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ABSTRACT
Crowd monitoring and management is an important application
of Mobile Crowdsensing (MCS). The emergence of COVID-19 pan-
demic has made the modeling and simulation of community infec-
tion spread a vital activity in the battle against the disease. This
paper provides insights for the utility of MCS to inform the de-
cision support systems combating the pandemic. We present an
MCS-driven community risk modeling solution against COVID-19
pandemic with the support of smart mobile device users (i.e., MCS
participants), who opt-in to crowdsensing campaigns and grant
access to their mobile device’s built-in sensors (including GPS).
Each community is defined by the spatio-temporal instances of
MCS participants that are clustered based on the projected future
movements of these participants. The MCS platform keeps track of
the mobility patterns of the participants and utilizes unsupervised
machine learning (ML) algorithms, more specifically k-means, Hid-
den Markov Model (HMM), and Expectation Maximization (EM)
to predict a risk score of COVID-19 community spread for each
community ahead of time. Through numerical results from simulat-
ing a metropolitan area (e.g., Paris), it is shown that communities’
COVID-19 risk scores at the end of a set of MCS campaign can
be predicted 20% ahead of time (i.e., upon completion of 80% of
the MCS time commitments) with a dependability score up to 0.96
and an average of 0.93. Further tests with a larger population of
participants show that community risk scores can be predicted 20%
ahead of time with a dependability score up to 0.99 and an average
of 0.98.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Networks→ Location based services; • Computing
methodologies→ Cluster analysis.
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1 INTRODUCTION
Mobile crowdsensing is a natural utility due to the wide availability
of non-dedicated sensors by encouraging smart mobile device users
to share their sensor data from their devices [1]. The sensors are
non-dedicated in that they are not used exclusively by a single
application, are not locked up during operation, and are available
to be utilized for other purposes. Crowd management and public
health [7] are two application areas that can benefit from mobile
crowdsensing.

With the surge of COVID-19, Internet of Things (IoT) sensing has
been considered a viable solution to model outbreaks by obtaining
social contact and/or epidemic networks. Chamola et al. [3] have
presented a comprehensive review of the emerging technologies,
including IoT and Artificial Intelligence, to battle the COVID-19
pandemic. The availability of IoT sensing will enable a better under-
standing of the community spread phenomenon, given that up to
30% of the positive cases may remain asymptomatic [8]. With this
in mind, Simsek and Kantarci [14] proposed utilizing MCS-assisted
and machine learning-based easily relocatable mobile assessment
centers to deliver frictionless low-cost testing capability in districts
with emerging clusters of confirmed cases based on daily reports.
In that particular study, the authors aim to mimic the behavior of a
Self-Organizing Feature Map that is proposed to model adversarial
settings in a mobile crowdsensing environment [25].

Risk monitoring and assessment for communities, particularly
vulnerable populations, is of paramount importance amid the COVID-
19 pandemic. As reported by Zhang et al. [24], aggregated public
data reveal insights such as infrastructural or demographic details
that lead to useful analysis and decision-making features. Predict-
ing the near future risks of community infection spread to help
decision-makers in government and healthcare agencies is an open
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area of research. It requires a spatiotemporal extraction and analysis
of acquired data from clusters of individuals. Therefore, MCS cam-
paigns are strong candidates to obtain such data for the prediction
of future spatiotemporal risks.

In this paper, we review existing IoT sensing solutions for com-
munity health monitoring to pave the way for MCS to help with
community infectious disease outbreaks. We also propose a novel
scheme that employs MCS to obtain predictive COVID-19 risk
scores at the community level, to help public health departments to
allocate scarce resources more effectively. To this end, MCS partici-
pants are monitored for up to forty minutes following their initial
report to an MCS campaign, and based upon the mobility pattern of
each participant and other participants, a machine learning-based
estimation is proposed under three different unsupervised meth-
ods: k-means, Expectation Maximization (EM) and Hidden Markov
Model (HMM). In an urban region (i.e., Paris), MCS campaigns for
10,000 and 30,000 users have been tested by monitoring the mobility
pattern of each participant for forty minutes. This value has been
set according to the maximum observation time recorded across
all users, which was 41 minutes. Since users may remain in the
same geo-location even after the last observational time, we set
the geo-location of any user by its last recorded location whose
observation time is less than the maximum observable time. The
estimated mobility patterns of all participants reveal clusters of risk
groups based on the estimated distance between them. Our simula-
tions indicate that the EM-based estimation of mobility patterns can
obtain COVID-19 risk scores of multiple communities 20% ahead
of the time (of them leaving the MCS platform) and make highly
dependable suggestions for the risk levels within the communities.
A recent survey on human mobility models is presented in [16].

The rest of the paper is organized as follows. Section 2 presents
an overview of IoT and mobile sensing for community health mon-
itoring solutions. Section 3 presents the proposed scheme for pre-
dictive analytics-backed MCS for look ahead community risk maps.
Numerical results are presented and discussed in detail in Section
4. The paper is concluded in Section 5 with future directions.

2 IOT AND MOBILE SENSING FOR
COMMUNITY HEALTH MONITORING
AGAINST OUTBREAKS

Several studies have tackled the role of IoT in community health
monitoring against outbreaks. For instance, the study in [4] in-
vestigates the viability of using wearable sensors to monitor the
populations at risk and patients with mild symptoms of COVID-
19. While discussing the integration of Artificial Intelligence with
IoT for healthcare services, the study in [6] positions IoT and mo-
bile sensing as the gluing component between AI-based decisions
and edge/fog computing facilities/infrastructures, particularly for
location-aware solutions to monitor and fight epidemic diseases.

With the recent surge of the COVID-19 pandemic, IoT-based
smart decision surveillance systems have been considered as po-
tential enablers to analyze and monitor the outbreaks through the
existing surveillance and/or communication infrastructure such
as personal mobile devices [12]. The study in [18] presents the
viability of interaction between four digital technologies, namely

IoT, big data analytics, AI and blockchains to transform the legacy
public response strategies against COVID-19 pandemic.

Leveraging the connectivity of IoT devices, Singh et al [15] iden-
tified various IoT applications to mitigate the impact of COVID-19
pandemic. The study suggests using IoT devices in record man-
agement for hospitalized patients while extending IoT-based self-
monitoring services to all other patients. The survey study con-
ducted by Nasajpour et al. [9] presents the role of the IoT technology
in response to COVID-19 in three phases: early diagnosis, quaran-
tine time, and post-recovery.

There have been several efforts to model personal contacts such
as using Bluetooth Low Energy signals on smartphones [10]. Simi-
larly, social contact between mobile devices is also another dimen-
sion investigated in an analytical study considering the infection
rates of COVID-19 under a Social Internet of Things (SIoT) network
[21]. Apart from the majority of the literature, the study in [11]
advocated the use of a dedicated IoT sensor to acquire contact trac-
ing data against COVID-19, where it is presumed that the users of
the dedicated IoT sensors have agreed to opt-out from any privacy
concern due to contact tracing at the expense of timely outbreak
reactions by the governments and/or healthcare organizations. This
assumption also aligns with the objective of addressing the trade-off
between the value of information and the cost of privacy in IoT
[19]. By utilizing the social sensing trend of MCS, Cecilia et al. [2]
presents the potential use of various posts related to COVID-19 in
social networks in the development of early warning systems. The
analyses involves the interpretation of feeds and posts on social
media concerning epidemiological control measures.

The study conducted by Swayamsidda and Mohanty [17], in-
troduces the concept of Cognitive Internet of Medical Things to
acquire patient data and enable rapid diagnosis. They suggest the
utilization of a cognitive radio network to acquire data from elec-
troencephalogram, electrocardiogram, blood pressure, pulse oxime-
ter, and electromyography sensors, and contact tracing data of
confirmed COVID-19 cases.

Based on the state of the art and relevant works centered around
sensing, sensor networks, and COVID-19, there are no existing
studies that leverage MCS campaigns that integrate with various
applications and services via smart mobile devices. That said, this
study aims to supplement rather than supplant the utility of existing
efforts to fight COVID-19 pandemic with IoT-enabled solutions.

3 PREDICTIVE ANALYTICS-BACKED MCS
FOR LOOK AHEAD COVID-19 RISK MAPS
OF COMMUNITIES

The proposed framework builds on the cloud-inspired sensing as
a service concept in MCS to leverage embedded sensors in smart
mobile devices.

Crowdsensing campaigns can obtain mobility patterns of MCS
participants who have opted to provide their GPS locations to the
MCS platform. GPS accuracy of mobile smart devices varies be-
tween 6 to 9 meters; hence it is impossible to measure the exact
distance between two individuals solely relying on the GPS signals.
Although BLE-based contact tracing solutions have been proposed,
mobility patterns of MCS campaign participants are needed to
forecast their future locations and estimate the distance between
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Figure 1: Minimalist illustration of the proposed COVID-19 community risk mapping via MCS

participants to calculate the risk scores. Fig. 1 presents a minimalist
illustration of the proposed COVID-19 community risk mapping
via MCS. Below, we explain the function of each building block of
the proposed solution.

3.1 MCS Campaigns and Data Acquisition
The first building block shown in Fig. 1 denotes a standard data
acquisition procedure in an MCS campaign. Thus, the prediction
of future COVID-19 risk scores of communities begins with the
launch of an MCS campaign. We can see that a typical MCS cam-
paign requests access to multiple sensors in users’ mobile devices.
The proposed framework is designed to cooperate with MCS plat-
forms to extract GPS data from reported multi-sensor data of MCS
participants. Here, what makes it further challenging is that each
participant needs to be observed for at least forty minutes to be
able to obtain a reasonable social contact network of communities.
This time window is used in the formulation of a distinct movement
pattern for each participant.

3.2 From Individual Mobility Patterns to
Communities

Mobility patterns of MCS participants are defined by time and their
geo-coordinates. Since the mobility data is high dimensional, this
step involves the application of dimensionality reduction technique,
namely t-distributed Stochastic Neighbor Embedding (t-SNE) [20],
to the mobility patterns. The dimensionality reduction also enables
intuitive visualization of mobility patterns on a 2D-plot. The re-
duced dimensions are fed into an unsupervised machine learning

algorithm to detect clusters within the acquired data where each
cluster stands for a community in the monitored region. This study
mainly employs and evaluates k-means, EM, and HMM methods
to detect communities and predict their future behavior regarding
movements, which is explained under the next building block.

3.3 Estimation of Future Behaviour of
Communities

This step elaborates on Part III of Fig. 1. The probability of having
a community spread by an airborne viral infection is higher when
people are in close contact with each other. As known worldwide,
the recommended social distance between individuals is two meters
to prevent airborne transmission. Spatio-temporal behavior of MCS
participants that reveal changes in their geo-coordinates in time
reveals clusters (i.e., communities) such that the estimated risk
of community spread in each cluster can be computed using the
predicted future coordinates of the users.

This study aims to improve the foresight and dependability of the
estimations of future community spread risks. Thus, this particular
building block’s objective is to integrate a look-ahead mechanism
to determine the future community risk at 𝑡% ahead of time, which
is referred to as the foresight in this study. The movement pattern of
a user is not random, i.e., a user is likely to walk in the same route
for a certain number of steps for a while, following upon their first
initial step. This phenomenon is observed in everyday life from the
commuting pattern of individuals. Any two instances of the mobil-
ity pattern of a user will be relatively close to each other with some
distance between them. Based on this fact, a clustering method can
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be employed on these patterns from their relative distance to each
other or through some probability function with a marginal error.
The clustering is essentially performed to predict the instances of
future movements of each user. It is worth noting that this study
focuses on evaluating the efficacy of the clustering algorithms to
determine the clusters. Following upon the detection of clusters
(i.e., MCS communities), for each participant in a community, a
‘contact list’ is generated based on the estimated distance to other
participants. The generation of the ‘contact list’ for an instance of
a participant/user 𝑖 in cluster 𝑐 is defined by the list of participants
within a circle of pre-determined radius centered around the par-
ticipants as he/she moves throughout the MCS campaign. Eqs. 1 - 2
formulate the contact list of an instance (i.e., geo-location) of user 𝑖
in cluster 𝑐 .

𝐶𝐿𝑖𝑐 = { 𝑗 : 𝑗 ∈ 𝑐 ∧ 𝐷𝑖 𝑗 ≤ 𝑟 ∧ 𝑖 ≠ 𝑗} (1)

𝐷𝑖 𝑗 = 2𝑅 arcsin ©«
√
sin2

(
Δ𝜙

2

)
+ cos(𝜙𝑖 ) cos(𝜙 𝑗 ) sin2

(
Δ𝜆

2

)ª®¬ (2)

As seen in the first equation, the contact list is a set of con-
tacts of user 𝑖 that are within the pre-determined radius 𝑟 (in me-
ters) around an instance of user 𝑖 . The distance is obtained from
a distance matrix, 𝐷 where each entry 𝐷𝑖 𝑗 denotes the haversine
distance [13] between a geo-coordinate instance of user 𝑖 and a
geo-coordinate instance of user 𝑗 from its set of instances (i.e.,
{ 𝑗𝑖𝑛𝑠 | 𝑗𝑖𝑛𝑠 ∈ 𝑀𝑗,𝑐 , 𝑗𝑖𝑛𝑠 ⊂ 𝑀𝑗,𝑐 }). 𝑀𝑗,𝑐 contains all the different in-
stances of user 𝑗 in cluster 𝑐 . For example,𝑀𝑗,𝑐 contains 10 instances
of user 𝑗 = 5 (i.e., 𝑗𝑖𝑛𝑠 = 10). In Eq. 2, Δ𝜙 denotes the latitudinal dif-
ference (in radians) between an instance of user 𝑖 and an instance of
user 𝑗 . Similarly, Δ𝜆 denotes the longitudinal difference in radians.
𝑅 is the radius of the earth which is multiplied by 1000 to represent
the distance in meters.

For every instance (i.e., geo-location) of user 𝑖 in cluster 𝑐 , a con-
tact list is generated. Thus, a user’s contact list dynamically changes
as time elapses. It is worth noting that some mobility patterns of a
user may fall into multiple clusters. The contact list of a user for
a specific cluster is calculated by taking into account geo-spatial
overlaps with multiple instances of other users. Thus, user 𝑗 may
appear in the contact list of user 𝑖 in multiple instances, and every
occurrence of user 𝑗 is considered as a new increase in the risk score
of user 𝑖 . The rationale for this is that the transmission probability
increases when an infected person stays around an individual for
more extended period than someone who passes by and walks away.
Given the fact that a significant portion of the infected cases remain
asymptomatic for COVID-19, instead of investigating whether a
contact is infectious, this study considers all contacts potentially
risky, and each contact at every instance translates into an addi-
tional increase in the risk score of an individual. For a comparative
study, we also compute a different number of clusters in all the
identified clustering algorithms. Any participant in the monitored
region can be susceptible to a viral infection. Measuring the symp-
toms of every individual in a city is still a challenging task, and
it may not even be possible due to scarcity of resources. Isolating
each case of an infected person would require an immediate action
of contact tracing, which is not the scope of this study. Instead,
this study associates a risk score to an individual (MCS participant)

based on their contact list, such that a community risk can be de-
rived from a set of participants and communities are ranked with
respect to their risk scores.

3.4 Risk Factor generation and Estimation of
Future Community Risk

This step presents the method for calculating the risk factor of a
cluster/community, facilitating the transition to Part IV in Fig. 1.
Note that the term ‘community’ in this risk study does not represent
a geographical area in the monitored region. Rather, it represents
various spatio-temporal instances of MCS participants under the
MCS campaign, which are clustered based on the estimation of
their future movements. Thus, in the monitored region, multiple
instances of users contributing to a community are spread across
the terrain along with other instances of different communities.
The risk score/factor of each user 𝑖 in every community is obtained
by keeping track of their contact list, which is mathematically
formulated by Eqs. 3-4 where 𝑟 𝑓 𝑖𝑐 denotes the risk factor of user 𝑖
in a cluster 𝑐 , 𝐼𝑖,𝑐 stands for the number of instances (geo-location)
of user 𝑖 in cluster 𝑐 ,𝑀 is the number of communities /clusters, and
𝑈 is the number of unique users across the𝑀 communities.

𝑟 𝑓 𝑖𝑐 = (
𝐼𝑖,𝑐∑
𝑖=1

𝐶𝐿𝑖𝑐 )/𝑔𝑙𝑜𝑏𝑎𝑙𝑚𝑎𝑥 (3)

𝑔𝑙𝑜𝑏𝑎𝑙𝑚𝑎𝑥 = max
1<𝑐≤𝑀 ;
1<𝑖≤𝑈

𝐼𝑖,𝑐∑
𝑖=1

𝐶𝐿𝑖𝑐 (4)

Every mobility instance of a user reveals a new footprint of
his/her contact network. A contact network footprint of user 𝑖 con-
tains the list of participants that are present within a pre-determined
circle of the user at a given mobility instance of that user. The size
of a contact network footprint is represented by the total number
of users contained in it. The sum of the sizes of all contact network
footprints of user 𝑖 is normalized by the maximum value of the
sums of the contact network footprints of all users in the entire
monitored region. This value is referred to as the 𝑔𝑙𝑜𝑏𝑎𝑙𝑚𝑎𝑥 value
defined in Eq. 4. The reason behind taking the maximum summa-
tion value among all users is that there is a possibility of clusters’
varying in their area. Thus, by setting a maximum global value, it
is possible to determine the relative risk scores/factors amongst
different clusters/communities. The average risk factor calculated
for all users in cluster 𝑐 denotes the risk factor of the community
represented by that cluster as formulated in Eq. 5 where 𝑁 stands
for the number of unique users in cluster 𝑐 .

𝑅𝐹𝑐 = (
𝑁∑
𝑖=1

𝑟 𝑓 𝑖𝑐 )/𝑁 (5)

4 SIMULATIONS AND NUMERICAL RESULTS
4.1 Simulation Settings
Mobility patterns of MCS participants are recorded using Crowdsen-
sim [5]. Paris, a metropolitan city, is chosen to acquire participants’
mobility patterns and detect communities through MCS campaigns
to generate and acquire sensory data in a realistic simulating en-
vironment. Crowdsensim deploys a crowdsensing campaign that
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allows participants (individuals who have opted to grant access
to the built-in sensors in their mobile devices) to share their sen-
sory data, including their mobility patterns. The mobility patterns
recorded by theMCS campaigns help forecast the future community
risks under the COVID-19 pandemic. We investigate the impact
of the participant pool in MCS campaigns through two scenarios
with populations of 10,000 and 30,000. Considering the population
of Paris, these correspond to 0.47% and 1.4% participation ratio,
respectively. The minimum and maximum travel times of a partici-
pant are set to 20 and 120 minutes. The MCS platform can recruit
a participant anytime throughout his/her travel. Furthermore, to
keep the scenarios realistic, no time enforcement to remain in the
campaign has been put in place for the participant, meaning that a
participant may choose to leave before the maximum travel time.
Wi-Fi antennas of participants’ mobile devices are used to connect
the participants to the MCS platform.

Each participant’smobility pattern is defined by the tuple<UserID,
Latitude, Longitude, Day, Hour, Min, Sec>. A heatmap correlation
matrix is used to test any correlation in the features. After analyz-
ing the correlation matrix, the final tuple is reduced to <UserID,
Latitude, Longitude, Hour, Min, Sec>. The tuple uniquely defines
the behavior of each user. It is worth to note that although the mo-
bility behavior is tracked in minute granularity, since participants
in an MCS campaign push sensed data to the MCS platform in the
order of seconds, mobility data are extracted out of the reported
sensory data of the participants, and are represented in the order
of minutes.

The difference between two consecutive instances/mobility data
of a user is oneminute. Thus, in everyminute, the latitude-longitude
values of a user are recorded. While the final tuple contains the
𝑆𝑒𝑐 attribute to denote time granularity at the order of seconds,
the change in the geo-coordinate of a user is observed at the order
of minutes which is recorded by the𝑀𝑖𝑛 attribute. Hence, the 𝑆𝑒𝑐
attribute is discarded in determining the geo-location of the MCS
participants in this study. Each participant is observed for up to
forty minutes following the first recorded instance for that user.
This observation leads to sufficient length in the travel distance for
each user. In this case, for 10,000 users, the mobility pattern data set
would contain 410K instances, while for 30,000 users, the mobility
pattern data set would contain 1.23M instances.

4.2 Evaluation Metrics
Two evaluation metrics have been considered to estimate the future
community risk of COVID-19 as defined below:

Dependability: To evaluate the estimation of future community
risk, we introduce an error metric to denote the average error
between the actual risk factor and the predicted risk factor for𝑀
communities against COVID-19 over the monitored region. The
sum of the differences between the actual and predicted risk factors
in all communities is averaged by the total number of communities
obtained by the clustering algorithm. One’s complement of the risk
prediction error is defined as the dependability of the prediction.

Foresight: The predicted COVID-19 risk factor of a community
is computed 𝑡% ahead of time. A prediction being 𝑡% ahead of time
indicates that the participants have been contracted by the MCS

platform for (1-t)% of their time commitments for the MCS cam-
paigns. In this work, we also aim to recommend the most feasible
value for the foresight (i.e., 𝑡% ahead) to make this future prediction
by testing the error between the actual and the predicted risk factor.
The total instances of the users are partitioned so to predict the
future mobility behavior of the users. In our experiments, 20% to
50% ahead predictions are tested to determine the most feasible
value for the foresight.

The average dependability metric can be mathematically formu-
lated in Eq. 6 where 𝑅𝐹𝑐 denotes the actual risk factor while 𝑅𝐹

′
𝑐

denotes the predicted risk factor with a foresight at 𝑡% ahead for𝑀
communities.

𝐷𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐴𝑣𝑔) = (
𝑀∑
𝑐=1

|𝑅𝐹𝑐 − 𝑅𝐹
′
𝑐 |)/𝑀 (6)

Under the 𝑀 communities of a particular clustering algorithm,
it is possible to identify the community having the least error be-
tween its actual risk factor and predicted risk factor by observing
their absolute differences. Thus, a community having the mini-
mum difference in the actual-predicted risk factor will result in the
maximum dependability of the prediction as formulated in Eq. 7.

𝐷𝑒𝑝𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑀𝑎𝑥) = min
𝑐∈𝑀

|𝑅𝐹𝑐 − 𝑅𝐹
′
𝑐 | (7)

4.3 Dimensionality Reduction and Clustering
T-distribution-based Stochastic Neighbor Embedding (t-SNE) is ap-
plied in all instances to map the feature set onto two dimensions
before selecting clusters. The output of t-SNE is a 2D vector repre-
senting the mobility patterns. The outputs are the data points that
will be clustered based on an estimation of future movements. In
each of the three clustering methods, namely Expectation Maxi-
mization (EM), Hidden Markov Model (HMM), and k-means, the
number of communities 𝑀 is set to 5, 6, 7, and 8, and for each
clustering algorithm, the value of 𝑀 is determined based on the
maximum dependability of risk prediction. From the sets of partici-
pant instances (concerning the aimed foresight), t-SNE computes
𝑀 clusters over the 2D vector. These clusters are referred to as
communities. The communities are also determined over the users’
entire committed times for the MCS campaigns.

4.4 Numerical Results
According to the Official U.S. government information about the
GPS and related topics, GPS accuracy of the new generation of
smartphones is 4.9m on average. However, this value can vary
depending on surrounding physical settings. Moreover, the GPS
accuracy of the previous generations of smartphones vary between
6-13 meters. We set the pre-determined radius (𝑟 ) for each partici-
pant’s risk circle to 10 meters, taking into consideration the factors
discussed above.

Table 1 presents the average dependability performance of the
three methods for COVID-19 risk estimation under Scenario 1 and
Scenario 2. These results represent the best combination for fore-
sight and number of communities for each clustering algorithm.
For simplicity purposes, we present the performance of these al-
gorithms under the best input parameter selections. In Scenario 1,
EM results in the maximum average dependability of COVID-19
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Scenario 1: Participants: 10,000 Participation: 0.47%
Clustering Method Number of communities Dependability (avg) Foresight
EM 8 0.9316 20% ahead
HMM 8 0.9301 20% ahead
k-means 8 0.9025 40% ahead

Scenario 2: Participants: 30,000 Participation: 1.4%
EM 8 0.9823 20% ahead
HMM 5 0.9820 20% ahead
k-means 8 0.9485 20% ahead

Table 1: Average dependability of COVID-19 risk estimation for 10,000 and 30,000 MCS participants

Community 50% ahead 40% ahead 30% ahead 20% ahead
Community 8 0.08 0.093 0.076 0.04
Community 2 0.139 0.112 0.196 0.066
Community 3 0.14 0.161 0.057 0.044
Community 1 0.089 0.125 0.071 0.055
Community 5 0.111 0.133 0.062 0.11
Community 4 0.128 0.132 0.051 0.101
Community 7 0.085 0.113 0.06 0.059
Community 6 0.124 0.15 0.089 0.071

Table 2: COVID-19 risk factor estimation error with respect to the actual risk factor of each community under EM Clustering
at various foresight for 10,000 participants. Communities are presented and color-coded starting from the onewith the highest
risk (red) to the one with the lowest risk (green) score. Actual and predicted risks vary between zero and one.

Community 50% ahead 40% ahead 30% ahead 20% ahead
Community 8 0.021 0.068 0.021 0.017
Community 2 0.024 0.088 0.0005 0.012
Community 4 0.038 0.12 0.026 0.071
Community 7 0.136 0.099 0.035 0.001
Community 1 0.049 0.124 0.13 0.009
Community 6 0.033 0.103 0.046 0.002
Community 3 0.048 0.135 0.038 0.012
Community 5 0.044 0.09 0.035 0.017

Table 3: COVID-19 risk factor estimation error with respect to the actual risk factor of each community under EM Clustering
at various foresight for 30,000 participants. Communities are presented and color-coded starting from the onewith the highest
risk (red) to the one with the lowest risk (green) score. Actual and predicted risks vary between zero and one.

risk estimation, i.e., 0.9316, while the number of communities is 8,
and foresight is at 20% ahead of time. In Scenario 2, EM and HMM
outperform k-means in terms of dependability of their risk predic-
tions while EM performs slightly better than HMMwith an average
dependability of risk estimation at 0.9823 with eight communities
and a 20% ahead foresight.

Below we provide a comprehensive discussion and analysis of
the performance results.

Scenario 1 - 10,000 users: Table 2 presents the COVID-19 risk
estimation error at various foresight with respect to the actual
risks of eight communities formed under EM. The definition of
a community in the context of this risk study is defined as the
different instances of MCS participants who have been clustered

intelligently based on an estimation of their futuremovements. Each
row in the table highlights the risk estimation error of a particular
community at different foresight (i.e., 20% to 50% ahead of time),
and the communities are sorted (in decreasing order) with respect
to their actual risk scores at the end of the MCS campaigns, and
based on their risks at the end of the MCS campaigns, each row is
also color coded accordingly varying from red to green.

Each COVID-19 risk factor estimation error represents the abso-
lute difference between the predicted risk (i.e., t% ahead of the end
of the participants’ MCS commitments) and the actual risk (i.e., at
the end of the participants’ MCS commitments) of a community.
The lower the error, the higher the dependability of risk predictions.
The results in the table particularly help to investigate the most
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feasible foresight for the community risk factors by answering the
following question: How much time ahead of the last MCS commit-
ments can the community risk scores be estimated with the lowest
possible error? The average of the absolute difference across all
communities under each foresight is used to find the foresight that
would lead to the lowest error. It is shown in the table that the risk
factor estimation error is minimum at a foresight that is 20% ahead
of the participants’ last commitments for the MCS campaign.

Under 20% foresight, the minimum error of risk factor estimation
(0.04) is obtained for Community 8. Thus, the maximum depend-
ability for the risk estimation is obtained for Community 8, and its
value is 0.96. The average of the risk estimation errors across all
communities is 0.07, which translates into an average dependability
of 0.93, as observed under Scenario 1 of Table 1. These low error
values (and their corresponding high dependability values) enable
estimation of the nature of risks associated with an outbreak within
communities. It is worth to note that risk estimations are made
solely based on the analysis of the participants’ movements during
MCS campaigns with fewer instances of individuals than the actual
populations. Based on these observations, it can be concluded that
the proposed framework can help public health services in improv-
ing decisions against a pandemic such as COVID-19 as they can be
informed about the projection of future risks within communities
through an IoT-enabled solution.

Scenario 2 - 30,000 users: Table 3 presents the risk estimation
error of EM with 30,000 participants at various foresight with re-
spect to the actual community risks. The table follows the same
structure as Table 2, i.e., each row highlights the risk estimation
error of the predicted risks to the actual risks at different foresight.
Similar to Scenario 1, in Scenario 2 (i.e., Table 3), as well, 20% ahead
foresight results in the lowest error in risk factor estimation. As
seen in the table under 20% ahead foresight prior to the comple-
tion of participants’ MCS contributions, the proposed framework
achieves the minimum risk estimation error (0.001) for Community
7, and the error translates into 0.99 dependability. The average of
the risk estimation errors across all communities is 0.0176, which
translates into an average dependability of 0.98.

When the average dependability under Scenario 1 is compared
to that under Scenario 2, it can be concluded that the higher the
participation, the better the estimations. This work suggests that
ML-Backed MCS platforms with sufficient participation can ef-
ficiently estimate the future risk scores of communities against
COVID-19 pandemic.

Look Ahead Risk Maps of Community Risk: Figs 2-3 illus-
trate the risk heatmap between the actual community risk and
predicted risk for Scenario 1 (10,000 MCS participants) and Sce-
nario 2 (30,000 MCS participants) under EM clustering to form the
eight communities. In both plots, the legend displays the risk factor
of 8 clusters, each associated with a color code varying from green
(lowest risk) to red (highest risk) through varying a hue factor value.
Each geo-coordinate of a participant is associated with a cluster.
Each participant is plotted on a representative (averaged) coordi-
nate color coded by the actual (left) or predicted (right) COVID-19
risk score of his/her community. COVID-19 hot spots of risk areas
can be determined by zooming into the risk maps as illustrated
in the figures. When the enlarged plots of actual and predicted
community risks are compared, it is observed that predictions with

20% ahead foresight align with the actual COVID-19 risks of the
communities. Observing the contours of both the enlarged plots, it
is noticeable that the risk factor decreases. This means fewer people
co-exist in those locations.

Another observation is that, as the number of participants in-
creases, the risk heatmap of predictions approaches the actual risk
heatmap of communities in terms of the hot spots although there is
not a dramatic change in the actual average community risk scores
as the average dependability is above 90% in both scenarios from
reference to Table 1.

5 CONCLUSIONS
Mobile crowdsensing has appeared as a viable non-dedicated sens-
ing paradigm for the Internet of Things. With the surge of COVID-
19 pandemic, crowd monitoring and decision-making systems can
significantly benefit from MCS campaigns to understand the com-
munity behavior and predict the upcoming risks against the epi-
demic. In this paper, we presented a four-block COVID-19 commu-
nity risk mapping framework on a machine learning-backed MCS
platform. The proposed framework consists of mobile crowdsens-
ing campaigns, mobility patterns, communities extracted out of
the mobility patterns, estimated future movements of the detected
communities, and the projected heatmaps for COVID-19 risks of
the communities. A feasibility study with multiple unsupervised
machine learning algorithms has been conducted, and it is shown
that the Expectation Maximization (EM) algorithm integrated into
the proposed framework can predict the community risk scores
20% ahead of time with average dependability of 93% and 98% with
10,000 and 30,000 MCS participants, respectively.

As this paper presents a proof of concept and a feasibility study,
future extensions and challenges have also been identified. MCS
can be implemented in either an opportunistic or a participatory
manner. The latter requires overt user involvement in accepting
the monitoring, reporting sensor and other information. Thus, par-
ticipatory MCS campaigns can provide information about future
locations of participants based on the tasks they have opted in.
However, this still needs to be complemented by an accurate trajec-
tory estimation. Therefore our ongoing agenda to extend this work
includes effective statistical and ML-based solutions to improve the
community detection and risk mapping for COVID-19. Last but not
least, this work has assumed that all participants were incentivized
to join MCS campaigns; however incorporating effective incentives
schemes from the literature such as [22, 23] into this work is also
included in our agenda.
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Figure 2: Look ahead risk map of communities against COVID-19 for Scenario 1: 10,000 users under EM clustering.
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