever-alive quest about its own origins and strengths
has brought humanity to explore Earth’s most remote

lands and even the farthest planets. Yet, we know very little
about our oceans and what lies beneath them. This is a partic-
ularly relevant knowledge gap, as underwater exploration and
monitoring has emerged as a vital part of the economy and
of the safety infrastructure of many countries. Aquaculture,
coastal surveillance and protection, monitoring of oil industry
deployments, telecommunications, pollution and climate con-
trol, search missions and preservation of cultural heritage are
just a few of the many applications that will be enabled by the
exploration and sustainable exploitation of the underwater
world [1]. Currently, underwater systems rely on tethered ve-
hicles, cabled monitoring stations, or leaving instrumentation
on site and then retrieving it periodically: All costly proposi-
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tions. Only recently, advances in wireless acoustic and optical
underwater communications have made underwater monitor-
ing applications feasible and cost effective. Organized in an
Underwater Wireless Sensor Network (UWSN), nodes can be
deployed to cover large areas and can route data efficiently
directly or through mobile autonomous underwater vehicles
(AUVs) to a data collection center. The most difficult obsta-
cles to the realization of these networks concern the fact that
the two viable alternatives for underwater communications,
namely, acoustic and optical, impose contrasting challenges.
Acoustic communications provide long-distance connectivity
(e.g., kilometers) but are bandwidth-limited (currently, few
hundreds of bit per second). This is often insufficient for
emerging applications that produce large amounts of data,
including high definition pictures and video transmissions.
Optical communication obtains high bandwidth connectivity
(up to 10Mbps) with energy-per-bit orders of magnitude
lower than that of acoustic communications [2]. However, it
allows nodes to robustly communicate only when they are
few meters from each other (usually less than 10m) [3], [4].
Researchers are recently agreeing that enhancing the perfor-
mance of UWSNs and enabling critical applications requires
multi-modal communication, i.e., a judicious combination of
acoustic and optical information exchange [5], [6], [7], [8]. If an
AUV is available for network operations, data exchange can
be performed effectively through wireless optical technology,
as the AUV can hover close enough to the node to make
optical transfer possible at high data rate [8], [9], [10]. In such
a scenario, the AUV could be made aware of a node sensing
relevant events through acoustic communication, so that it
can travel to that node to collect sensed data and then surface
to transfer them to the network data collection center. This
operation should be done swiftly, so that it does not affect the
value of the data as perceived by the user, in that such value
typically decays in time [11]. Typical examples include real-
time video from monitoring valuable assets, such as cultural
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heritage relics, CO2-filled boreholes, oil wells, etc. The value of
a chunk of data can be defined intuitively through the benefits
obtained by taking an action based on it. For instance, if an oil
spill is reported, the owner of the oil rig can timely intervene
and save the costs of further damage and environmental
cleanup. Thus, the value of this notification is proportional to
the money saved through the timely intervention. Naturally,
the earlier one can intervene, the better. This is why, in most
situations, the VoI is largest at the very moment an event is
sensed and then it decreases in time. Different events will have
different initial VoI, and their value may decrease differently
as a function of their urgency. For example, information on oil
spills is urgent and its value decreases over time spans of few
tens of minutes. On the other hand, the value of information
about signs of corrosion of underwater pipes decreases at a
slower pace.

This paper proposes a new approach to the problem of
delivering data with high Value of Information (VoI) to the
user by designing a distributed AUV routing heuristics to
enable UWSN applications. Fig. 1 illustrates the type of
UWSNs we consider in this paper. Sensor nodes deployed
underwater monitor assets or conditions. They sense and
record data, waiting for an AUV to arrive to collect them
optically. Nodes are also equipped with acoustic modems to
exchange control information with the AUV. For instance, if a
node has important data to deliver, it can send a short control
packet over the acoustic channel to the AUV. Periodically, the
AUV resurfaces and wirelessly (RF) transmits the collected
data to a collection point (a sink), located on the surface.

Open air RF 

connection

Long distance 

acoustic control link

Short distance

optical 

data link

Mobile AUV 

surfacing

Sink

Fig. 1: A UWSN where nodes are visited by an AUV.

Data produced by a node sensing an event vary in size,
value and urgency, according to application requirements. The
VoI of the data from an event is highest at the moment the
event is detected, and may decay with time. Therefore, data
reporting an event should be delivered to the sink as soon as
possible: The later the data reaches the sink, the lower their
value, if any. Our goal is to investigate the theoretical and
practical challenges of finding the path of the AUV that max-
imizes the total VoI delivered to the sink. The contributions
of this paper are the following:

1) We define a new Integer Linear Programming (ILP)
model for finding AUV paths that maximize the VoI
of data delivered to the sink. Our model provides
provable bounds on the best possible network perfor-
mance (e.g., the best achievable VoI) for benchmark-
ing distributed protocols. The model is independent
of sensor deployment strategies, and has parameters

for controlling data generation rate, data transmis-
sion rates, and AUV speeds. Our solution allows us
to compute an upper bound on the maximum VoI
retrievable from networks whose size is comparable to
that of actual (4 to 9 nodes) and desirable (12 to 35
nodes) UWSNs. To the best of our knowledge this is
the first model for finding AUV path that takes into
account the VoI.

2) We define a realistically deployable heuristic for AUV
path finding that adapts to events occurring at un-
predictable locations and times. The AUV chooses
the next node to be visited based on the VoI it
expects to collect at the next location. The infor-
mation needed to make this decision is propagated
to the AUV using short event packets transmitted
acoustically. The AUV plans to visit a node that has
sent an event packet if and only if visiting that node
increases the VoI of the data it will deliver to the
sink. Because it makes decisions based on what is best
at the moment, and adapts the path finding process
to new information, we call our heuristic Greedy and
Adaptive AUV Path finding, or GAAP for short.

3) GAAP effectiveness in delivering data with high VoI
is demonstrated by evaluating its performance in
UWSN scenarios where we vary the number of nodes,
events occurrence (i.e., traffic) and event value. We
start by comparing the performance of GAAP with
that of the ILP-based upper bound, termed OPT.
Our experiments show that GAAP achieves VoI that
is remarkably close to that achieved by OPT. In fact,
in scenarios with variable number of nodes (from 4
to 35) and events, we observe that GAAP always de-
livers more than 80% of the theoretical maximum VoI
obtained by OPT. We also demonstrate the benefit
of VoI awareness through a simulation-based com-
parative performance evaluation of GAAP against
three non-VoI-aware heuristics where the AUV visits
nodes following random paths, TSP-based paths or
travels to the nodes according to a “lawn mower”-like
strategy. Our results show clearly that, by explicitly
considering VoI for finding paths, GAAP drives the
AUV along paths that are very similar to those deter-
mined by the all-knowing OPT. Moreover, we observe
that GAAP always outperforms every other heuristic.
Specifically, we found that irrespective of network size
and event occurrences GAAP delivers from 57% to
77% more VoI than that delivered by the other three
solutions. It is also much more energy effective than
the non-VoI-aware solutions in that it requires up to
70% less energy to deliver the same amount of VoI.

A preliminary version of this work was presented in a
prior conference paper [12]. The present paper extends the
work of that prior research greatly. Differences include a
thorough revision of the ILP formulation that now considers
fine grain timing and achieve remarkably higher scalability:
An optimal solution can now be found for networks of up
to 35 nodes instead of just 12. GAAP has been extensively
changed to consider different types of events (with varying
VoI decays) and also changes made on event notification
and data chunk generation time. The performance evalua-
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tion section has been re-organized, and includes comparisons
among GAAP and multiple heuristics, now made event-aware
for greater fairness and further insights. Results on energy
consumption/efficiency presented here were not present in our
previous paper.

The rest of the paper is organized as follows. Section 2
defines the problem we consider in detail. In Section 3 we
present an ILP formulation for AUV path finding which
scales to networks with tens of nodes. Our heuristic for AUV
routing (GAAP) is presented in Section 4. Section 5 presents
the performance evaluation and comparisons between GAAP,
OPT and three different non-VoI-aware solutions. Section 6
reviews literature on the topics of this paper. Finally, Section 7
concludes the paper.

2 Problem Definition

The scenarios we consider comprise a set S of (sensor) nodes
S1, . . . , S|S| statically deployed underwater in 3D. Nodes per-
form surveillance operations for a given time T . The location
of each node is known (e.g., from manual deployment or by
using localization techniques). The nodes perform continuous
sensing (e.g., taking videos), with node Si storing the sensed
data chunk pit at time t, 0 ≤ t < T . The data piτ observed
by a node Si at a given time τ has a value of information
Vpiτ (t), at time t ≥ τ . The function Vpiτ (t) is non-increasing
in t. The VoI of a data chunk is highest at the moment when
it is sensed, when its value is Vpiτ (τ); this base value varies
depending on the importance of the information captured in
the data chunk.

Throughout the time of network operations an Au-
tonomous Underwater Vehicle (AUV) is deployed to visit
the nodes to collect the sensed information via high-data-
rate optical communication. The AUV periodically surfaces to
offload what it has collected to a data collection point (a sink).
Communications between the sink and the AUV happen at
high data rate, wirelessly. To ensure wireless connectivity
with the sink, the AUV must choose among a set of possible
surfacing locationsW . The path the AUV follows is a sequence
of runs in each of which the AUV visits a number of nodes
to collect some of their data chunks and surfaces to report
them to the sink. Specifically, during the kth run, the AUV
makes a set of visits {. . . (Si, tki ) . . .}, collecting the last data
chunk from node Si at time tki . Finding the path that yields
the maximum VoI is done by first defining the VoI of the data
chunks collected from a node Si when the AUV travels a given
path P , and then choosing the path P that maximizes the VoI
of data chunks collected from all nodes. It is done as follows.

Let R = {1, . . . , r} be the set of runs performed by the
AUV by time T . Node Si is visited by the AUV during a set
of runs Ri ⊆ R. (The AUV might not visit every node in
every run, so in general |Ri| ≤ r.) Consider a run k ∈ Ri.
Let pred(k,Ri) be the last run the AUV visited node Si
before run k. Thus, if the runs in Ri are sorted by time,
pred(k,Ri) is the largest run in Ri less than k. (By definition
t
pred(k,Ri)
i = 0, with k being the smallest element of Ri.)
The value of information of the data sensed by node Si and
delivered to the sink by the AUV traveling path P during time
T is given by summing the values of information collected

by Si between two consecutive visits of the AUV when each
packet is delivered to the sink. More precisely:

V(Si, P ) =
∑
k∈Ri

tki−1∑
h=tpred(k,Ri)

i

Vpi,h(ti,h), (1)

where ti,h is the time the AUV delivers the packet collected
from node Si at time h to the sink. The AUV must be on
the surface to deliver packets to the sink. After each run, it
delivers the packets it has collected during the run.

The AUV path finding problem is then stated as follow:
Given |S| nodes and their locations, given a set of surfacing
locations, and given the value of information of the sensed
data, determine the path Popt (sequence of nodes and surfacing
locations) of the AUV so that the value of information is
maximized:

Popt = argmax
P

 |S|∑
i=1

V(Si, P )

 . (2)

We assume the AUV begins and ends on the surface, since
any collected but undelivered packets would be worth nothing.

3 A Mathematical Model for AUV Path Finding
We model the problem defined in Section 2 by the following
Integer Linear Programming formulation.

Parameters
• T is the length of network operations, divided into time

units numbered from 0 to T−1. When a node optically
transmits a data chunk to the AUV at time t < T − 1
the AUV has the data chunk at time t + 1. Similarly
for wireless transmissions from the AUV to the sink.
The last time the sink can receive data is T (for data
transmitted by the AUV at time T − 1).

• S is the set of nodes (and their locations). We use
the letters i and j to indicate generic nodes (their
location).

• W is the set of surfacing locations.
• N = S∪W is the set of all locations to which the AUV

can travel and sojourn to either receive or transmit
data chunks, respectively.

• ω is a fictitious location, indicating in fact that the
AUV is in transit, i.e., it is not at any actual location
in N .

• δi,j is the time it takes for the AUV to travel between
any two locations i and j in N , in time units. The time
distance δi,j is easily derived from the known position
of nodes and surfacing locations and from the known
speed of the AUV. When the AUV leaves location i at
time t, it arrives at location j at time t + δi,j and can
take action at node j during time t+ δi,j .

• τi is the shortest travel time for the AUV to go from
node i ∈ S to some location w ∈W on the surface and
vice versa (assumed symmetrical), in time units.

• di,p is the pth data chunk (packet) produced at node
i ∈ S.

• bi,p is the release (beginning) time of data chunk di,p,
when its recording finishes and it is made available.
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• ei,p is the deadline (end) for data chunk di,p after which
the value of information carried by that data chunk
becomes 0. Deadline ei,p will generally depend on node
i and capture time bi,p. It can also depend upon what
is happening (such as a first detection of important
motion) and/or other properties of the data/image.
Times bi,p and ei,p are the beginning and ending times
respectively of the interval where the pth data chunk
from node i is relevant for scheduling the AUV.

• TimeToTransfer() is a function that given a data
chunk returns the time needed to transfer it to the
AUV. This time depends on the optical communica-
tion rate and on the size of the data chunk.1

• TimeToBroadcast() is a function that given a data
chunk returns the time needed to broadcast it to the
sink. This time depends on the wireless communication
rate and on the size of the data chunk.

• Vti,p is the value of information of the data chunk di,p
delivered at time t.

• G = {di,p | bi,p ∈ [1 . . . T − τi−2]} is the set of all data
chunks that can be delivered to the sink by time T .

• D(di,p) is the set of all legal delivery times for data
chunk di,p ∈ G. After collection, a data chunk should
be delivered before it expires and by time T . In other
words, D(di,p) = {t | t ∈ [bi,p + τi + 2, T ] ∧ t ≤ ei,p}.

• C(di,p) is the set of legal collection times for di,p ∈ G.
A data chunk can be collected by the AUV if there is
enough time to deliver it to the sink before its expi-
ration deadline, and by time T . Formally, C(di,p) =
{t | t ∈ [bi,p + 1, T − τi − 1] ∧ t ≤ ei,p − τi − 1}.

• F and K are sets that combine all data chunks and
their legal delivery and collection times, respectively:
F = {(di,p, t) | di,p ∈ G ∧ t ∈ D(di,p)} and K =
{(di,p, t) | di,p ∈ G ∧ t ∈ C(di,p)}. We use F (t) to
denote all data chunks that can be delivered to the
sink at time t, and K(i, t) to denote all data chunks
that can be collected from node i at time t.

• L(n) is the set of times where it would make sense for
the AUV to be at location n ∈ N ∪ {ω}. When n ∈ S,
we have L(n) = {t | t ∈ [τn, T − τn − 1]}; for n ∈ W ,
we have L(n) = {t | t ∈ [0, T ]}, and L(ω) = {t | t ∈
[1, T − 2]}.

• Γ = {(i, j, t) | ∀i, j ∈ N ∧ ¬(i ∈ W ∧ j ∈ W ), t ∈
L(i) ∧ t + δi,j ∈ L(j)} is the set of all legal triples
(i, j, t) modeling the movements in time of the AUV.
The triple (i, j, t) indicates that at time t the AUV
departs node i for node j (if it is allowed to be at node
i at time t and at node j at time t+ δi,j). As the AUV
transmits all collected data after surfacing, it does not
move to other surface locations directly without first
visiting some underwater nodes.

Variables
• xti,p: Binary variable taking the value 1 if data chunk

di,p is successfully delivered to the sink at time t ≤ ei,p;
0 otherwise.

1. We assume that a data chunk can be transferred through optical
and wireless communication well within one unit of time. In this case,
TimeToTransfer() and TimeToBroadcast() will return the fraction of
time unit needed to transfer the data chunk they are applied to.

• cti,p: Binary variable taking the value 1 if a data chunk
di,p is collected at time t; 0 otherwise.

• `i,j,t: Binary variable taking the value 1 if the AUV
departs from (leaves) location i at time t directed
towards j; 0 otherwise.

• ai,j,t: Binary variable taking the value 1 if the AUV
arrives at node j at time t coming from node i; 0
otherwise.

• zn,t: Binary variable taking the value 1 if the AUV is
at location n at time t, n ∈ N ∪ {ω}; 0 otherwise.

• yt: Binary variable taking the value 1 if the AUV is on
the surface (at one of the locations in W ) at time t; 0
otherwise. Helper variables yt make the model descrip-
tion more succinct. They are completely determined
by the z variables: yt =

∑
w∈W zw,t.

ILP formulation

The objective function maximizes the value of information
collected from all nodes and delivered by time T . Variable
xti,p only contributes to the objective function when it is equal
to 1, that is when data chunk di,p is delivered at time t. It
contributes the value associated with that delivery.

maximize
∑

(di,p,t)∈F

Vti,p · xti,p

subject to the following constraints.

∑
n∈N∪{ω}

zn,t = 1 ∀t ∈ [1, T − 1] (3)

∑
w∈W

zw,0 = 1 (4)∑
w∈W

zw,T = 1 (5)

`i,j,t = ai,j,t+δi,j ∀(i, j, t) ∈ Γ (6)∑
j∈N\{i}∧(j,i,t−δi,j)∈Γ

aj,i,t +
∑

j∈N\{i}∧(i,j,t)∈Γ

`i,j,t ≤ zi,t

∀i ∈ N, t ∈ L(i) (7)

zi,t = zi,t−1 +
∑

j∈N\{i}∧(j,i,t−δi,j)∈Γ

aj,i,t −∑
j∈N\{i}∧(j,i,t−1)∈Γ

`i,j,t−1

∀i ∈ N, ∀t | t− 1 ∈ L(i) ∧ t ∈ L(i) (8)

zi,τi =
∑

j∈W ∧ δi,j=τi

aj,i,τi ∀i ∈ S (9)

xti,p ≤ yt ∀(di,p, t) ∈ F (10)
cti,p ≤ zi,t ∀(di,p, t) ∈ K (11)

xti,p ≤
t−τi−1∑
τ=r+1

cτi,p ∀(di,p, t) ∈ F (12)∑
t∈D(di,p)

xti,p ≤ 1 ∀di,p ∈ G (13)
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∑
di,p∈F (t)

TimeToBroadcast(di,p) · xti,p ≤ yt−1

∀t s.t. ∃(di,p, t) ∈ F (14)∑
di,p∈K(i,t)

TimeToTransfer(di,p) · cti,p ≤ zi,t−1

∀i ∈ S, ∀t s.t. ∃(di,p, t) ∈ K (15)
xti,p ∈ {0, 1} ∀(di,p, t) ∈ F (16)
cti,p ∈ {0, 1} ∀(di,p, t) ∈ K (17)
zn,t ∈ {0, 1} ∀n ∈ N ∪ {ω}, t ∈ L(n) (18)
`i,j,t ∈ {0, 1} ∀(i, j, t) ∈ Γ (19)
ai,j,t ∈ {0, 1} ∀∃(i, j, t− δi,j) ∈ Γ (20)

yt =
∑
w∈W

zw,t ∀t ∈ [0, T − 1] (21)

The first three sets of constraints restrict the zn,t variables
that indicate AUV locations. Constraints (3) enforce the
physical requirement that in any real path, an AUV is in
exactly one place (or in transit) at any given time. That
is, Constraints (3) forbids zn1,t = zn2,t = 1 for n1 6= n2.
Constraint (4) is the special case of Constraints (3) for time
0. The AUV must start on the surface, that is, be at a node in
W at time 0. Since all travel times τi ≥ 1, we have 0 6∈ L(n)
for any n 6∈W . Thus the range of locations in the sum can be
restricted to elements of W . Constraint (5) is the special case
of Constraints (3) at the end, time T , where the AUV must
also be at the surface.

The following four constraints ensure that travel times are
consistent with the physical reality of a single AUV visiting
locations. Constraints (6) ensure that if the AUV leaves node
i at time t for destination node j it takes a most direct route
and arrives at node j exactly at time t + δi,j . Constraints (7)
have many implications. Let A be the first sum on the left side
of Constraints (7) taken over all possible arrivals at node i at
time t from some node j and let B be the second sum on the
left side of Constraints (7), taken over all possible departures
from node i at time t to some node j. Because all the ai,j,t
and `i,j,t variables fact binary, we have A ≥ 0 and B ≥ 0.
Because zi,t ≤ 1, these constraints ensure that A + B ≤ 1.
Therefore, for any node i and time t, the IP can select at most
one destination j for a departure from i or at most one origin j
for an arrival at i, and not both. Thus, Constraints (7) ensure
that once the AUV arrives at j it cannot leave immediately,
sinceA = 1 forces zi,t = 1, and there cannot be both an arrival
and a departure at the same time. Also, to leave a node, the
AUV must be at that node. That is, if zi,t = 0, indicating the
AUV is not at node i at time t, then we have A + B = 0 so
there can be neither a departure from nor an arrival at node i
during time t.

Constraints (8) ensure that the zi,t variables correctly
track the AUV through time. The first sum on the right hand
side is the same A described above for Constraints( 7) and the
second (subtracted) sum is the same as B. By Constraints( 7),
each of A and B is binary and they cannot both be 1. Thus
−1 ≤ A−B ≤ 1. We also have that zi,t−1 and A cannot both
be 1. This is because if A = 1, then B = 0, so if zi,t−1 = 1 as
well, Constraint (8) would give zi,t = 2, which is impossible
for binary zi,t. There are only four possible ways to set the

(zi,t, zi,t−1, A,B) tuple. We can now interpret Constraints (8).
If there are no arrivals or departures (A = B = 0), then
zi,t = zi,t−1, so the AUV stays at node i if it was there at time
t − 1 and otherwise, it is there at neither time. If there is an
arrival (A = 1), then we have B = zi,t−1 = 0 from the above
arguments, and the constraint sets zi,t = 1. So an arrival at
node i at time t places the AUV at node i at time t. If there
is a departure (B = 1), then we have A = 0 from the above
arguments. We must then have zi,t−1 = 1 to keep the right
side of the constraint non-negative, which sets zi,t = 0. That
is, if the AUV is at node i at time t− 1 and it leaves node i at
time t− 1, then it is not at node i at time t.

Constraints (9) are a special case of Constraints (8) for
the first time τi when the AUV can arrive at a sensor node i.
Because the variables zit are only defined for t ∈ L(i), the set
of times the AUV can be at node i, and τi is the first such time,
then variable zi,t−1 is not defined for time τi. So there are no
Constraints (8) for sensor nodes i at time τi. Constraints (9)
say that the AUV is at node i at time τi if and only if the AUV
left the surface from a closest surface node j at time 0 headed
to node i. Any later arrivals are covered by Constraints (8).

Constraints (10) ensure that the AUV is on the surface
while it delivers any data chunk. If a data chunk is delivered
to the sink at time t, then the AUV sends the data to the sink
during time t − 1. Constraints (14) ensure the AUV is at the
surface at time t−1 (see below). However, we must also ensure
the AUV stays all the way through to time t. Constraints (8)
might otherwise allow the AUV to leave at time t− 1.

Constraints (11) ensure that the AUV is at node i during
the time when it collects any data chunk from node i. Data
collected during time t − 1 is considered fully collected at
time t. Constraints (15) ensure the AUV is at node i at the
start of slot t − 1 if the AUV collects a data chunk during
time t− 1. Constraints (11) ensure the AUV stays all the way
through to time t.

Constraints (12) ensure that before data chunk di,p is
delivered to the sink it has been collected from node i at a
legal time: after it is released and with enough time for the
AUV to bring it to the surface.

Constraints (13) ensure that a data chunk is given credit
for delivery at most once. Otherwise, the IP might “cheat”
and claim delivery of the same chunk at two or more times.

Constraints (14) ensure that the data chunks broadcast to
the sink during time t− 1 (arriving at time t) require no more
than one time unit to send. That is, this enforces constraints
on the broadcast capacity of the AUV-to-sink connection.
Constraints (15) similarly enforce capacity constraints on the
AUV-to-sensor communication: the total time to collect all
the data chunks scheduled for collection at time t − 1 is no
more than one time unit. These constraints also ensure that
the AUV is at the surface (for broadcast to the sink) or at
node i (for collecting from node i). If the right-hand-side AUV
location variable is 0 in either type of constraint, then there
can be no broadcast or collection variables turned on in the
left side Constraints (14) and (15), respectively.

The remaining constraints concern the domain and defini-
tion of the variables:

4 Greedy Heuristic
Solving the ILP described above gives us the complete, opti-
mal path of the AUV, but takes as input the VoI of the data



6

chunks, effectively requiring us to have advance knowledge
of the events and their values. In this section, we describe
a path finding strategy where the current plan is adapted
to the occurrence of new events as the AUV travels through
locations. Being adaptive and not requiring a priori knowledge
of events, this strategy can be used in actual UWSNs. As
before, the AUV moves from a given starting point on the
surface, visits nodes to collect their data, emerges at known
surfacing locations to offload them, and by the end of network
operations (i.e., at time T ), it returns to one of the surfacing
locations.

When a new event occurs, the node sensing it generates
a small event packet describing the value, type of decay and
urgency of the recording. This packet is, of course, much too
short to contain the actual recording. The event packet is
transmitted to the AUV acoustically either through single
hop communication or through a simple flooding mechanism
(e.g., EFlood [13], [14]). The node then starts recording the
event, and every ϑ time units stores a data chunk. Throughout
the duration of the event, the sensing node keeps sending
event packets to the AUV, thus keeping it informed on the
monitoring of the event and on the production of data chunks.

The AUV follows a greedy strategy for visiting the nodes:
At every decision point the next node to be visited will be
the one that offers the greatest contribution to the VoI that
will be delivered. The AUV can also possibly greedily change
its path as it goes to a node if visiting another node would
result in a higher delivered VoI. Because the approach to
path finding follows a greedy strategy and adapts to the
dynamic occurrence of events, we name our heuristic GAAP,
for Greedy and Adaptive AUV Path finding.

In the following we describe the operations of GAAP
in detail, starting from the AUV computing the maximum
VoI attainable from visiting a node and concluding with the
overall protocol operations. In what follows we assume that
all time values are calculated in the reference timeframe of the
AUV and that a node clock synchronizes to that of the AUV
at every visit.2

The core component of GAAP is the calculation of the VoI
that can be obtained by visiting a sensor node Si.

The algorithm takes as input the information carried by
the event packet that triggers it. This includes the node ID
Si, the time ϑ needed to produce a data chunk, information
on the VoI of the data chunks (e.g., initial value, type of decay,
deadline), and the end time T of network operations. The
AUV also considers the predicted duration Ti of the event
(chosen based on past history) and the time tc when the
AUV starts the computation of the VoI. The output of the
algorithm is the following triple: The VoI VTiSi that the AUV
can deliver to the sink for the event sensed at node Si; the
final time tfi at which all data chunks from Si are delivered
to the sink, and the collection and delivery strategy Si that
obtains VTiSi .

Based on the input the AUV builds a list Ld of records of
all the data chunks that will be produced by node Si for the
event it is sensing (line 1). The length |Ld| of the list depends
on the predicted duration Ti and on the time ϑ needed to
generate the data chunk: |Ld| = dTi/ϑe. The value of the VoI

2. Compared to the travel time of the AUV between nodes clock
drifts are negligible.

Algorithm 1: VoIFromNode(Si, ϑ,VoI info, Ti, tc, T )
Output:
VTiSi : VoI from node Si
tfi : Delivery time of data chunks from node Si
Si: Strategy of collection and delivery

1 Ld = VoI-based queue of data chunks info;
2 VTiSi = 0;
3 tfi = 0;
4 for ϕ← 1 to |Ld| do
5 V oIϕ =

∑
VoI of data chunks delivered ϕ at a time;

6 tϕ = time it takes to collect and deliver all data
chunks;

7 if V oIϕ ≥ VTiSi then
8 tfi = tc + tϕ;
9 if tfi > T then

10 break;
11 VTiSi = V oIϕ;
12 Si = Deliver ϕ data chunks at a time;

13 return 〈VTiSi , tfi ,S
i〉;

of each chunk described in Ld depends on the time tc when the
AUV starts the computation and on the time of arrival of the
AUV at node Si (easily computed, as the distance between
the current position of the AUV and the node and the AUV
speed are known).

In order to compute the highest deliverable VoI of data
chunks from the event sensed by node Si, the AUV com-
pares the VoI of multiple collection and delivery strategies,
which consist in collecting the data chunks from the node,
surfacing to the closest surface location, offloading to the sink,
and traveling back to the node. To avoid the combinatorial
explosion of computing the VoI from all possible subsets of
data chunks, algorithm VoIFromNode heuristically tries out
simple strategies, consisting of computing the VoI of collecting
and delivering one data chunk at a time, two data chunks
at a time, etc., till |Ld| data chunks at a time (main for;
lines 4 to 12). The strategy Si that obtains the highest VoI
is kept and eventually returned, along with highest VoI VTiSi
and the time tfi when the last data chunk of the event
sensed by node Si is delivered (line 13). We notice that if
the delivery time tfi is greater than the time T marking the
end of network operations, the algorithm exits the main for,
outputting the VoI of the data chunks that can be delivered
before the network stops. The computational complexity of
algorithm VoIFromNode is O(|Ld|), i.e., linear in the number
of data chunks produced for the sensed event.

GAAP finds paths depending on a VoI-based value that
the AUV assigns to each node that has sent an event packet:
TheVoI-Score. Specifically, the VoI-Score of node Si is defined
as the ratio of the expected VoI VTiSi obtained by delivering
data chunks of node Si (algorithm VoIFromNode) and the
time tfi − tnow needed to perform that delivery, where tnow is
the time at which the AUV computes the score:

VoI-Score of node Si =
VTiSi

tfi − tnow
. (22)

If the AUV has received event packets from both nodes Si
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and Sj , it executes algorithm CombinedVoI-Score below to
determine which node to visit first.

Algorithm 2: CombinedVoI-Score(Si, Ti, Sj , Tj)
Output:

Node to be visited first
VoI-Score of visiting Si first or Sj first

1 ϑ = recording time of a data chunk;
2 tnow = current time;
3 〈VTiSi , tfi ,S

i〉 = VoIFromNode(Si, ϑ,VoI info, Ti, tnow);
4 〈VTjSj , tfj ,S

j〉 = VoIFromNode(Sj , ϑ,VoI info, Tj , tfi);

5 VoI-ScoreSi→Sj =
VTi
Si

+V
Tj
Sj

tfj−tnow
;

6 tnow = current time;
7 〈VTjSj , tfj ,S

j〉 = VoIFromNode(Sj , ϑ,VoI info, Tj , tnow);
8 〈VTiSi , tfi ,S

i〉 = VoIFromNode(Si, ϑ,VoI info, Ti, tfj );

9 VoI-ScoreSj→Si =
VTi
Si

+V
Tj
Sj

tfi−tnow
;

10 if VoI-ScoreSi→Sj >VoI-ScoreSj→Si then
11 return 〈Si,VoI-ScoreSi→Sj ,Si〉;
12 else
13 return 〈Sj ,VoI-ScoreSj→Si ,Sj〉;

The algorithm takes as input the IDs of nodes Si and Sj
and the predicted duration times Ti and Tj of their events.
Then it uses algorithm VoIFromNode to compute the val-
ues VTiSi and VTjSj of the VoI that the AUV would deliver to
the user by visiting node Si first and then node Sj , respec-
tively (lines 3–4). At this point, the combined VoI-Score of
visiting node Si before node Sj is determined (line 5). Lines 3
to 5 are repeated for the case when node Sj is visited first.
The two combined VoI-Scores are compared (line 10) and
the algorithm returns the node that, if visited first, would
allow the AUV to deliver the data chunks with the highest
VoI, the value of the highest VoI itself, and the collection
and delivery strategy that determines it. The computational
complexity of algorithm CombinedVoI-Score is the same of
that of algorithm VoIFromNode.

The combined VoI-Score is used by the AUV to determine
the node to visit next every time it has finished delivering the
data chunks of a node. This is when the AUV considers all
event packets that it has received and for each of their sources
computes the VoI-Score by executing the algorithm NodeSe-
lection.3

The algorithm takes as input all the information about the
events currently being sensed in the network. Based on such
information, repeatedly running algorithm VoIFromNode, it
selects the node Si whose data chunk would provide the high-
est VoI (lines 1 and 2). The AUV then computes the combined
VoI-Score of all possible pairs 〈Si, Sj〉 (lines 4 and 5). The
node Sk that will be visited next is the one that obtains the
highest VoI-Score (line 7). The computational complexity of
algorithm NodeSelection is O(|E||Lmaxd |), where Lmaxd is the
longest list of records of data chunks among those of all the
sensing nodes in E .

3. The AUV will not interrupt data collection from a node or
traveling to the surface to deliver data chunks. Event packets arriving
at these times will be stored and processed as soon as the AUV is
done.

Algorithm 3: NodeSelection(VoI Info)
Output:

Node Sk to be visited

1 E = Set of nodes sensing an event;
2 Si = Node in E with the highest VTiSi ;
3 〈Sk, scorek〉 = 〈0, 0〉;
4 for Sj ∈ E: Sj 6= Si do
5 〈Si|j , scorei|j〉 = CombinedVoI-Score(Si, Ti, Sj , Tj);
6 if scorei|j > scorek then
7 〈Sk, scorek〉 = 〈Si|j , scorei|j〉

8 return Sk;

As an example, let us consider the case of the AUV on the
surface with three event packets from nodes Si, Sj and Sk.
Through Equation (22), the AUV computes the VoI-Score of
the three nodes. Let node Si be the node with the highest
score, say, VoI-Score of node Si = 12. The AUV now runs al-
gorithm CombinedVoI-Score twice, with input Si and Sj first
and then with input Si and Sk. Let us assume that the outputs
of the two runs are 〈Si, 13,Si〉 and 〈Sk, 17,Sk〉, respectively.
The AUV will start by visiting node Sk and collecting and
delivering its data chunks according to the strategy Sk. After
having visited node Sk and collected and delivered its data
chunks, the AUV decides how to proceed next based on stored
event packets, including those from node Si and Sj that were
not visited earlier and newly received ones.

The reason why we use the combined VoI-Score of sequen-
tial visits to pairs of nodes rather than greedily visiting the
node with the highest VoI-Score is to take into account the
decay types and deadlines of the VoI of different events. For
example, let us consider a scenario with a node Si sensing
an event whose VoI does not decay and a node Sj sensing
an event whose VoI decays exponentially. If the two events
have similar VoI values and deadlines, the node with the
highest VoI-Score would surely be node Si. A simple greedy
strategy would favor visiting this node first. For sufficiently
long deadlines, however, it could be best to visit node Sj first,
and then node Si, thus clearly delivering a higher final VoI.
This situation is captured by the notion of combined VoI-
Score and its computation by algorithm CombinedVoI-Score.

In scenarios where the AUV spends a considerable amount
of time traveling between nodes it might happen that it
receives a high number of event packets. In order to decrease
the likelihood of missing events with high VoI, we allow the
AUV to consider changing its path as it travels to a node.
For instance, let us consider the case of the AUV traveling
to node Si and receiving p ≥ 1 event packets of new events
from p other nodes Sj . In this case, the AUV immediately
runs algorithm CombinedVoI-Score p times with input Si
and Sj and the predicted times of their events. The node
resulting from algorithm CombinedVoI-Score as the node with
the highest combined VoI-Score is the one eventually visited.
Once its data chunks are collected and delivered, path finding
proceeds as described above.

5 Performance Evaluation
We present the results of a simulation-based performance eval-
uation of the solutions proposed in this paper. We start the
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section by introducing the simulation scenarios and their pa-
rameters. We then show results on the performance of GAAP
with respect to the upper bound (termed OPT) provided
by solving the ILP model (Section 5.2). Finally, we present
a comparative performance evaluation of GAAP and several
heuristics for AUV path finding aiming at showing the impact
of VoI-aware mobility (Section 5.3). All our results concern
the total VoI that the AUV delivers to the user by the end of
network operations. We also compare GAAP and other AUV
path finding heuristics with respect to other metrics, namely,
the energy consumed for information transfers and for moving
the AUV throughout the network normalized to the delivered
VoI (“energy efficiency”). For the sake of conciseness, in the
following we write “GAAP delivers the VoI . . . ” to intend “the
AUV moving according to GAAP delivers data chunks whose
VoI . . . ,” and similarly for OPT and for the other considered
heuristics.

5.1 Simulators and simulation scenarios
The results for OPT have been obtained by solving the
ILP model defined in Section 3 using Pyomo [15] and the
freely available software Gurobi [16] run on Linux-based 64-
bit multiple-core servers (we used Gurobi default settings).
Each of the three servers we used has 16 cores, clocked at
2.8GHz, and 64GB of RAM. The various runs took from
several hours to a few days to produce the optimal solutions.
We implemented GAAP (Section 4) in a home-grown software
framework and simulated network communications in SUN-
SET, a framework for underwater emulation/simulation [17].

All our experiments consider realistic parameters of
UWSNs. We consider topologies with |S| = 4, 5, 9, 12, 18
and 35 wireless underwater sensor nodes deployed over a
rectangular area 2km×3km. Nodes are deployed at a depth
chosen at random between 50m and 200m. Fig. 2 shows the
layout of the topologies we considered as seen from above.
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Fig. 2: The topologies considered in our experiments. Nodes
are deployed in a grid-like fashion over a 2km×3km area.

Our scenarios include |S| surfacing points, located directly
above each of the |S| nodes. We set the AUV cruise speed to
1.8m/s, to match that of a Remus class vehicle [18].

Each node sends event packets to the AUV over the
acoustic data channel. The packet size is set to 10B (which
includes the headers of all protocol layers, from network down
to physical). The acoustic channel data rate is set to 4Kbps.
When direct communication between node and AUV is not

possible, event packets are disseminated by using the flooding
algorithm implemented in SUNSET (E-Flooding). For these
communications the modem transmission power is set to 3.3W
and its reception power is set to 0.5W. We set the optical and
wireless data transfer rate to 10Mbps. Optical communication
can reach this data rate when the AUV hovers within 100m
of a node [3], [4]. The muddier the water, the closer the AUV
should be to the node for transfer to be successful. Power
consumption for optical data exchange is set to 3W [2]. Delays
of event packet notifications to the AUV are computed and
added to the AUV traveling delays for the final computation
of the VoI of the collected data chunks.

We consider a scenario where the nodes use cameras to
take videos (e.g., for monitoring and/or intrusion detection).
Surveillance data are stored as 720p high-definition videos,
with a resolution of 1280× 720 pixels at 3 frames/s.

Event arrival is modeled by a Poisson process with arrival
rate λ = 1 hour. Once generated, an event is assigned
a location randomly and uniformly within the 3D network
deployment area. It is also assigned a random duration that
is exponentially distributed, with 1 hour average. Events have
an initial VoI varying between 0.4 (a non important event, like
nothing is happening) and a maximum value depending on the
event, varying in the set {20, 50, 100, 200} (a very important
event like the detection of an intruder). The actual value
perceived and reported by the sensing node depends on the
distance from the node and the location of the event according
to a Gaussian-like distribution. Fig. 3 shows the reported VoI
of an event whose value is 20 depending on its distance from
its sensing node.
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Fig. 3: The initial VoI of a data chunk depends on the distance
between the location of the event and that of the node sensing
it according to a Gaussian-like distribution.

An event that happens a few meters from a node will be
announced to the AUV with its full value. If the event happens
farther away from the node, its announced value will be lower,
according to the selected distribution curve. For example, at
1000m from a node the VoI of each data chunk produced for
an event whose full VoI is 20 will be 9 (Fig. 3). We stipulate
that the event is sensed, and therefore recorded and reported,
by only one node, namely, the one geographically closest to
the event location. (Unlikely ties are broken by using the
nodes unique ID.) Being the closest to the event this node
will produce data chunks with the highest initial VoI.

The VoI of produced data chunks decays according to two
different functions: An exponential decay and a “non decay”
function. The first function is for data chunks that need to
delivered as soon as possible. Less sensitive data, whose value
does not decrease in time are given a VoI that does not decay.
Fig. 4 shows different decays for the VoI of a data chunk,
corresponding to different initial VoI. The figure also shows
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that after a given deadline the VoI of a data chunk goes to 0,
signifying that there is no longer an interest to deliver that
data chunk.
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Fig. 4: The different types of decay for the VoI of a data chunk
depending on different initial VoI. After a given deadline the
VoI of a data chunk goes to 0 (VoI deadline).

We set the duration ϑ of the recording of a data chunk
to 5 minutes.4 For instance, for an event lasting 23 minutes,
the sensing node will generate 5 data chunks, the first four
of which will last the full ϑ, and the last one only 3 minutes.
Assuming a video encoded using the standard H.264 codec, a
5 minute recording produces a 9MB data chunk. The duration
of network operation T is set to 12 hours. We consider time
units of 1 minute each.

5.2 GAAP vs. OPT
We compare the performance of GAAP and of the optimal
benchmark OPT with respect to the total VoI of the data
chunks delivered to the user by the end of network operations.
We start with showing results for the case of uniform decay,
namely, of when the VoI of all data chunks decays either
exponentially or does not decay. We then consider the case of
heterogeneous decay, where data chunks of half of the events
have a VoI that decays exponentially, while the VoI of the
data chunks of the other half does not decay. For this set of
experiments the full value of the VoI of all data chunks is set
to 20.

Our results are obtained by averaging over 30 experiments
for both GAAP and OPT. In each experiment we randomly
and uniformly vary the set of the events and their location. In
the experiments concerning GAAP we set the AUV starting
point as one of the surface locations closer to the center of the
(surface of the) deployment area. In the scenario with 4 nodes
the starting point is chosen randomly and uniformly among
one of the 4 surface corner locations.

GAAP vs. OPT: Uniform decay
In these experiments we set the deadline for the VoI of the
data chunks to 20 minutes, which is less than the 30 minutes
it would take the AUV to travel the maximum distance in the
deployment area. This is to show how GAAP adapts to events
the VoI of whose data chunks expires before the AUV can even
get to their source node. In this case it would not make sense
for the AUV to go pick up and deliver those data chunks.

Fig. 5 shows the VoI of data chunks delivered in net-
works with increasing number of nodes. As expected, OPT
outperforms GAAP because of the centralized, all-knowing

4. We have performed experiments with ϑ = 1 and ϑ = 10 and
observed similar trends, with variations concerning only the actual
value of the delivered VoI.
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Fig. 5: GAAP vs. OPT: VoI of data chunks delivered in
networks with increasing number of nodes. Independently of
the type of decay GAAP delivers a total VoI that is at most
20% lower than that of OPT.

nature of ILP modeling. The gap between the two, however,
is reasonably low, independently of the size of the network,
the type of decay, and of the data chunk recording time. In
particular, in the case where the VoI decays exponentially
(Fig. 5a), we observe that GAAP delivers a total VoI that is at
most 20% lower than that of OPT. This happens in networks
with 4 nodes, as the AUV has to travel larger distances, and,
given the exponential decay, by the time the AUV arrives at
a corner node the VoI of some data chunks has reached the
deadline, i.e., it is 0. OPT knows already where and when
an important event is going to happen, and sends the AUV
at its sensing node in advance. In denser networks, where
more and more nodes are placed towards the center of the
deployment area, events are detected by these nodes, and the
distances traveled by the AUV become increasingly shorter.
This decreases the gap between GAAP and OPT, which is
already 16% in the case of networks with 5 nodes, and goes
down to 14% in highly dense networks (|S| = 35).

Fig. 5b concerns the case when the VoI of data chunks
does not decay for 20 minutes. The total VoI is considerably
higher, since as far as the AUV gets to collect and deliver data
chunks before their deadline, their VoI stays the same. The
gap between OPT and GAAP is also significantly reduced,
being GAAP less penalized by the fact that the AUV needs to
be made aware of events rather than knowing that information
in advance as it is for OPT. The total VoI delivered by GAAP
is only 13% less than that from OPT in the worst case of
networks with 4 nodes. This difference goes down to 9% in
networks with 35 nodes.

GAAP vs. OPT: Heterogeneous decays
The experiments of this section concern scenarios where half
of the events that happen in the network are recorded by data
chunks whose VoI decays exponentially, while the VoI of data
chunks of the other half of the events does not decay. We set
the deadline of data chunks from the first kind of events to
30 minutes, and that of the “no decay” events to 60 minutes.
With this choice we intend to explore the effectiveness of using
algorithm CombinedVoI-Score (Section 4), through which we
aim at sending the AUV first to a node whose data chunk VoI
decays exponentially and then to a node whose data chunk VoI
does not decay (till a deadline), if that eventually produces a
higher VoI. To show the “power” of algorithm CombinedVoI-
Score, GAAP is not only compared to OPT, but also to a
“myopic” version of itself, termed GAAP-M, where instead of
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choosing a path based on the combined VoI-Score, the choice
of which node to visit first is solely based on the VoI-Score. In
case the deadline of the two different types of decay was set
to be the same, GAAP-M would always send the AUV to the
node sensing an event whose data chunks have VoI that does
not decay.

Results for GAAP, GAAP-M and OPT are shown in Fig. 6.
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Fig. 6: GAAP vs. OPT: VoI of data chunks decaying exponen-
tially or not decaying. GAAP delivers a VoI that is at most
11% lower than that delivered by OPT. The performance gap
between the two decreases monotonously as the network size
increases.

We observe that GAAP delivers a VoI that is at most 11%
lower than that delivered by OPT. This happens for the spars-
est networks we consider. As noticed in the case of scenarios
with uniform decay, as the network density increases, the gap
between GAAP and the benchmark decreases monotonously
to 8%, which happens when |S| = 35.

The effectiveness of using the combined VoI-Score, i.e., of
algorithm CombinedVoI-Score, is shown by the performance
of GAAP-M. GAAP-M always delivers a VoI that is at least
20% lower than that delivered by GAAP.

We end this section by showing results that demonstrate
how GAAP operations mimic quite closely the operations
of OPT (Fig. 7). These results refer to the scenario of one
network with 35 nodes (numbered 1 through 35), with hetero-
geneous decay, and with a larger number of events than in the
scenarios considered above (the Poisson process that models
event arrival has a rate of 30 minutes).
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Fig. 7: The path followed by OPT and GAAP (a), and the VoI
delivered over time (b). GAAP visits 90% of the nodes visited
by OPT and delivers a VoI consistently close to the optimum.

Fig. 7a shows the actual path (as the sequence of visited
nodes) followed by the AUV as driven by GAAP and OPT,

respectively, over the 720 minutes of network operations. We
notice that GAAP visits 90%, i.e., almost all, of the nodes
visited by OPT, and almost in the same sequence. This is
why, as shown in Fig. 7b, the VoI delivered by GAAP and
OPT over time shows the same trend. These results provide
further evidence of the effectiveness of the design of GAAP,
and of the results shown so far.

5.3 Impact of VoI awareness
Our second set of experiments is aimed at quantifying the
impact of VoI awareness on the performance of path finding
protocols for AUVs. To this purpose we present results from a
comparative performance evaluation of GAAP and three non
VoI-aware path finding strategies. The strategies that we con-
sider are all “event-aware,” in the sense that the AUV knows
which nodes are sensing an event (as for GAAP, we use event
packets). In every heuristic the AUV computes the strategy
Si for collecting and delivering data chunks along the lines of
algorithm VoIFromNode (Section 4), namely, determining the
number ϕ of data chunks to collect and deliver at a time that
produces the highest VoI. The selected path finding strategies
are the following.

Random Selection (RS). The AUV travels to a node Si
chosen randomly and uniformly among those that are sensing
an event. Once at a node, it collects all its data chunks,
resurfaces and delivers them according to strategy Si. Once
done, a new nodes is selected randomly and uniformly among
those that are currently sensing an event, an so on.

TSP. Before the start of network operations, a traveling
salesman problem (TSP) path is found off line based on inter-
nodal distances.5 The AUV starts from a surface point (the
same used by GAAP) and visits the closest node Si in the
TSP path that is sensing an event. Once at a node the AUV
collects all its data chunks, resurfaces and delivers them using
strategy Si. When done, the AUV proceeds to visit the next
node in the TSP path that is sensing an event, and so on.6

Lawn Mower (LM). A path is found off-line following
a so-called lawn mower trajectory. This path is found once
and for all before the start of network operations. According
to this strategy, the network nodes of the considered network
topologies (Fig. 2) are visited line by line, left to right, from
bottom to top, and back. As such, this heuristic allows some
nodes to be visited more than others. For instance, in a
network with 5 nodes, the AUV would visit first the two on the
bottom line (left one first), then the single central node, then
the two node in the top line (left one first), and then back to
the single central node, before moving back to the first node.
In other words, before starting the journey again from the first
node, the central node has been visited twice. The AUV starts
from a surface point (the same used by GAAP) and visits the
closest node in the LM path that is sensing an event. As for
the previous strategies, once at a node Si the AUV collects
all its data chunks, resurfaces and delivers them according to
strategy Si. Once done, the AUV proceeds to visit the next
node in the LM path that is sensing an event, and so on.

5. In our experiments, given a network topology, we found a TSP
path by using the free Concorde TSP solver [19].

6. Note that if a node is not sensing an event, even if it is next in
the TSP path, is skipped, as it would make no sense to visit a node
that has no data chunk, i.e., that is not producing information of any
value.
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Investigated metrics
All protocols are compared with respect to the following
metrics.
• Delivered VoI, which is the sum of the VoI of all data

chunks delivered to the sink throughout the time of
network operations.

• Energy efficiency, defined as the ratio between the
total energy consumption and the delivered VoI. The
total energy consumption is obtained by adding the
energy needed for data chunk transfer (optical), the en-
ergy consumed for flooding event packets to the AUV
(acoustic), as well as that consumed by the AUV to
move (we used the Remus vehicle energy consumption
model [18]).

• Throughput, defined as total number of bytes delivered
to the sink over the time of network operations.

• End-to-end latency, which is the time from when a data
chunk is generated to when it is delivered to the sink.

For this set of experiments we consider events recorded
by data chunks with uniform decays (both exponential and
no decay) with the deadline set to 20 minutes. All results are
obtained by averaging over data from 500 simulation runs,
which achieves a statistical confidence of 95% within a 5%
precision.

Performance results: Delivered VoI
Fig. 8 shows results about the delivered VoI. When the VoI
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Fig. 8: GAAP vs. other strategies: Independently of network
size and type of decay GAAP delivers at least 40% more VoI
than the best of the other solutions.

decays exponentially (Fig. 8a) the VoI delivered by GAAP
in networks with 4 nodes is at least 77% more that that of
TSP and LM, and 80% more than RS, which we observed
to be always the worst strategy among those considered. As
the density of the network increases the VoI delivered by all
strategies increases as events happen closer to the nodes and
the VoI of their data chunk is higher (Fig. 3). Furthermore,
the AUV has to travel less between nodes, which incurs lower
decays. Again, the VoI-aware behavior of GAAP allows the
AUV to gather and deliver data chunks with higher value.
For instance, in networks with 35 nodes, GAAP delivers 57%
more VoI than TSP, which results to be the best among all
other strategies.

When the information does not decay for 20 minutes
(Fig. 8b) the total VoI delivered to the user is higher for all
strategies, as expected. GAAP still delivers 54% more VoI
than the best among the other strategies (TSP) in sparse net-
work (4 nodes). This betterment decreases to 40% more VoI

in dense networks, where all strategies gain from nodes being
closer, i.e., from having the AUV traveling lower distances.

Performance results: Energy efficiency
Results concerning energy efficiency are shown in Fig. 9.
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Fig. 9: GAAP vs. other strategies: Independently of network
size and type of decay GAAP is at least 30% energetically
more efficient that TSP.

We show results only for GAAP and TSP, as the latter
always outperforms RS and LM. We observe that the 97%
of the energy for the overall system to work is required for
moving the AUV. Independently of the decay of the VoI,
the energy consumption per delivered VoI decreases as the
network size increases because we observed that the total
energy required by the AUV does not significantly vary but
the delivered VoI increases (see above).

Fig. 9a concerns the energy efficiency of the two strategies
when the VoI of data chunks decays exponentially. We notice
that GAAP is about 70% more efficient than TSP in sparse
networks. The gap between the two protocols decreases to
45% in the densest networks (|S| = 35). In the case of non
decaying VoI (Fig. 9b) the absolute value of delivered VoI
increases, which makes the energy required to deliver one unit
of VoI decrease. GAAP is still the most efficient of the two
strategies, resulting 46% more efficient than TSP in sparse
networks (|S| = 4) and 30% more efficient in the densest case
(|S| = 35).

Performance results: Throughput and end-to-end latency
Results for traditional networking metrics that are indepen-
dent of the VoI delivered to the sink are shown in Fig. 10. (We
report results only for GAAP and TSP, as the latter always
outperforms RS and LM.)
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Fig. 10: GAAP vs. TSP: Throughput and end-to-end latency.

Throughput. The number of bits per second delivered by
GAAP is always noticeably higher than that of all other
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heuristics (Fig. 10a). In particular, GAAP delivers about 60%
more bits per second in sparse networks (with 4 or 5 nodes),
about 23% more bits per second in networks with 9 to 12
nodes, and about 18% more bits per second in dense networks.
This is because either GAAP and TSP visit nodes with data
chunks in the same sequence, and in this case they collect the
same number of bits, or GAAP arrives faster to nodes with
new events, being able to collect more data chunks, i.e., more,
and more valuable, bits. In the latter case, TSP will arrive to
those nodes after having had to stop at other nodes, being able
to collect only those data chunks whose VoI did not expire
already. The advantage of GAAP over TSP decreases with
the network size, as the travel time between nodes decreases,
which enables TSP to collect more packets.
End-to-end latency. The latency experienced by data chunks
delivered by GAAP is consistently higher than that of TSP
(Fig. 10b). Latency almost doubles in sparse networks, it is
69% more in networks with 9 to 12 nodes, and it takes an
average of 57% more time to deliver data chunks in dense
networks. This result is consistent with our previous results
on throughput as GAAP delivers a higher number of data
chunks than TSP.

6 Related Works
Works showing the beneficial effects of combining optical and
acoustic communications for underwater data retrieval and
routing include [8], [9] and [7]. Specifically, in [8] Farr et al.
describe and demonstrate a system with integrated optical
and acoustic capabilities aimed at showing what data rates
and ranges can be obtained by such a communication system.
In a follow-up paper, Farr et al. show how the optical capa-
bilities of the proposed integrated system greatly expands the
bandwidth of a CORK seafloor borehole observatory [9]. This
paper reports results from experiments where a surface vessel
is sent to offload data from a CORK installation. A tethered
probe with optical communication capabilities is lowered from
the vessel to hover above the CORK optical telemetry system
(OTS) and transfer data. The OTS is kept in a low power sleep
mode, capable of listening for an acoustic wake-up request
to prepare for data offload. The authors report data rates
of up to 10Mbps, which enables a dramatic increases of the
CORK sensor sampling frequencies and data transfer rates
with respect to when only acoustic communications are used.
These papers concern no data routing or data-driven path
finding for vessels or AUVs to offload data from the nodes.
Multi-hop routing for UWSNs with multi-modal communicat-
ing devices is the concern of the work of Hu and Fei [7]. Their
protocol, called MURAO for MUlti-level Routing protocol for
Acoustic-Optical UWSNs, partitions the network nodes into
two layers. Lower layer nodes are responsible for actual data
retrieval via hop-by-hop routing over optical channels. Nodes
in the upper layer use long range/low bandwidth acoustic
communication to coordinate the routing of the lower level
nodes. This solution requires nodes to be deployed densely
enough to obtain a connected topology over the optical links.
Given the short range of the latter, MURAO can be costly and
even impracticable for applications requiring networking large
areas. Recently, Basagni et al. showed that machine learning-
based decisions on communication mode and next-hop relay
produce remarkable performance of multi-hop routing [20].

This work, however, considers only nodes with different acous-
tic modems, i.e., does not concern the interaction between
optical and acoustic communications.

In scenarios including an AUV, new data retrieval methods
can be defined in which underwater networking is enabled
by device mobility, similarly to the scenario considered in
our work. The mobile AUVs collect data from the nodes via
short range optical links and then offload the data either by
returning to the base station or surfacing and using over-the-
air wireless communication. In this kind of UWSNs acoustic
communication can be used for AUVs coordination or low
bandwidth data transmission, such as signaling and control.
Two of the earliest examples of this form of UWSNs are
described by Vasilescu et al. [21] and Detweiller et al. [22].
Acoustic and optical communication protocols are integrated
into the TinyOS operating system of sensor nodes and mobile
AUVs. In [21] the results from a series of experiments is
described that demonstrate the feasibility of data retrieval
from static nodes visited by an AUV. It is assumed that nodes
produce data of equal, non-decaying value at a constant rate,
and that no data is lost by a node from overflow. In this case,
AUV path finding is simply reduced to a sequential visit of the
nodes one after another, according to a route pre-loaded to the
AUV. The experiments described in [22] follow the same pre-
determined AUV path strategy, and are primarily concerned
with showing robust ranging between the mobile node and
the static ones. Campagnaro et al. present a simulation-
based study of multi-modal communication where an AUV
periodically visits the 8 nodes of a UWSN following a pre-
determined clockwise way-point trajectory [6]. Nodes switch
between optical to acoustic communication in order to achieve
the highest throughput, depending on channel conditions
and the distance from the AUV. The implementation of the
multi-modal networks stack used in the considered scenarios
is presented in details in [5], where its functionalities are
further demonstrated via simulations in a scenario comprising
divers and a remotely operated underwater vehicle. While
showing the effectiveness of combining acoustic and optical
technologies for AUV-enabled underwater networking, these
papers are not concerned with performance enhancement via
AUV path finding optimization.

More recently, dynamic path finding for AUV-based data
collection on multi-modal UWSN has been shown to be key
to improve network performance from many points of view.
Forero et al. investigate path finding for multiple AUVs
considering constraints on energy, data storage and retrieval
requirements [23]. A number of AUVs visits the UWSN nodes
and exchange data optically. When an AUV available energy
or its data storage capability are exhausting the AUV is
sent to one among many designated depots to offload their
data and re-charge. The depots, that are resource rich, are in
charge to deliver data to the final user and have capabilities to
recharge the AUVs. Determining AUV paths to the nodes and
to the depots is the job of a Fusion Center (FC) with which the
AUVs and the nodes communicate acoustically to send their
current status. Optimal routing is centrally determined by
the FC that keeps running a one-step lookahead with rollout
algorithm and sends its output to the AUVs. Beyond being
centralized and scarcely scalable, we notice that the routes
that the FC determines for the AUVs do not depend on any
valued associated to the sensed data.



13

One of the characteristics of the UWSN scenario is that the
data rate of modern sensors greatly exceeds the capabilities of
underwater networking channels. It is simply impossible to
transfer all the sensed data in near-real time. Therefore, if the
value of a data chunk varies in time, the system needs to make
decisions about which data chunks are to be transferred pref-
erentially. We argue that the intellectual framework of Value
of Information (VoI) as considered here is an appropriate, dis-
ciplined way to make these decisions. The concept of VoI was
originally proposed in game theory [24]. The intuition behind
the game theoretical definition of VoI is the price an optimal
player would pay for a piece of information. In the context
of wireless sensor networks, a number of recent projects have
introduced metrics to model situations where one either needs
to select a subset of the collected data or choose between
transmitting a piece of information or not. Bisdikian et al. [25],
[26] define “Quality of Information” (QoI) as the degree to
which a piece of information is (or is perceived to be) fit-to-
use for a particular purpose. The QoI is usually conceived as
a vector of quality attributes that include accuracy, latency,
and spatio-temporal relevance. In the realm of UWSNs, one
of the first works concerned with the problem of finding paths
for an AUV that consider the quality of the information to be
retrieved is the paper by Hollinger et al. [27]. In the scenario
considered in the paper, communications between the nodes
and the AUV happens only via acoustic communication. The
AUV path finding problem is formulated as a variation of TSP
where path cost (e.g., traveling time and fuel expenditure)
and the information quality of the collected data are joint
optimized. Information quality is here defined as the expected
information gain at the AUV going through the found path,
i.e., in terms of the number of correctly received packets carry-
ing distinct information, which is probabilistically dependent
on the quality of the acoustic channel. Therefore, the quality
of information does not depend on the event recorded by
the sensors, and does not decay in time. Turgut et al. [28],
[29] define “pragmatic VoI” as the support the information
gives to the decisions and actions of the network operator
(without assuming an optimal decision-maker). In a UWSN
setting similar to the one considered in this paper, Bölöni
et al. discuss a scenario where the VoI is used to schedule
direct acoustic transmission of digests of large data chunks
to the sink and the optical transfer of the whole chunk to
an AUV moving according to a fixed trajectory [11]. This
paper considers the decay of the VoI in time (in form of
an exponential decay function), the fraction of VoI that is
retained by digests of the original data, and introduces the
concept of conditional VoI, which captures the novelty of a
data chunk in the context of previously transferred data. Its
contribution mainly concerns scheduling between acoustic and
optical transmissions so that the VoI is maximized, without
tackling the problem of finding paths for an AUV to deliver
high VoI data.

7 Conclusions
We presented a mathematical model (OPT) and a greedy
heuristic (GAAP) for driving an AUV to collect and de-
liver data with decaying value from nodes of a UWSN. The
aim is to find paths for the AUV that maximize the Value
of Information of the data delivered to the sink. Our ILP

model considers realistic and desirable network sizes, data
communication rates, distances and surfacing constraints.
GAAP successfully mimics the optimal paths found by the
all-knowing OPT and obtains VoI of the delivered data that
is at most 20% lower than that obtained by the ILP model, as
shown by experiments over networks with increasing number
of nodes. The performance of GAAP has been compared to
that of other path finding strategies, where sensing nodes are
visited randomly (RS), according to a TSP tour or to a Lawn
Mower (LM) strategy. Our results show that VoI-aware AUV
mobility produces higher performance. In particular, GAAP
delivers up to 77% more VoI than that delivered by the best
of the other heuristics (TSP) and achieves an overall energy
efficiency that is up to 70% better than that of other solutions.
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