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Abstract—Most of the existing research on emergency
evacuation strategies focus on city evacuation planning that
highly depends on the use of vehicles or evacuation from
buildings. However, for large areas with limited use of
vehicles such as theme parks, evacuation of pedestrians
and emergent events must be tracked for safety reasons. As
hazards may cause certain damages to services, networks
with disaster resilience are needed to achieve mission-
critical operations such as search and rescue. In this
paper, we develop a method for tracking pedestrians and
emergent events during disasters by opportunistic ad hoc
communication. In our network model, smart-phones of
pedestrians store and carry messages to a limited number
of mobile sinks. Mobile sinks are responsible for com-
municating with smart-phones and reaching the emergent
events effectively. Since the positioning of the mobile sinks
has a direct impact to the network performance, we
propose physical force based (PF), grid allocation based
(GA) and road allocation based (RA) approaches for sink
placement and mobility. The proposed approaches are
analyzed through extensive network simulations using real
theme park maps and a human mobility model for disaster
scenarios. The simulation results show that the proposed
approaches achieve significantly better network coverage
and higher rescue success without producing increased
communication overhead compared to two random mobile
sink movement models.

Index Terms—Opportunistic communication, mobile
sink, disaster resilience, evacuation, mobility management.

I. INTRODUCTION

Internet has been used worldwide, offering various
services which made daily lives of people easier in many
ways. However, it is not a reliable communication source
during disaster times as accessing the Internet services
requires certain infrastructure, which may be damaged
due to occurrence of hazards. While relying only on the
Internet may cause people suffer in natural or man-made
disasters, researchers nowadays focus on the networks
resilient to disasters. These networks are supposed to

provide and maintain acceptable levels of quality of
service during disaster times, as well as accidents or
faults in infrastructure in ordinary times.

As the increase in the likelihood of the more intense
hazards is expected due to climate change [1], disas-
ter resilience in networks is becoming an increasingly
popular research area. Many studies nowadays focus on
communication problems in cities damaged by disasters
such as earthquakes or floods. These problems also apply
to large areas in which the vehicle use is limited such
as theme parks and campus environments. Furthermore,
the operators of these environments have challenges
of evacuating pedestrians, rescuing injured people, and
providing them access to ambulances or transportation
services. We study the use of disaster resilient networks
as a solution to communication and the safe evacuation
problems in large and crowded disaster areas. Places
which restrain people from using transportation vehicles
such as airports, city parks (e.g., Central Park in New
York city), shopping malls, fairs, and festival areas are
considered in this context.

In this study, we focus on the application scenario of
theme parks which are large and crowded entertainment
areas due to several reasons. Large-scale theme parks
have substantial economic contributions to their regions.
While overall popularity of theme parks increases every
year, global success of the growing industry is severely
affected by disasters such as Hurricane Irene [2]. A
natural or man-made disaster in a theme park may cause
damages to regions such as Central Florida as theme
parks with highest yearly attendances and also being
known as home to natural disasters such as hurricanes,
floods and tornadoes.

We model the theme park environment as follows.
We first model the area of a theme park and define it
as a combination of roads, obstacles and lands. Real
theme park maps are extracted for synthetic generation
of the theme park models. As the people in theme
parks are the main actors, we consider them as part of
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Fig. 1. The map of the Magic Kingdom park (extracted from OSM).

the environment. Modeling the mobility of pedestrian
crowds is necessary for modeling these environments.
Therefore, we use a realistic human mobility model for
simulating the movements of the pedestrians in disaster
areas [3]. With this mobility model, we are able to
simulate the mobility of people in theme parks who aim
to escape from the disaster area to the exit gates by walk
in order to reach ambulances or transportation services.
Moreover, we model the crowd dynamics and social
interactions of the pedestrians during the evacuation by
the social force model [4].

In this paper, we use our pedestrian mobility model
in [3], [5] as basis for simulating the movement of
pedestrians in theme park during their evacuation. We
propose new algorithms for initial sink placement and
sink mobility. We comprehensively analyze the proposed
tracking evacuation approach which is first proposed
in [6]. Extensive experiments are conducted for five sink
mobility approaches to observe the results with various
parameter values in in-depth analysis of the network
performance.

Handling emergent events is one of the major chal-
lenges in theme park environments due to inevitable
problems that can occur due to hazards. Therefore, in
addition to the technological security measures, theme
park administrators also deploy a large number of secu-
rity employees, for some parks more than a thousand,
walking on foot or riding bicycles [7]. We believe that
using automated networked systems and mobile sinks
can help reducing infrastructure requirements by large
team of security personnel.

As a disaster response strategy, we propose using a

networked system which includes mobile sensor nodes
and a limited number of mobile sinks as described in
Section II. Mobile phones carried by pedestrians can
be leveraged as sensor devices which communicate with
each other and with mobile sinks. Mobile sinks monitor
the evacuation process by patrolling in the disaster area,
collecting data from the sensor nodes. They also have
the goal of reaching to people who need to be rescued.
Mobile sinks can be autonomous robots (e.g., search
and rescue robots [8]) or security personnel which patrol
by walk or by electronic transportation vehicles such as
Segway Patroller [9] with a tablet computer attached on
it. Sensor nodes create messages when they witness peo-
ple who need immediate help. They are responsible for
storing and carrying the messages, sharing the messages
with each other, and delivering to the mobile sinks via
hop-by-hop wireless communication.

We consider such formation of WSNs with mobile
sinks as a replacement to cellular networks for providing
communication in extreme conditions. The use of mobile
sinks enables adaptability of the approach to various
environments (e.g., festivals, public parks) where pre-
installed infrastructure may or may not exist. In the case
of popular theme parks such as Disney World, certain
infrastructure such as video cameras can be leveraged
in some scenarios when the pre-installed system con-
tinue operating during the disaster. Most of the existing
studies related to evacuation and disaster management
tackle the problems of optimizing evacuation times (e.g.,
avoiding bottlenecks, finding exit points) or assisting
people for their safe evacuation and directing them in
indoor [10] or outdoor environments [11], [12]. The
output of these solutions include improved evacuation
times. Our approach, on the other hand, focuses on
tracking the people’s locations during their evacuation
(without any interference to their behavior). While our
approach does not aim for shorter evacuation times, it is
helpful for finding and reaching out to the people who
may be in emergency situations.

Our approach differs from the existing ones that de-
pend on usage of UAVs (e.g., quadcopters). While drone
operations can be helpful in such scenarios, they require
certain infrastructure and control of operations. More-
over, they have various constraints including weather
conditions, vision-based limitations (resolution, coverage
of large area, darkness, etc.), and limited lifetime of
the batteries. Considering the disaster scenarios, espe-
cially in regions such as Central Florida, adaptability
to weather conditions such as having strong winds
is a major drawback of such systems. Moreover, the
infrastructure requirements for communication during
operations are similar to the requirements of Internet



services. On the other hand, these approaches can be
beneficiary in certain scenarios and the two strategies can
work together by eliminating each other’s limitations.

Sensor devices are carried by ordinary theme park
visitors whose only goal at the time of a disaster would
be safely escaping from the . While we do not assume
any control over the visitors, we focus on the effective
placement and mo environment bility of mobile sinks in
the area to gather more data from sensor nodes to find
pedestrians in need of help in shorter amount of times.
For efficient tracking of the pedestrians and emergent
events during the evacuation, we propose three heuristic
approaches in Section III, namely, physical force based
(PF), grid allocation based (GA) and road allocation
based (RA) approaches for mobile sink placement and
mobility. PF is inspired by the natural gravitation, in a
way that sensor nodes attract mobile sinks, while mobile
sinks have negative impacts on each other. In GA, each
sink allocates a number of grids as its own operation
region. Grids are created on top of the roads in the
processed theme park model. Lastly, in RA, each sink
allocates one or multiple roads close to each other and
operates on top of the allocated roads. After allocation
of grids or roads, mobile sinks patrol in their allocated
regions by a random movement model. The perfor-
mances of the proposed approaches are evaluated in
Section IV with extensive network and human mobility
simulations and compared with two random mobility
models for mobile sinks. We summarize the related work
in Section V and finally conclude in Section VI.

II. THEME PARK AND NETWORK MODEL

In this section, we describe modeling of the theme
park environment and the proposed network model re-
spectively.

A. Theme park model

Real theme park maps are used to model the theme
park environment for disaster scenarios. After automated
processing of the map, the model defines a theme park
as combination of roads, obstacles and lands. The roads
are defined as pedestrian ways containing waypoints. The
waypoints are the movement points of the pedestrians.
The roads direct the pedestrians to the target locations
in the map. Moreover, the mobile sinks travel on top of
the roads for patrolling or reaching the regions of the
emergent events. The gates are considered as the target
locations and they are placed close to the borders of the
park. The gates connect the theme park with the outside
world and facilities such as transportation vehicles (e.g.,
ambulances, buses).

The obstacles are categorized into two types. Attrac-
tions in a theme park contain man-made buildings and
other structures such as roller-coasters, fences, or walls.
During evacuation from the disaster area, these structures
may prevent free movement of the pedestrians. They are
considered in the model as man-made obstacles. More-
over, there may be natural obstacles such as lakes, trees,
river and so on. We include both types of obstacles in the
theme park model, such that none of the pedestrians or
mobile sinks is able to pass through them. The lands are
the regions having no obstacle or road. Pedestrians can
choose to pass through the lands in certain times such
as when they do not have the option to travel on the
roads (e.g., road is closed due to occurrence of hazard)
or when the lands provide obvious shortcuts.

While the model of the theme park can be created
synthetically (e.g., during design stage of a theme park)
or using real maps, we use OpenStreetMap (OSM) [13]
for existing theme parks and extract their maps. These
maps containing the OSM data are parsed to generate
the roads, the obstacles, the lands, and the gates. The
user-tagged waypoints are collected from the OSM data.
The processing also involves connecting the consecutive
waypoints to create the roads. The roads have width
values according to their OSM types (footway, path, and
pedestrian way).

Fig. 1 shows a real map of Magic Kingdom park in
Disney World in Orlando. This map is processed to find
the waypoints, the roads, the gates, and the obstacles.
The generation of the theme park models are achieved
for various parks such as the parks of Disney World and
Universal Studios computationally using the OSM data.
It is also possible to create a non-existing theme park in
design stage manually and create the theme park model
in the same fashion.

In the pedestrian mobility model, theme park pedestri-
ans aim to evacuate theme park by following waypoints
on the roads and reaching the gate points. The micro-
mobility decisions include selecting waypoints in their
visibility or preferring to choose to walk on the land if
some roads are unavailable due to disaster. The social in-
teractions between the pedestrians cause slow-downs or
delays in the movements of the crowds. The social force
model equations that are used for modeling the social
interactions (micro-mobility) and the macro-mobility of
the pedestrians are briefly described in Appendix.

B. Network model

We propose a network model with sensor nodes and
mobile sinks for the purpose of efficient tracking of the
pedestrians and the emergent events during the disasters.



In the rest of this section, we define the roles of the
sensor nodes, mobile sinks and the routing protocol
respectively.

1) Sensor nodes: Sensor nodes represent mobile de-
vices carried by theme park visitors. The sensing of
an emergent event can be automatically done by the
devices (e.g., by sensing sounds) or messages can be
explicitly created by the users’ input to their smart-
phones. Marking the location of a person in need of
help is an example of an emergent event. Whenever
such event is sensed, a message including location and
the sensing time is stored in buffer of the sensor node.
The sensor node then carries the data and sends the
messages on its buffer to other sensor nodes or to a
mobile sink through wireless communication. Sensor
nodes are assumed to have limited capacities in terms
of energy, storage, and transmission power.

2) Mobile sinks: Mobile sink nodes represent either
mobile autonomous robots or security personnel carry-
ing mobile devices. A security personnel can use an
electronic transportation device if available with a tablet
computer attached to it. The mobile sinks patrol in the
theme park and collect data from the sensor nodes. When
they receive a message with a new unknown emergent
event, they move to the region of the event. Mobile sink
nodes are more powerful devices with enhanced com-
putation and communication capabilities, storage and
energy resources, while they exist in limited numbers.

They need to communicate during their operation for
collaborative handling of the event region by sharing the
workload. For instance, individual mobile sinks can be
assigned for patrolling in their local areas while together
they cover the whole region. Furthermore, during an
emergent event, one mobile sink can be assigned for
a rescue task while the others continue their ordinary
operation.

3) Routing Protocol: The message delivery to mobile
sinks is done via hop-by-hop wireless transmissions.
The epidemic routing protocol [14] is used with minor
modifications regarding to the purpose of our model.
Epidemic routing is a commonly used protocol for
opportunistic social networks and it is mainly developed
for mobile wireless networks considering missions such
as disaster recovery or military deployment. Epidemic
routing provides a benchmark as it produces optimum
packet delivery ratio and message delay.

In epidemic routing, whenever a pair of nodes are
within the transmission range of each other, they create
a new session in which one of them acts as the initiator
and the other acts as replier. The session consists of
three phases. In the first phase, the initiator initiates a
session by sending a summary vector of Message IDs

Fig. 2. Opportunistic message transfers between Sink A and sensor
nodes P; and P».

located in its buffer. In the second phase, the replier
compares its own vector and the received (initiator’s)
vector, then requests messages by sending the difference
vector, which is the vector of Message IDs of the
message that do not exist in its buffer. In the third phase,
initiator sends the messages missing in replier’s buffer
and finally closes the session.

Fig. 2 illustrates two different sessions and the type of
message transmissions during opportunistic communica-
tion between the two sensor nodes P;, P and the mobile
sink, Sink A. In this figure, the two sensor nodes are
placed inside the transmission range of the mobile sink.
However, at this time only one sensor node has an open
session with the mobile sink. Concurrently, P; and P
has a session in which P requests messages. Therefore,
the sensor node P, acts as the initiator and P; acts as
the replier.

In the second session, Sink A acts as the replier
and P; acts as the initiator. In the epidemic routing
protocol, there are three types of transmissions between
the initiator and the replier, which we call initiation,
request, and messages respectively. Initiation contains
the summary vector of Message IDs which are located
in the initiator’s buffer. Request contains the difference
vector and in the last transmission (Messages), initiator
sends the messages requested by the replier.

In our model, sensors act as either initiator or replier
while mobile sinks always act as repliers, since their
responsibility is to gather data from sensors. Moreover,
after a pair of sensor nodes successfully finish a session,
they wait for a specific time period before initiating a
new session. This duration can be specified empirically
and according to the density of the sensor nodes and
their speeds at that time. For instance, if sensors stuck
and wait in a road for long time due to high crowd
densities, the time period can be adjusted to prevent
unnecessary communication overhead which leads to



energy consumption.

III. SINK PLACEMENT AND MOBILITY

In this section, we propose an initial placement strat-
egy and three heuristic approaches for mobile sink
mobility.

A. Initial placement

Let us start this section by describing the initial
placement process of the mobile sinks. The process
starts with the creation of a grid layout on the theme
park model. The grids are specified with relatively small
sizes (e.g., 50x50m) in comparison to relatively larger
disaster area (e.g., 1000x1000m). The small-sized grids
are located only on top of the roads. In other words,
obstacles and lands are excluded during the process of
grid creation as we assume that the mobile sinks do
not have the ability to patrol on top of the obstacles
or lands. Grid creation process starts with the generation
of 2D quasi-random points. Number of the generated
points is equal to the number of mobile sinks. This
generation is repeated iteratively (/V times) and at each
iteration, the sum of pairwise distances between the
quasi-random points are computed. We keep the set of
quasi-random points with the highest distance sum. Since
this computation is handled offline before the start of the
operation of mobile sinks, it does not cost an overhead
to the system. Therefore, the iteration can be repeated
many times in order to have the best result. The time
complexity of the initial placement algorithm depends on
the random point generation technique and the number
of iterations.

The best set of quasi-random points are marked as
the base points. For each grid, the closest base point is
selected and the grid is marked with the index of this
base point. Fig. 3 illustrates creation of the grids in a
simple case, where the grids are uniformly assigned to 4
base points. The creation of grids and the assignment is
the base for initial mobile sink distribution. As shown in
the figure, each mobile sink is placed on a random place,
which is one of the points in the grids with corresponding
indices (e.g., grids with indices 1, 2, 3, or 4) . The main
purpose is to distribute the sinks in a way that they share
the workload of the entire disaster area while they are
all located on top of the roads to start their patrolling
duty.

The pseudocode for the initial placement of mobile
sinks is given in Algorithm 1. First, the quasi-random
points are iteratively generated (lines [4-20]). Later, grids
are assigned to the base point indices, such that each grid
is assigned to a base point index bp. At the end, each
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Fig. 3. Grid allocation based placement of 4 mobile sinks.

base point index bp has a set of grids GridSet(bp) (lines
[21-29]). D;; is the distance between the current grid g;
and current base point p; (p; € B). T corresponds to the
number of grids. After the assignment is finished, each
mobile sink m; is placed on top of a waypoint which
is selected randomly among all waypoints contained by
the particular grid set (lines [30-37]).

The initial placement procedure is conducted only
once before the mobile sinks start their operation. The
initial placement can be used as a common procedure
for various mobile sink mobility models. On the other
hand, the movement decisions of the mobile sinks during
their operation varies according to choice of the mobility
model.

B. Sink mobility

Let us now describe the mobility models for the
mobile sinks.

1) Physical force based sink mobility (PF): In PF, the
main goal of the sink mobility is tracking and following
people along during the evacuation process. Inspired by
Newton’s law of universal gravitation, each pedestrian
assumed to have a unit mass which attracts the mobile
sinks, while distances cause less attractions. A mobile
sink that detected a group of people tends to follow the
group as long as it does not encounter another larger
group or other mobile sinks on the way.

The mobile sinks also have masses larger than the unit
mass and the mobile sink masses cause inverse forces in
the opposite direction. The sink mass is equal to the
division of the number of pedestrians by the number



Algorithm 1 Initial placement of mobile sinks

1: B:= {}

> Set of base points

2: G:={g1,92,--, 97} > Set of grids
32 M :={myi,ma,.,mg} > Set of mobile sinks
4: MinSum < oo
5: for i :=1to N do
6:  Q:={p1,p2,.,PK} > Set of quasi-random
points
7. Sum <0
8: for j:=1to K do
: for £ :=1 to K do
10: if j # k then
11: D «+ Distance(pj, pr)
12: Sum < Sum + D
13: end if
14: end for
15:  end for
16:  if MinSum > Sum then
17: MinSum < Sum
18: B+ Q
19: end if
20: end for

21: for i :=1to T do
22:  MinDist < oo
23:  for j:=1to K do

24: if Dz‘j < MinDist then

25: bp < p; > Base point index
26: MinDist .= Dij

27: end if

28:  end for

29:  GridSet(bp) < GridSet(bp) U {g;}
30: end for

31: W+ {}

32: for i :=1to K do

33:  for each g € GridSet(p;) do

34: W+ W U WaypointSet(g)

35:  end for

36:  Select a random w € W

37:  Initial Position(m;) < w

38: end for

of mobile sinks. Each mobile sink computes a physical
force vector based on the positions of people and the
other mobile sinks and moves along the direction of the
physical force vector. The mobile sinks’ inverse forces
(“pushing” effect) on each other prevents them covering
the same areas by getting very close to each other and
creating inefficiency by sharing the workload in terms of
coverage of the whole region.

Fig. 4 illustrates the movement direction of the
Sink A after encountering with pedestrians P; and

P> with unit masses and Sink B with a higher mass
producing the strongest physical force among the three
forces ﬁl, ﬁg and ﬁB. In this case, Sink A moves in the
direction of the vector VA, which is the sum of the three
physical force vectors.

Having n pedestrians and m mobile sinks with masses
1 and M respectively, the physical force movement
vector Va on the Sink A is calculated as follows:

i=1 j=1
where
-, M-1
i|=G —5 2
- M-M
Pl = a2 3)

A is an empirical constant value, which defines the
impact of the sink mass M = > and the gravity constant
G. « is the constant which adjusts the magnitude of
the sum vector V,. The value of n changes during
the operation according to the number of people in
the environment at that time. Overall complexity of the
computation for each mobile sink is O(n + m).

For simplicity and applicability in real scenarios, mo-
bile sinks can be considered having only local knowledge
based on their visible areas. In other words, computation
by each sink can be done based on only the pedestrians
and the mobile sinks in its visible area. By this approach
most of the masses (e.g., pedestrians) which have longer
distances (d) are ignored. However, we can assume them
having negligible forces due to their distance.

2) Grid allocation based sink mobility (GA): In this
approach, each mobile sink allocates a set of grids ac-
cording to the grid indices which were found in the initial
grid creation phase. Basically, the grids in Fig. 3 are
used for allocation in a way that each sink is responsible
for the grids with a particular number. For instance the
grids which are marked as 1 are assigned to the first
mobile sink, while the grids with mark 2 are assigned to
the second sink, and so on. During the operation, each
sink patrols in its allocated grids. The sink chooses a
random waypoint as the next destination point among
the waypoints which are placed on top of the set of the
allocated grids. After reaching to the next destination, the
sink decides another next destination and updates in the
same fashion. This mobility model aims to divide the
workload of the disaster area evenly on the patrolling
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Fig. 4. The physical forces and movement vector of Sink A along
with pedestrians P;, P> and Sink B.

mobile sinks, while they are not intercepting on each
other’s region.

Algorithm 2 Sink mobility with Grid Allocation
1. M« {my,ma,...mu}
2: for i :=1to M do
3:  CurrentPosition(m;) < Initial Position(m;)
4: end for
5:fort:=0to 7T do
6
7

> Set of mobile sinks

for i :=1to M do

if NextDestination(m;) =
CurrentPosition(m;) then
8: N := SizeO f(GridSet(p;))
9: for j :=1to N do
10: W= {}
11: for each g € GridSet(p;) do
12: W« W U WaypointSet(g)
13: end for
14: Select a random w € W
15: NextDestination(m;) < w
16: end for
17: else
18: Move towards NextDestination(m;)
19: end if
20:  end for
21: end for

Algorithm 2 includes the pseudocode for the sink
mobility with GA. After the initial placement, the current
positions are set as the initials (lines [2-4]). Throughout
the operation of the mobile sinks (from start time ¢ := 0
to end time ¢ := T'), the movement decisions are made in
discrete time intervals. Whenever the mobile sink reaches
a next destination, it updates its next destination with a
random waypoint selected in the waypoint set of the par-
ticular base point index WaypointSet(p;) (lines [5-16]).
If the mobile sink has not reached its next destination, it

Fig. 5. Road allocation to 3 mobile sinks M := {m1, ma, ms}.

continues its movement towards N ezt Destination(m;)
(lines [17-19]).

While this procedure handles the patrolling duty of the
mobile sinks, the mobile sink will move towards an event
in the case of emergency. At the time of an emergency
event, NextDestination(m;) of the mobile sink is set
as the location of the event, which is received from the
sensor nodes.

3) Road allocation based sink mobility (RA): In the
road allocation based sink mobility (RA) approach, each
sink allocates one or multiple roads and patrols only
these roads during its operation. The allocation is based
on the grids and the waypoints on each road. Multiple
grid indices may contain waypoints on the same road. In
this case, the number of waypoints that corresponds to
each grid index is calculated and compared. The best grid
index with most number of waypoints marks the road
with its index, which will be then used for allocation
by the mobile sinks. The main purpose of using grids
for road allocation is the aim of allocating the closer
roads by the same sink instead of the sink having roads
in different regions. Initial placement of RA is different
than the previous two approaches, because after sinks
finish allocating the roads, each sink chooses a random
waypoint among the waypoints on its allocated roads.
During the operation, mobile sinks iteratively decide
their new destinations by randomly choosing random
waypoints on their allocated roads whenever they reach
a destination.

Fig. 5 illustrates the simple allocation of the roads
to the mobile sinks mq,mso, m3 in the road network.
Each road is assigned to a mobile sink while a mobile
sink may allocate multiple roads. The RA approach
guarantees for mobile sinks to operate in separate regions
from each other such that at any given time of the
operation, multiple mobile sinks cannot be patrolling on
the same roads. RA can be seen as an alternative way of



balancing the workload of the disaster area among the
mobile sinks.

Initial placement of RA is implemented by Algo-
rithm 3. In this algorithm, each road is assigned to a base
point index, bp, according to the number of waypoints
included by the grids with particular base point indices.
The corresponding road is assigned to a bp with most
number of waypoints (lines [4-19]). Later, each mobile
sink is placed on top of a waypoint. The waypoint
is selected randomly among all waypoints of the set
of roads of each base point index (line[20-27]). This
algorithm is for initial computation which can be done
offline. Therefore, it does not create an overhead for
computation to the mobile sinks. The time complexity
is O(KMG), where K is the number of roads, M is
the number of mobile sinks, and G is the number of
grids created.

Algorithm 3 Initial placement of Road Allocation
I: R+ {ri,ro,....,Tx} > Set of roads
2: B« {b1,ba,...,00} > Set of base points
32 M <« {my,ma,...mpr} > Set of mobile sinks
4: for i :=0 to K do

50 MaxSize + 0

6:  bp + null > Selected base point index

7. for j:=0to M do

8: W= {}

9: for each g € GridSet(b;) do

10: W« W U WaypointSet(g)

11: end for

12: W« W N WaypointSet(r;)

13: if W # {} and SizeOf(W) > MaxSize
then

14: MazxSize < SizeO f(W)

15: bp=3j

16: end if

17:  end for

18:  RoadSet(bp) < RoadSet(bp) U r;
19: end for

200 W+ {}

21: for i :=1to M do

22:  for each r € RoadSet(b;) do
23: W« W U WaypointSet(r)
24:  end for

25:  Select a random w € W

26:  Initial Position(m;) < w

27: end for

While the initial placement of RA is different than the
initial placement of GA, mobility decisions of RA during
the operation follow a similar pattern with GA. The
only difference between them is that with GA a mobile

sink updates the next destination by selecting a random
waypoint among all waypoints in the corresponding grid
set. In RA, however, the random waypoint is selected
among the waypoints in the road set. For some cases
such as a case where most people stuck in a particular
region, RA and GA may produce unbalanced workloads
on the mobile sinks, as some of the mobile sinks do not
encounter many sensor nodes. PF, however, overcomes
this extreme case as people’s locations attract mobile
sinks.

Considering various environments and conditions arise
during different types of disasters (e.g., flood, typhoon,
earthquake), safe evacuation of people is a challenging
and complex problem where providing an optimum so-
lution is not feasible. However, we believe that the three
heuristic approaches motivate the use of sink mobility in
different environments (e.g., theme parks, city squares,
festivals).

IV. SIMULATION STUDY
A. Simulation environment

We analyze the proposed network model and the sink
mobility models PF, GA, and RA through simulations
of the opportunistic network with mobile sinks. The
simulation experiments are conducted for the Magic
Kingdom park. We include two sink mobility models for
comparisons, which are called “random target location”
(RTL) and “random waypoint distribution” (RWD) mod-
els. In RTL, each mobile sink chooses any random target
location on the map, then sets the closest waypoint to the
target location as the sink’s next destination. In RWD,
each mobile sink chooses a waypoint randomly among
all waypoints and sets it as the next destination. RWD
favors the popular roads because popular roads tend to
include more waypoints than other roads.

Various metrics can be used for evaluating the effect
of the mobility models and the network performance.
These metrics can be classified into two types: Link-
based and network coverage metrics. Link-based metrics
include intercontact times, recontact rate, minimum hop
counts, message delays, and number of transmissions.
Network coverage metrics include number of detected
sensors, rescue success ratio, and average distance to
detected event. We include performance results related
to intercontact times, recontact rate, number of detected
sensors, number of transmissions and rescue success
ratio.

We evaluate the success of the opportunistic network
with 1-10 mobile sinks and transmission ranges of 10,
20, 50 and 100m. Evaluation of each setting is based
on 50 simulation runs. Each simulation run generates at



TABLE 1

SIMULATION PARAMETERS
simulation time 2000 s
sampling time 20s
disaster area size (=) 800x800 m
number of sensor nodes 200
sensing range 20 m
sensor message storage capacity | 100
transmission probability 0.9
grid width/height 50 m

number of effected people 20

rescue failure time 600 s
sink relative mass constant(\) 0.5
physical force impact factor o | 20.0
sink max speed 1 m/s
pedestrian max speed 1 m/s
pedestrian visibility 50 m

least about 2000 message transmissions among sensor
nodes or from sensor nodes to mobile sinks, while the
number of transmissions to mobile sinks varies by the
sink mobility model and parameters such as the number
of mobile sinks. All nodes in the network communicate
with the epidemic routing protocol [14]. We assume that
after two sensor nodes close a session, they wait for a
cut off time empirically set as 1 min before opening a
new session.

Table I includes the list of the simulation parameters.
Parameters related to the human mobility and the social
force model can be found in Table II. Detailed informa-
tion regarding the social force model can be found in
Appendix. Disasters tend to have effects on the random
locations of the area during the simulation time. In this
simulation study, instead of creating artificial disaster
zones, we marked the pedestrians which are effected due
to the effects of disasters.

B. Performance results

1) Intercontact times: Intercontact time is defined as
the duration between two consecutive encounters of a
mobile sink with a sensor node. Intercontact times metric
is commonly used for evaluating the performance of mo-
bile opportunistic social networks. We analyze intercon-
tact times of PF, GA, RA, RTL and RWD with 5 mobile
sinks placed in the disaster area with 25m transmission
range. The performance results of intercontact times with
confidence bounds are shown in Fig. 6. The results reveal
that among the five mobility approaches, PF and GA are
the ones which produce shorter intercontact times while
RWD produces the longest intercontact times meaning

TABLE II
HUMAN MOBILITY PARAMETERS

number of pedestrians 1000

min speed 0.5m/s

max speed 2.5m/s

number of red-zones 20

red-zone active time 500s

red-zone radius 50m

random move distance 10m

visibility 50m

SFM - interaction strength (A) | 0.11 £ 0.06

SFM - interaction range (B) 0.84 4+ 0.63

SFM - relaxation time (7) 0.5s

SFM - A\ 0.1

500
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Fig. 6. Intercontact times of PF, GA, RA, RTL and RWD with

confidence bounds.

the worst performance. Longer intercontact times cause
mobile sinks to delay communicating with a previously
contacted sensor node. Moreover, the intercontact times
of PF seem consistent, so that it is easy for the mobile
sinks to estimate the next contact time with a previously
contacted sensor node. In particular, consistency in the
intercontact times would allow us to find efficient meth-
ods for transmission scheduling.

A comparison of the intercontact times of the mobility
approaches provided by various numbers of mobile sinks
can be seen in Fig. 7. For PF, we observe that the number
of mobile sinks does not have a significant impact on
the intercontact times as the results stay in a constant
level from 1 sink up to 10 sinks. Moreover, PF provides
the best results for various numbers of mobile sinks.
RWD and RTL also do not have significant decays in the
intercontact times with the increasing number of mobile
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sinks. On the other hand, the intercontact times of the GA
and RA approaches become shorter as higher number of
sinks operate. Considering the fact that in the case of
more mobile sinks, each sink is assigned to a smaller
number of grids or roads. Therefore, their chances of
encountering the same sensor nodes increase.

In Fig. 8, we observe that for all transmission ranges
(10m, 25m, 50m and 100m), PF, GA and RA provide
shorter intercontact times compared to RTL and RWD.
As expected, with longer transmission ranges, intercon-
tact times decrease for GA, RA, RTL and RWD. More-
over, the effects of mobile sink positioning approaches
are more significant for lower transmission ranges.

2) Recontact rates: While intercontact times metric
provides insight into the performance of the network,
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Fig. 9. Recontact rates of PF, GA, RA, RTL and RWD with 1 to 10

sinks.

the intercontact times results do not involve the case
which a mobile sink communicates with a sensor node
only once during the entire simulation time. Therefore,
we analyze the recontact count for each pair of mobile
sink and sensor node, which is the number of contacts
of the mobile sink and the sensor node after their first
encounter. Recontact rate of a mobile sink is its averaged
recontact count considering all the sensor nodes that
communicated with the mobile sink. Fig. 9 shows the
results of average recontact rates with settings ranging
from 1 to 10 mobile sinks. The PF approach is the clear
winner with an average rate of more than 5.0 due to
sinks’ behavior of following contacted sensor nodes and
sticking with them as much as possible. The decrease
in the rates for 3 sinks is caused by the masses of the
mobile sinks which restrict them from staying close to
each other. For the single mobile sink setting, we observe
that recontact rates of GA, RA, RTL and RWD are very
low without any significant difference between them. On
the other hand, the rate difference becomes significant
for multiple sinks. Among these four approaches, GA is
the best one reaching the rate of more than 2.0, while
RA reaches the rate of approximately 2.0. On the other
hand, the rates of RTL and RWD do not significantly
increase with the addition of more mobile sink nodes in
the network.

As it can be seen on Fig. 10, PF produces the best
outcome in terms of the recontact rates for 10m, 25m,
50m and 100m transmission ranges. On the other hand,
RTL has the worst performance, producing less than
half of the recontact rates of PF for all transmission
ranges. Moreover, longer transmission ranges provide
higher recontact rates for all mobile sink positioning
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Fig. 11. Average number of transmissions of PF, GA, RA, RTL and
RWD for 10m, 25m, 50m and 100m transmission ranges.

strategies.

Considering intercontact times and recontact rates for
analyzing the tracking success of the mobile sinks, we
observe that PF is the best strategy. Compared to RTL
and RWD, GA and RA are better tracking strategies
since they produce shorter intercontact times and higher
recontact rates.

3) Number of transmissions: The number of trans-
missions metric represents the wireless communication
overhead which leads to the energy consumption of the
sensor nodes and the mobile sink nodes. We consider the
average number of wireless transmissions of all nodes
in the network including the transmissions in successful
or failed sessions. Fig. 11 shows the results of the
approaches with 5 mobile sinks for transmission ranges
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of 10m, 25m, 50m and 100m. First of all, we observe that
increase in transmission range dramatically increases the
number of transmissions. This is an expected result and
it is caused by the exponential increase in the number of
neighbors of a sensor node. In the case of having limited
energy resources, a more effective routing protocol may
provide better energy preservation for sensor nodes with
high transmission ranges. Secondly, the use of PF results
more wireless transmissions while the difference is not
very significant. This is an expected side effect of the
PF strategy since mobile sinks are able to communicate
with sensor nodes multiple times and in shorter time
periods. Nonetheless, sinks are in limited number and
the number of transmissions among sinks and sensor
nodes is significantly fewer than the number of trans-
missions among sensor node pairs. Furthermore, sinks
are assumed to have more resources in terms of energy
and storage while sensor nodes which are neighbors of
the sinks may consume more energy resources.

As an expected outcome of having more mobile sinks,
the number of transmissions increase from 1 mobile sink
to 10 mobile sinks as shown in Fig. 12. However, the
increase is not dramatic. From 1 sink to 10 sinks, it
is less than 20% for RA, about 15% for PF and less
than 15% for the other three approaches. Considering
the successful network coverage provided by having
multiple mobile sinks, the increase in the number of
transmissions is acceptable.

4) Number of detected sensors: We use the total
number of detected sensors metric in our analysis to have
better insight into the network’s coverage performance.
We mean that a sensor is detected when there is a
direct communication of the sensor with any mobile sink.
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Fig. 13 reveals the results of the approaches with 10m,
25m, 50m and 100m transmission range values with 5
mobile sinks. Among all the approaches, RA and PF are
overall the best ones reaching up to more than 80% of
the 200 sensor nodes. RWD also provides a reasonably
good coverage of sensor nodes since the mobile sinks
mostly choose the popular locations where sensor nodes
are also most likely present. With higher transmission
ranges, the coverage performance is better for all the
approaches. Having 50m or 100m transmission ranges,
RA provides the best network coverage such that most
sensor nodes encounter with at least one mobile sink
along their way.

Fig. 14 shows the total number of detected sensors
of the strategies from 1 to 10 mobile sinks. First, we
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observe that the number of detected sensors are higher
for RA and PF compared to the other three approaches.
RTL provides the worst performance, having less number
of sensor nodes detected for all cases. Moreover, the
increase in the number of mobile sinks brings an increase
in the number of detected sensor nodes. In comparison
to the single mobile sink setting, the number of detected
sensors becomes more than 3 times higher for 10 mobile
sinks. Hence, one can say that the network coverage is
highly dependent on the number of mobile sinks.

5) Rescue success ratio: We mark pedestrians “to be
rescued” in the following cases. When a red-zone (effect
of the disaster) occurs in a certain region, the people who
are located in that region are marked to be rescued. For
each experiment, 20 red-zones, as circular areas with
50m radius, are created at random times with an active
time of 500s (see Table II. The locations of the red-zones
are randomly selected on the map.

Considering the mobile sinks with capability of acting
to the emergent events, they should be able to reach the
areas where pedestrians in need of help exist. Moreover,
the time it takes to reach an emergent event must
be short. Thus, for evaluating the rescue success, we
calculate the sum of the message delay and the travel
time of the mobile sink after it receives the message.

We assume a rescue time of 10 minutes, which in-
cludes the message delay and the travel time. Fig. 15
shows the success ratio results of the approaches with
25m transmission range. This figure also reveals the
effect of having multiple mobile sinks to rescue success
ratios. With 10 mobile sinks, PF reaches more than 70%
of the emergent events in less than 10 minutes. For RTL,
success ratio increases from 10% to 60% from 1 to 10



mobile sinks while for the other approaches it increases
approximately from 30% to 70%.

By analyzing the results of the simulation experiments,
we observe that our proposed approaches overall perform
better compared to RTL and RWD. PF produces better
recontact rates and intercontact times, since the method
is designed in a way that when a mobile sink encounters
a large group of people, it follows the group during their
evacuation therefore creating and therefore contacting
the same nodes throughout this period. However, this cre-
ates more transmissions as can be seen in the results. GA
and RA on the other hand, provides a trade off between
recontacts and number of transmissions. Moreover, PF,
GA and RA provides better coverage (detected sensors)
since they are all distribute the mobile sinks in the area
and ensure they do not intersect in the same areas. On the
other hand, RWD and RTL do not provide collaborative
coverage which creates certain inefficiencies. In this
sense, RTL provides the worst performance since the
even the targets are placed in different places of the map,
the pedestrian roads the mobile sinks move along are the
same in many cases.

Overall, the network simulations provide promising
results in terms of metrics such as intercontact times, res-
cue success ratios, number of detected sensor nodes, and
average recontact rates. The performance results show
that the proposed network model and the approaches can
be very useful as a disaster response strategy in envi-
ronments with limited vehicle use such as theme parks.
As an interesting finding of the simulation study, we
first observe that having multiple sinks clearly produces
better network performance. Moreover, we observe that
with the use of 200 sensor nodes, which corresponds to
only 2% of the 10,000 pedestrians, the mobile sinks can
achieve 70% rescue success. Furthermore, higher rescue
success ratios can be achieved with vehicles having
higher speeds. Finally, for PF, GA, and RA mobile sink
mobility approaches, we find that fewer than or equal to
7 mobile sinks are sufficient enough to track most of the
pedestrians during their evacuation.

V. RELATED WORK

We previously studied the use of WSNs with mo-
bile sinks in theme parks for the purpose of event
coverage [15], [16]. In these studies, we focused on
the use of mobile sinks for security in theme parks in
ordinary scenario of theme park operation. Events are
classified as emergency situations such as health issues
or pickpocketing which may happen anytime during the
daily activities. In this paper, on the other hand, we focus
on the communication of sensor nodes and mobile sinks
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in disaster times and mission-critical operation of search
and rescue.

There are many research studies for solving the emer-
gency evacuation problem in city environments such
as downtown areas and evacuation of buildings during
disasters. Hadzic et al. [17] propose techniques for
evacuation guidance in real time for pedestrians during
emergency. This study focuses on evacuation from build-
ings during a fire. Similarly, Barnes et al. [18] propose an
algorithm for directing people to exits through arbitrarily
complex building layouts for emergency situations such
as fires. A simulation-based system for evacuation is
proposed by Zou et al. [19] and six different evacuation
plans for evacuation of Ocean City are simulated. Park
et al. [20] propose a rule based approach to model
spontaneous evacuation behavior considering a terrorist
attack scenario in a complex metropolitan area. Chen and
Zhan [21] compare the simultaneous and staged evacua-
tion strategy in which vehicles are organized to evacuate
according to the different sequences of the zones in
the disaster area. They use an agent-based approach
to model and simulate the evacuation of the vehicles.
Chen et al. [22] propose a framework for estimation
of pedestrian evacuation times as well as distribution
(load balancing) of pedestrian loads into the exit gates.
Kwon and Pitt [23] apply a dynamic traffic assignment
model, “Dynasmart-P” to the evacuation problem for
traffic in downtown Minneapolis, Minnesota. While the
aforementioned studies focus on the metropolitan areas
which involves various services and the use of vehicles
or building evacuations,we focus on the evacuation of
pedestrians from a relatively smaller outdoor disaster
areas. Gelenbe and Wu [24] survey the research related
to WSNs and communications for enhancing emergency
evacuation and Ibrahim et al. [25] reviews the intelligent
evacuation management systems which cover the aspects
of guiding people, evacuaton modeling, monitoring, and
disaster prediction.

There exist studies related to modeling pedestrian
mobility. Shiwakoti et al. [26] focus on the use of
biological entities such as ants for empirical study to
pedestrian crowds to enhance safety of pedestrians in
emergency conditions. Helbing et al. simulate the mo-
bility of pedestrian crowds for the ordinary scenario and
the evacuation situations in [4]. Georgoudas et al. [27]
propose an anticipative system to avoid congestions at
the exit points during the evacuation of the pedestrians.

Fujihara and Miwa [28] investigate the effects of
opportunistic communications in evacuation times for
disaster scenarios. El-Sergany et al. [29] propose a model
for evacuation planning and disaster management in
flood disaster scenarios. lizuka et al. [12] propose the



use of mobile devices of evacuees to form an ad hoc
network and find the evacuation routes accordingly and
avoid congestions. Vukadinovic et al. [30], [31] study
the mobility of theme park visitors based on GPS traces
and analyze impacts of the human mobility on wireless
ad hoc networking. Kamiyama et al. [32] considers the
evacuation problem in network consisting of a directed
graphs with capacities and transit times on their arcs.
Helgason et al. [33] investigate the effects of the human
mobility on the wireless communication performance of
ad hoc and delay tolerant networks. Khan et al. [34]
propose an approach where some sensor nodes in the
sensor networks temporarily act as mobile sinks in order
to achieve connectivity of WSNs during catastrophic
events. Qing-Shan and Ying [35] formulate the prob-
lem of outdoor evacuation as a scheduling problem in
queuing network and considers human guidance and the
probability of crowd panics. Tseng et al. [36] develop
a navigation algorithm based on WSNs to safely guide
people to a building exit and help them avoid hazardous
areas. Clementi et al. [37] propose using mobile ad hoc
networks for data flooding where nodes move indepen-
dently at random and exchanges data when they are in
each other’s transmission range. They show that node
mobility enhances the speed of information spreading
even for sparse and disconnected networks. Rozner et
al. [38] study the joint optimization of opportunistic
routes with a model-driven optimization approach and
achieve better performances compared to shortest-path
routing and opportunistic routing protocols such as the
conflict-graph (CG) model. Our model is unique and dif-
ferent than the existing studies of opportunistic networks
in terms of having multiple mobile sinks and pedestrians
with smartphones. In this case, performance of the
opportunistic network highly depends on the positioning
of the mobile sinks and the pedestrian mobility.

The use of mobile sinks in sensor networks have
various advantages such as prolonging network life-
time, while it brings challenges such as finding efficient
strategies of mobile sink movement and routing towards
mobile sinks. Khan et al. [39] survey various data collec-
tion approaches that exploit sink mobility. They classify
these approaches in three categories: path constrained,
path unconstrained, and controlled sink mobility-based
schemes. Han et al. [40] propose a routing topology
for WSNs with multiple mobile sinks, while Liu et
al. [41] proposed a topology control algorithm consid-
ering the mobile nodes in underwater WSNs. Vecchio
and Lépez-Valcarce [42] propose a greedy approach for
controlling the mobile nodes in WSNs. Boloni et al. [43]
demonstrate an agent-based coalition formation approach
including multiple mobile agents and simulate the New
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Orleans environment for the hurricane Katrina aftermath.

There are many studies aiming to provide solution
to the disaster management problem. Winter et al. [11]
study the evacuation problem in disaster areas and
propose the use of a mobile service “Get-Me-Out-Of-
Here” (GOH) running on smartphones. Benefits of com-
munication among people are observed for the evacua-
tion scenarios in which individuals have only the local
knowledge of the environment. Uddin et al. [44] propose
an agent-based mobility model of people with different
roles such as rescue workers and volunteers as well as
vehicles such as police patrol cars and ambulances. They
also propose the intercontact routing [45] for disruption-
tolerant disaster response networks to reduce the re-
source overhead. Gao et al. [46] list the characteristics
of disruption-tolerant networks as low node density,
unpredictable mobility and lack of global knowledge
and they aim to optimize data access by the cooperative
caching mechanism.

Ayday and Fekri [47] focus on the security problem of
delay tolerant networks, which are commonly used for
disaster response, and they propose a trust mechanism
to efficiently detect malicious nodes in the networks.
Drugan et al. [48] investigate clustering of dynamic net-
works with the help of community detection mechanisms
for mission-critical application domains such as rescue
and emergency services. Palmer et al. [49] develop the
“RAVEN” framework for collaborative data collection
by using smartphones during a disaster. Another data
collection system is proposed by Fujiwara et al. [50].
Their system involves the use of sensor networks and
an access network for detecting damages in a disaster
and sending the data to an emergency control center.
Tuna et al. [51] propose a system for automatically
deploying a WSN using multiple robots for the purpose
of human existence detection in disaster environments.
Their approach involves simultaneous deployment of the
sensor nodes during the exploration of an unknown area
and WSN-based communication. Our study differs from
these disaster management studies as we propose using
mobile sinks which can follow a determined route while
there exists an uncertainty in the movement decisions of
the pedestrians.

VI. CONCLUSION

In this paper, we propose a network model which in-
volves the use of smartphones and mobile sinks for track-
ing pedestrians during evacuation from disasters. We
consider the use of multiple mobile sinks and propose
three sink placement and mobility approaches, namely,
physical force based (PF), grid allocation based (GA)
and road allocation based (RA) movement strategies.



The performances of the proposed network model and
these approaches are evaluated in comparison to two
random sink mobility models through extensive network
and mobility simulations for the theme park scenario.
We observe that our approaches produce better results in
terms of the network coverage and the rescue success,
while they do not bring extra communication overhead to
the network. Moreover, it is shown that having multiple
mobile sinks in the network has significant advantages
over having a single mobile sink.

We find that our network model with multiple mobile
sinks can be useful as part of emergency evacuation
planning in large and crowded areas with limited vehicle
use. While we focus on the theme parks, the techniques
developed in this paper can be adapted to various similar
environments such as university campuses, large-scale
shopping malls, festival areas, airports and so on.

APPENDIX

We describe the mobility behavior of the pedestrians
as follows. The pedestrians have local knowledge of
the map and the knowledge of the location of the exit
gate that they first entered through. The local knowledge
is defined by the maximum visibility parameter which
shows the visible distance for each visitor and possible
obstacles. This parameter represents the radius of the cir-
cular visible area. We do not assume any communication
among pedestrians and no external broadcasting system
for raising the awareness.

Initially, the pedestrians are randomly distributed to
the waypoints. They try to reach the target point by
moving among the waypoints and mark the visited way-
points along their way. The next destination is selected
among visible and unmarked waypoints according to
their distances and directions from the current position of
the pedestrians. If there is no candidate among waypoints
for the next destination, the new destination is set by
exploration with a random direction. All of the above
steps describe the global movement from the initial point
to the target point and they are defined as the macro-
mobility behavior.

We consider micro-mobility of a pedestrian between
any two consecutive waypoints. We use the social force
model (SFM) [4] and model the social forces on the
pedestrians according to their social interactions with the
environment. By this model, the pedestrians adapt their
speed and direction of the movement from a waypoint
to another. In SFM, the sum of the social forces is given
by

fal®) = (0L v+ 32 Fas®)+ S fuilt), @)
(Fa) g

Ta
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for a pedestrian o where 7, denotes the relaxation time,
v2eY is the desired velocity, and the sums correspond
to the social forces by the other pedestrians (5) and
the obstacles (¢) respectively. The acceleration is then
given by f,(t) and the individual fluctuations. Assuming

fap(t) = f(dap(t)), circular specification is given by

f(docﬁ) = Aae_daﬁ/Ba daﬁ s

I dagl

where A,, B, denote the interaction strength and the
interaction range respectively.

For the elliptical specification of the model, the cir-
cular specification formula is expressed as a gradient
of an exponential decaying potential V3, where ellip-
tical interaction force via the potential is Vog(bag) =
ABe~b5/B Tn this equation, bap 1s the semi-minor axis
of the elliptical equipotential lines and given by

S
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where yo3 = (vg — vo)At and At = 0.5s.

_ Vap(bap)

fop = —Va,,Vap(bag) = dbas
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Equation 4 gives the repulsive force and Vg, , denotes
the gradient with respect to distance between « and f.
Using chain rule, this leads to

A e~bas/B . |dagll + l[das — Yasl
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Considering the angular dependence between two en-
countered pedestrians, with an angle of ¢, the angular-
dependent pre-factor w(yqg) is given by the below
equations

Vo _daﬁ
« - . 9
cos(as) = 1Tl Tagl @
w(pas(t)) = ((1 = AQ)HCOQW + Aa) . (10)

where the parameter A\, with 0 < A, < 1 is found by
evolutionary optimization as A, ~ 0.1. The fitness of
the social force model increases with the addition of the
angular dependence formulation to the model.

As a consequence of SFM, the time it takes for the
pedestrian to move to a destination point varies. The
main impact of this model is that the usage of the same
roads by the pedestrians causes an increase in the social
interactions. This increase slows down the flow of the



pedestrians along the roads. Since the theme parks are
crowded areas with limited vehicle use, SFM is the best-
fit model to represent the crowd dynamics during the
evacuation of the pedestrians in theme parks. For more
detailed information related to the pedestrian mobility,
we refer the readers to our previous work in [3].
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