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Vehicular Ad-hoc Networks (VANETs) are based on vehicle to infrastructure communications in which 
the vehicles periodically broadcast information to update a Road Side Unit (RSU). The traffic data is 
forwarded from all RSUs to a cloud or a central server for global analysis and detection of congestion 
levels on the roads. However, communication costs may considerably increase when a large amount 
of data is transmitted to such cloud-like service providers. In this paper, we propose a data clustering 
framework to perform traffic information reduction at the edge of vehicular networks by exploiting fog 
computing. The proposed data clustering framework defines two methods for the reduction of the traffic 
data stream: (i) Baseline method, which is an ordinary traffic congestion detection approach, and (ii) 
two adapted clustering methods for a data stream; namely, the Ordering Points to Identify the Clustering 
Structure (OPTICS) and the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The 
results have shown that the proposed traffic data framework using clustering methods is accurate even 
when the vehicular traffic condition is highly congested, potentially reducing the communication costs 
and bringing significant results for the development of VANETs.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Nowadays, traffic congestion is one of the biggest challenges in 
major cities worldwide. People stuck in their vehicles for hours 
during traffic jams eventually leading to economic and time losses 
and excessive air pollution in urban areas. According to [27], 
drivers lose an average of 97 hours a year due to traffic congestion 
in the United States, resulting in $87 billion annually in money-
wasting. Therefore, better traffic management and efficient urban 
mobility have been primary objectives when fostering the devel-
opment of smart cities.

Besides initiatives to promote alternative transportation to re-
lieve heavy traffic and pollution in modern cities, the adoption 
of Vehicular Ad-hoc Networks (VANETs) can be an essential re-
source for more efficient and safer mobility. In fact, alongside other 
integrated services such as intelligent traffic lighting and urban-
related emergency management, VANETs are expected to support 
the creation of Intelligent Transportation Systems (ITS) [38]. In this 

* Corresponding author at: Computer Science Department, Federal University of 
Bahia (UFBA), Salvador, Bahia, Brazil.

E-mail address: maycon.leone@ufba.br (M.L.M. Peixoto).
https://doi.org/10.1016/j.vehcom.2021.100370
2214-2096/© 2021 Elsevier Inc. All rights reserved.
context, new developments are expected to profoundly transform 
the automotive industry in this century, significantly supporting 
new solutions for the biggest challenges of our time [11]. In this 
scenario, VANETs have been considered to provide innovative solu-
tions for smarter transportation, but many challenges remain [21].

Although VANETs can bring significant results to modern cities, 
an important concern is a considerable increase in the volume of 
data produced by technological advances in ITS solutions. The In-
ternational Data Corporation (IDC) has mapped some expectations 
regarding the number of connected devices, reporting an increase 
in the order of 50 billion to 1 trillion devices in 2020. Hence, 
that year accounts for 110 million connected cars with 5.5 billion 
sensors and 1.2 million connected houses with a total of 200 mil-
lion sensors [16] [13]. This complex scenario will inherently put 
pressure on the operation and management of intelligent trans-
portation systems, which have demanded optimizations to the way 
VANETs exchange data.

Roughly speaking, VANETs will provide information that can 
support better automated decisions by the vehicles, which may be 
exploited to avoid traffic and reduce the probability of accidents. 
As a result, different approaches have emerged for communication 
among vehicles, with different particularities [18]. Due to the com-
plexity resulting from inter-vehicle communications, which may be 
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hard to achieve due to the inherent movement patterns in such 
scenarios, it is common to employ some fixed communication in-
frastructure to support data transmissions. A Road Side Unit (RSU) 
has been frequently employed as a unique device designed to act 
as a gateway, receiving and providing information to moving ve-
hicles. However, although potentially benefiting when supporting 
communications among vehicles, high transmission demands may 
jeopardize the entire efficiency of the system and the performance 
of the employed RSUs, demanding proper planning and eventual 
optimizations.

VANETs have been leveraged to support the construction of 
Traffic Congestion Detection Systems (TCDS) [8]. TCDS have ex-
ploited the RSUs and direct communications among vehicles to 
detect traffic congestions and act to cease their causes, potentially 
alerting about accidents and slow-movement zones. For such sys-
tems, data is the most critical asset, which may be retrieved not 
only from vehicles and roads but also from any complementary 
systems such as social media and open databases maintained by 
governmental agencies [9,33]. Regardless of the case, it is natural 
to expect that a large amount of data is transmitted and processed 
to achieve efficient traffic detection, alerting, and mitigation.

Depending on the characteristics of the deployed VANET, such 
as the number of connected vehicles, the traffic data transmitted 
by the RSUs to the cloud may be massive, adding a high commu-
nication cost for the entire system. Since it may become critical, 
especially considering the expected increase in the number of ac-
tive VANETs in modern cities, this article proposes a new traffic 
data clustering framework to process traffic data streams.

The proposed framework leverages the fog computing paradigm 
when receiving traffic information from RSUs, reducing the amount 
of data forwarded to the cloud. Our proposed framework defines 
two different approaches: (i) a traffic congestion detection ap-
proach without data reduction (Baseline method), and (ii) a traffic 
congestion detection approach based on two clustering methods: 
Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) and Ordering Points to Identify the Clustering Structure (OP-
TICS). These methods are appropriately specified and simulated in 
different conditions, presenting promising results. The performance 
analysis shows that the clustering methods achieve a reduction in 
the amount of transmitted data in different ways. We believe that 
such clustering methods, which were not described before in the 
literature to the best of our knowledge, can potentially support im-
portant developments and research in the considered areas.

The remainder of this article is structured as follows. Section 2
discusses the related works within fog computing and vehicular ad 
hoc networks. The system model and problem formulation are pre-
sented in Section 3. Section 4 describes the conducted experiments 
and the results. Finally, Section 5 concludes the paper.

2. Related works

Various models of traffic congestion detection [40,7,3,2], with 
generic solutions, can be found in the literature. However, some of 
those proposals do not consider the issues related to the impact 
of traffic data generated on a network link between the RSUs and 
cloud-like services.

In order to reduce the communication delay between the ve-
hicles and the network server, the study developed by Wahid et 
al. [40] used a congestion detection method that considers that 
all vehicles on the network operate as sensor nodes. The vehicles 
send data to the server and receive traffic information to calculate 
the road congestion. In the following, responses can be transmit-
ted to all vehicles and road users. The selection of data to be sent 
is performed according to a transmission policy, which does not 
use a criteria of randomization or the cost of information. The de-
2

fined policy considers that all vehicles have the same opportunity 
to transmit data to the server.

Chen and Li [7] proposed a traffic control that uses an estima-
tion of the traffic flow phase derived from data obtained between 
VANET vehicles. That estimation uses a prediction algorithm based 
on Fuzzy logic, making it possible to classify the traffic flow in 
three states: free flow, synchronized flow, and wide movement 
congestion flow. The SUMO, MOVE, and NS2 frameworks were used 
for VANET simulation and data collection.

Bauza et al. [3,2] proposed the use of the CoTEC (COperative 
Traffic congestion detECtion) technique, which seeks to optimize 
the detection of vehicle traffic without the installation of infras-
tructure sensors, using only V2V communication. To detect con-
gestion conditions, CoTEC uses a Fuzzy logic mechanism based on 
signal messages received from neighboring vehicles. Bauza et al. 
[3] conducted and evaluated a congestion simulation (traffic sim-
ulator - SUMO) with CoTEC in a highway environment. In that 
work, the speed and location parameters were analyzed. However, 
the employed communicator range was 300 meters, transmitting 
messages periodically at 1 Hz, signaling the vehicle’s location and 
speed. For the highest precision of the data and adequate measure-
ment of the traffic intensity, it is necessary to compute an optimal 
amount of re-transmitter vehicles. The higher the number of trans-
mitted messages, the higher the congestion detection quality and 
the lower the RMSE (Root Mean Square Error).

Another aspect that needs to be considered is the problem of 
data collection. The study proposed by He and Zhang [15] inves-
tigated the rapid evolution of this problem in VANETs, aiming to 
minimize network communication overheads by choosing to trans-
port or forward data packets based on the current VANET traf-
fic information. To this end, they formulated data collection as 
a scheduling optimization problem, using an ideal dynamic pro-
gramming algorithm and heuristics based on genetic algorithms 
for small and large scale data collection, respectively. To reduce the 
transmission cost, the scheduling policy considers forwarding only 
data based on some parameters, including the delay in delivering 
the message from the vehicle to the base station.

In the works presented in [7,3] and [2], the Fuzzy logic was 
used to perform the identification/prediction of congestion. Al-
ready related to the communication cost of VANETs, the study [15]
proposed a data collection solution using a message scheduling 
policy, aiming to reduce the cost of transmitting these messages 
to a base station.

Data aggregation and reduction are characteristics present in 
the context of VANETs. Using the data recovery property in the 
message recovery signature (MRS), a real-time traffic aggregation 
scheme was proposed by Shen et al. [32]. In this model, data secu-
rity features are taken into accounts, such as resistance to attacks, 
preservation of privacy, and data confidentiality. The authors con-
sidered authentication in the transmission of messages, performing 
the validation and verification of the vehicles’ signatures in the 
network to guarantee security and prevent data from being ex-
posed to possible attackers. They also proposed the application of 
batch operations, increasing the efficiency in multiple vehicle sig-
nature verification.

Guedes and Campos [12], the authors presented a data aggrega-
tion scheme, which seeks to reduce the amount of redundant data 
in a VANET to mitigate problems related to scalability. The pro-
posed scheme is based on aggregated data, following fixed-length 
paths, which are used as a parameter for the decision mechanism. 
In order to validate the application of the scheme, NCTUns, a vehi-
cle network simulator was employed.

In this same perspective, the work presented by Kaur and Kad 
[19] implemented a data aggregation model that uses the Ad-hoc 
on Demand Distance Vector Reliability (AODV-R) protocol based on 
ant colony optimization. The used protocol is reactive; that is, a 
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Table 1
Comparison of related works.

Authors Application domain Application benefit* Execution environment Data stream

This work TCDS Communication cost reduction; Traffic data reduc-
tion

Fog and Cloud yes

Wahid et al. [40] TCDS Server communication cost reduction - no
Chen and Li [7] TCDS Deployment cost reduction - no
Bauza et al. [3] TCDS Minimize the network communication overhead - no
Bauza and Gonzalez [2] TCDS Communication overhead reduction - no
He and Zhang [15] Data collection Communication cost reduction; Data reduction - no
Shen et al. [32] Data aggregation Secure messaging cloud no
Guedes and Campos [12] Data aggregation Data reduction - no
Kaur and Kad [19] Data clustering Communication cost reduction - no
Aadil et al. [1] Data clustering Communication cost reduction; Data reduction - no
Keramatian et al. [20] Data clustering Data reduction Fog yes
Havers et al. [14] Data clustering Data reduction - yes
Najdataei et al. [23] Data clustering Data reduction - yes
link between the sending and receiving nodes is established only 
when necessary. To improve the process of choosing the shortest 
path, the authors proposed the use of the Ant Colony optimization 
algorithm, replacing the Djikstra and hop by hop algorithms imple-
mented in the AODV-R protocol. However, that work did not clarify 
the conceptual level where the proposal is located at, whether in 
fog or the cloud.

A clustering algorithm based on ant colony optimization for ve-
hicle networks denominated CACONET, proposed by Aadil et al. 
[1], aimed to optimize the formation of clusters to obtain a ro-
bust communication between the components of the VANETs. The 
central idea is to minimize the number of cluster heads in the 
network to reduce the communication cost. To validate the use 
of the algorithm, the authors compared other optimization tech-
niques based on minimizing the number of cluster heads, namely 
Multi-objective Particle Swarm Optimization (MOPSO) and Com-
prehensive Learning Particle Swarm Optimization (CLPSO).

The study proposed by Havers et al. [14] proposed a tool to 
collect data on vehicular networks, in addition to grouping them 
based on distance. For that, they used a technique of linear ap-
proximation by parts (PLA) with the purpose of compacting the 
volume of collected data (drastically reducing it), avoiding the col-
lection of raw data from vehicles that depend on an approach 
based on streaming limited by error. On the other hand, this ap-
proach performs the grouping of data online at the moment when 
they are being recovered from the devices. Thus, as we propose in 
this work, our approach uses continuous data instead of working 
with static databases.

Keramatian et al. [20] proposed a method of combining dis-
tributed multi-stage approximate clustering in order to detect and 
locate obstacles, efficiently exploiting the decentralized processing 
capacity that is available at the edge nodes, also avoiding network 
saturation of communication. To this end, the authors made use of 
point clouds from various LIDAR sensors, employing an efficient 
summarizing method. That method identifies the local clusters, 
then transforms the information collected from each object into 
a continuously computed summary of data. The authors evaluated 
the proposed method both in a simulated environment and in an 
IoT test bank, which contained representative fog/edge devices.

The work elaborated by Najdataei et al. [23] proposed applica-
tions of big data analysis, using efficient methods capable of pro-
cessing the raw data obtained from high-rate flows. For that, two 
approaches were used, LISCO and LISCO-P, which were compared 
to the PCL E. LISCO approach represents a streaming approach to 
process LiDAR points while they are being collected. Its parallel 
counterpart, LISCO-P explores the parallelism of Lisco’s processing 
pipeline in an architecture-independent manner.

As discussed, TCDS [40,7,3,2] can generate a large amount of 
data, leading to a significant increase in the cost of communica-
tion [15,19,1] in the network link between fog and cloud. Thus, for 
3

traffic congestion in a continuous data stream environment, aim-
ing to minimize the traffic data [19] and consequently the network 
communication cost, the Table 1 compares such aspects with the 
works covered in this section.

Most of the listed works focused on TCDS do not consider any 
reduction of traffic data to mitigate the impact of high data gener-
ation on the network link between RSU/fog and the cloud. Actually, 
to the best of our knowledge, no work has been found in the 
literature providing data reduction in the TCDS problem for a con-
tinuous data stream environment since static databases have been 
mostly exploited by such approaches. Therefore, in order to cope 
with the limitations of the previous works, we propose a frame-
work to detect road congestion that works incrementally and in an 
adaptive way, clustering the traffic data stream in order to reduce 
it, potentially decreasing the communication costs when avoiding 
to handle with large amounts of offline data.

3. Proposed approach

After defining the considered problem scope and the state-of-
the-art on related research areas, the proposed approach is de-
scribed in this Section. The fundamental concepts are described, 
as well as the required procedures. In order to support such dis-
cussions, Table 2 summarizes the adopted notations in next sub-
sections.

3.1. Target scenario

Smart cities are subject to huge amounts of data, flowing 
through different applications in an urban scenario. Among them, 
TCDS will also produce massive data to be processed. This is, in 
fact, the target scenario to be addressed by the proposed frame-
work, as depicted in Fig. 1.

We assume a smart city environment with active urban mo-
bility. In this environment, we have RSU/fog continuously collect-
ing packets from vehicles within its coverage area through IEEE 
802.11p. Orange thick arrows indicate the positional data flow from 
moving vehicles towards the RSU/fog. RSU/fog layer is responsible 
for routing the traffic data to the LTE/5G network. However, when 
the traffic data is clustered in the fog, considerably less data is 
sent on the router’s outgoing interface that connects the LTE/5G 
network.

3.2. Fundamental definitions

Considering the defined problem scope, it is assumed times-
tamped positional updates from moving vehicles, which are trans-
mitted in a streaming fashion. Therefore, let D(B, t) be the set of 
continuous traffic data (B) arriving in the RSU/fog at time t , τ be 
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Table 2
Defined notations.

Notation Description

G Directed and weighted graph
τ Current time
N B Network bandwidth −→ (S B/T )

LB Represents the traffic data: sum of all packet size
S B Traffic data (bps) −→ (LB + λB )

λB Average arrival rate
T Channel bandwidth (bps)
a Accuracy obtained
c Minimum accuracy acceptable
V Set of intersections −→ {v1, v2, ..., v |V |}
E Set of road segments −→ {e1, e2, ..., e|E|}
N Set of vehicles −→ {n1,n2, ...,n|N|}
U Set of roads segments −→ {e1, e2, ..., e|e|}
W Set of weights −→ {(w1, t1), ..., (w2, t2), ..., (w |W |, t|W |)}
vo Source intersection
v p Destination intersection
D Traffic data stream −→ {(B1, t1), (B2, t2), ..., (B |B|, t|t|)}
B Beacon message −→ (τ , P x,y, id)

t Timestamp
P x,y Position of a vehicle on the road
id Unique identification code of a vehicle
x Latitude
y Longitude
�t Interval of time
� Traffic data reduction factor achieved
R Traffic reduction achieved
s Speed
savg Average speed in a road segment
smax Maximum allowed speed in a road segment
d Traffic density
MinPts Minimum number of vehicles in a cluster
ε Neighborhood radius DBSCAN parameter
w Traffic flow weight in a road segment
λ Set of points spread across in each cluster

Fig. 1. Data Flow Framework Overview for Traffic Congestion Detection System. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

the current time, and 0 be the starting time. Thus, for each new 
traffic data Bi obtained in the RSU, it is attached to the tuples 
newly arrived in the set. Thus, the continuous traffic data set B at 
time τ is given by D(B, τ ) = ∪τ

t=1(D(B, t) − D(B, t − 1)) ∪ D(B, 0)

which is characterized by a spatial trajectory. A spatial trajectory 
is given by the movement of a vehicle in geographic spaces, usu-
4

Fig. 2. Framework Data Pipeline.

ally represented by a series of chronologically ordered points, for 
example, p1 −→ p2 −→ . . . −→ pn , where each point p consists of a 
timestamp (t) and a pair of geographic coordinates (x, y). The p
trajectory is considered as a discrete sample but the movement 
of a set of points is a huge amount of sample, so a trajectory is 
considered as data flow. The spatial trajectory was applied by the 
[5,34,6,17,22] to identify traffic congestion over the time for sev-
eral roads.

This continuous traffic data flow generated over time by vehi-
cles is usually large, leading to network congestion, packet losses, 
higher communication expenses, waste of bandwidth, and in-
creased delay. For that, N B = S B/T gives the use of network band-
width, with S B representing the traffic data (bps), for T as the 
channel bandwidth (bps). Moreover, S B is also given by (LB + λB), 
where LB is the sum of all packet size and λB is the average ar-
rival rate. The greater the number of vehicles, the greater is N B . 
One way to approach this problem is to minimize LB subject to 
the constraint a ≥ c, where a is the accuracy obtained, and c is the 
minimum accuracy acceptable to detect traffic congestion.

3.3. Streaming data pipeline

The proposed framework uses a pipeline scheme based on a set 
of connected components, allowing the continuous processing of 
the traffic data flow for detection of the congestion level on the 
roads. Thus, it is composed of a series of streaming data process-
ing stages in which each step delivers an output that is the input 
to the next one. However, our framework can process in parallel 
some independent steps. For example, while the clustering method 
is being applied, the data gathering process remains in operation. 
Fig. 2 shows the pipeline of our data reduction framework.

We highlight the main framework pipeline components: data 
collection, sampling, clustering, data visualization, and decision-
making, which are presented as follows:

• Data Collection: The data collection phase occurs when ve-
hicles periodically send a beacon message (IEEE 802.11p) to 
the nearest RSU. VANETs use Wireless Access in Vehicular En-
vironments (WAVE), a service provided by the IEEE 802.11p 
standard. The main infrastructure consists of RSUs engag-
ing vehicles via WAVE to collect traffic information such as 
time, speed, and vehicle location. WAVE is dedicated to short-
distance communication and uses beacon packets to exchange 
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Table 3
Beacon Payload.

SenderID TabSize VehiID PcktID Lat Lon Speed Head Time ...

1B 1B 1B 2B 4B 4B 4B 4B 8B
information between vehicles and infrastructure. A beacon 
message, Table 3, is an IEEE 802.11p 2-layer periodic message 
of situational information used by RSUs and vehicles to ex-
change knowledge in the Control Channel (CCH). Such beacon 
has the situational information with 27 bytes but can reach 
approximately 100 bytes [28]. Depending on the beacon rate, 
the channel load can increase in scenarios of a high number 
of vehicles, overcharging the network. When CCH-network is 
overloaded, beacons packets are lost, causing unpredictable be-
havior [6,31,35];

• Sampling: There is a simple sampling approach designed in 
the framework, which does not take the data itself into ac-
count, e.g., when using a rate of [1:2], the second given traffic 
data is always routed from each RSU to the fog;

• Clustering: The framework uses a sliding time window to 
contain the traffic data stream that is processed by the Clus-
tering approach. Within this context, we use two clustering 
algorithms: a) an adapted Density-Based Spatial Clustering of 
Applications with Noise (Adapted-DBSCAN) (see Algorithm 2) 
and b) the Ordering Points To Identify the Clustering Structure 
(Adapted-OPTICS) (see Algorithm 3). Both algorithms are re-
sponsible for implementing different grouping techniques that 
will be compared herein. DBSCAN and OPTICS are used due 
to their density-based way of conducting the cluster. Besides, 
DBSCAN and OPTICS do not require the number of clusters 
(k-number) a priori, which is essential for the dynamic envi-
ronment of a vehicular network;

• Data Visualization: In the Data Visualization stage, a Multi-
dimensional Projections is enabled to map (or project) traf-
fic data into lower dimensional embedding space, typically 
two or three-dimensional. Formally, given a VANET environ-
ment containing n-dimensional points, a dataset D is denoted 
as Dn = {px,y

i ∈ Rn}1≤i≤N , which can be seen as a function 
f : Rn × ρ → Rm mapping each point px,y

i ∈ Dn to a point 
qi ∈ Dm , where m is the projected (visual) space and ρ de-
notes the parameter space of f ;

• Decision-Making: The results generated by data reduction 
techniques are sent to the cloud layer (LTE/5G) in order to 
support the desired traffic congestion detection. Therefore, it is 
possible to use such information in the Decision-Making Pro-
cess, providing better vehicle routes or re-routing.

Next, we describe the three main layers of this environment 
and how they relate to our framework.

3.3.1. VANET layer
The VANET Layer offers a set of weighted graphs using the road 

information, which is based on spatial and temporal analysis. The 
definition of the road network is described as follows:

Definition 1. Let a VANET be modeled as a directed and weighted 
graph G = (V , E), where V = {v1, v2, ..., v |V |} is the set of inter-
sections and E = {e1, e2, ..., e|E|} is the set of road segments con-
necting the intersections. Also, let N = {n1, n2, ..., n|N|} represent 
the vehicles on the road. When a vehicle ni , where i represents 
the ith vehicle ∈ N , is driving from a source intersection vo to a 
destination intersection v p , an ordered set of road segments in the 
route is defined as Uo,p = {e1, e2, ..., e|e|}, where |e| is number of 
road segments in the route.
5

The TCDS process starts in the urban mobility environment and 
involves architecture and communication capacity between its ele-
ments. In this work, this layer is responsible for producing a mas-
sive continuous data flow containing essential information about 
traffic state identification at a specific moment. In a VANET envi-
ronment, traffic data is spread out in a beacon way. Each beacon 
must be encapsulated, forming a metadata set that describes the 
current state of a specific vehicle. The beacons sent from different 
sources are gathered to form a landscape representing the traffic 
state in the scenario.

A Road Side Unit (RSU) is a processing unit placed along the 
road to receive data emitted for certain vehicles. Thus, a RSU pro-
vides part of the connectivity features in a VANET scenario, the V2I 
communication. The V2I communication consists of connectivity 
between vehicles and infrastructure available in a particular high-
way stretch. Each available RSU along the structure has a certain 
cover radius, and once under this radius, beacons emitted by ve-
hicles must be recovered by the RSU. On the other hand, beacons 
outside the RSU covering area must be discarded. The high fre-
quency in which beacons are spread out in the vehicular network 
scenario is required because vehicles, in general, do not know if 
they are in a coverage area, so they must be recognized as soon as 
possible. However, this frequency can represent a risk of network 
overload. The data reduction approach proposed in this article tries 
to mitigate this effect.

There are several RSUs typically attached along roads or inter-
sections on the communication aspects, using beacon packets to 
exchange data with vehicles. We assume a message exchange fre-
quency of 1 Hz, the minimum to detect a traffic jam according to 
[31]. RSU was structured under protocol 802.11p, and we use a 
standard header as a form to standardize the exchange of infor-
mation among layers. IEEE 802.11p is based on dedicated short-
range communications (DSRC) radio technology to exchange data 
between vehicles and RSUs.

3.3.2. Fog computing layer
The fog layer deploys two different approaches for sampling 

(Baseline) and clustering (Adapted-DBSCAN and Adapted-OPTICS). 
The Baseline was built in the fog to create similar conditions when 
comparing the performance with clustering approaches. Actually, 
Baseline is a simple and straightforward algorithm (Algorithm 1). 
Merely dealing with traffic data by road segment without concern 
about data reduction issues, the baseline algorithm forwards all 
traffic data collected from the cloud’s vehicular environment.

The Baseline Algorithm 1 goes through all segments of the road 
(lines 1 to 11) and performs the steps to follow. In line 1, all in-
formation in the ei segment is initialized to 0 (to ensure that the 
path information is empty). Lines 3 to 10 run through all the new 
P points and check if this P point has already been visited (line 5). 
If true, a Pt counter is incremented to signal that point has been 
visited Pt times. If false, the point P is marked as visited, and its 
information is assigned to the segment ei .

As the Baseline Algorithm operates in the fog, sending all data 
received from the urban mobility layer to the cloud allows us 
to perform comparisons with data reduction methods concerning 
traffic classification accuracy. However, the main goal of fog is to 
reduce traffic data, acting as the receiver of all data streams from 
the mobility environment, and providing data reduction strategies 
based on the density and distribution of the vehicles along the 
roads. As aforementioned, the data reduction process implemented 
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Algorithm 1: Baseline Algorithm.
Require: Set of stream points (D) containing all

positional vehicle information in the time
interval �t

Ensure: Set of stream points (D) organized by road segment ei

1: Initialize visited = 1
2: for all road segment ei ∈ E do
3: Initialize road segment information ei = 0
4: for all new point arrived P ∈ D do
5: if P is visited then
6: P = Pi+1
7: else
8: P = visited
9: ei = (τ , P x,y, id)

10: end if
11: end for
12: end for
13: return (E)

in this layer aims, among other things, to reduce the communi-
cation cost in the LTE/5G link, besides mitigating latency issues 
and network overloading. The definition of traffic reduction is pre-
sented as follows:

Definition 2. Let a vehicle N be modeled as N = (n1, n2, ..., ni), 
periodically sending Traffic Data (B = τ , id, P x,y) to the nearest 
RSU/fog, where τ represents the data timestamp, id is the vehicle 
identification number, and P x,y gives the location of the vehicle 
ni for the latitude x and the longitude y. Besides, the speed s(i)
of each vehicle ni is automatically obtained by the difference be-
tween two consecutive position points (P xi ,yi − P xi−1,yi−1 ). Hence, 
the total amount of traffic data stream 

∑|N|
i=0(

∑|T D|
j=0 T Di

j) is clus-

tered to R = (
∑|N|

i=0(
∑|T D|

j=0 T Di
j))/� | (∀ n ∈ N : � ≥ 1), where � is 

the data reduction factor and R is the traffic reduction achieved.

As mentioned earlier, the data reduction process proposed 
in this article takes advantage of the density-based algorithm 
Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN), developed by [10]. Our contribution lies in the technical 
and conceptual adaptation of the DBSCAN algorithm (Algorithm 2) 
to use it in a continuous data flow environment. This adaptation 
enables the DBSCAN to efficiently extract “on-the-fly” the traffic 
condition insights from the traffic data stream clustering.

In order to provide a comparative analysis of Adapted-DBSCAN 
with another clustering algorithm, we also implemented the 
Adapted-OPTICS algorithm. The OPTICS implementation follows the 
same adaptations made in DBSCAN, creating a fair environment to 
measure and analyze the results. This comparative analysis can be 
useful to validate our proposed framework.

The Adapted-DBSCAN Algorithm 2 initializes the k cluster set 
with 0 (line 1) and runs through all the P points present in the 
D set (lines 2 to 27). As the Baseline, it checks if the point has al-
ready been visited (line 3) and increments its counter (line 4). If it 
has not been visited yet, it is marked as visited (line 6) and con-
tinues processing. In line 8, all neighbors Nbrs of P are retrieved, 
and then it is checked whether the number of neighbors exceeds 
the minimum value MinPts passed as a parameter. If larger, P is 
marked as a node. Otherwise, an incrementing variable ki (line 12) 
responsible for counting the number of clusters k is incremented 
(ki+1) and the value in P is assigned to this cluster k (line 13). 
Then, all P ′ points present in Nbrs are processed (lines 14 to 25). 
It is verified if that point has not been visited (line 15), and if true, 
P ′ is marked as visited on line 16. Soon afterward, all neighbors 
Nbrs′ of P ′ are recovered (line 17), and it is checked if the to-
tal number of neighbors Nbrs′ is equal to or greater than MinPts, 
that is, there is a minimum number of neighboring nodes in Nbrs′
to be formed a cluster (line 18). If this is true, the set of neigh-
6

Algorithm 2: Adapted-DBSCAN.
Require: Set of stream points (D) containing all

positional vehicle information in the time
interval �t , as well as MinPts and
NeighborRadius ε

Ensure: Set of Clusters (k and k′) assignment for
each �t

1: Initialize clusters set k = 0 and visited = 1
2: for all new point P ∈ D do
3: if P is visited then
4: P = Pi+1
5: else
6: P = visited
7: end if
8: Nbrs = all P ∈ ε .neighborhood
9: if |Nbrs| < MinPts then

10: P = noise
11: else
12: k = ki+1
13: k = P
14: for all P ′ ∈ Nbrs do
15: if P ′ is not visited then
16: P ′ = visited
17: Nbrs′ = all P ′ ∈ ε .neighborhood
18: if |Nbrs′| ≥ MinPts then
19: Nbrs = Nbrs ⊕ Nbrs′
20: end if
21: end if
22: if P ′ /∈ k ← (k = 0, ..., k = n) then
23: k = P ′
24: end if
25: end for
26: end if
27: end for
28: for all k ← (k = 0, ..., k = n) do
29: k′ .append(k.centroid ⊕ k.Nbrs(λ))
30: end for
31: return (k′)

bors Nbrs merges itself with the set Nbrs′ (line 19). In line 22, it 
is verified that P ′ is not present in the set of clusters k and adds it 
to this set true case. In the end, line 29, all clusters are processed 
and added to the set of clusters k′ , adding their centroid and some 
neighbors (defined by a percentage λ) in the representation of the 
object. This k′ is the return of the Adapted-DBSCAN algorithm.

It is worth highlighting that a suitable ε can impact the qual-
ity and accuracy of the Adapted-DBSCAN algorithm. In [26], the 
authors make an exploratory analysis in order to measure this im-
pact. The results showed that with low ε values, the data reduction 
rate increases but with low accuracy. On the other hand, when the 
ε value increases, the accuracy rate also increases up to a thresh-
old identified by the knee method [30].

DBSCAN requires a representative dataset to discover new clus-
ters. However, in a continuous data flow environment, this rep-
resentativeness may be lost since, with each interaction, a new 
data flow is arriving at processing. Thus, to handle this behavior, 
we use a sliding window which works as a mechanism to adjust 
flexible limits in the unlimited flow, to seek a finite, but always 
a variable set of tuples, which is considered as a temporary rela-
tionship, as explained at [37] and [25]. In this way, the timestamp 
values of the streaming tuples are checked for inclusion in a pre-
specified time interval, producing an approximate response to a 
query in the data stream, which allows the Adapted-DBSCAN to 
analyze parts of the recent data instead of looking at all the his-
tory of the data stream. Therefore, the sliding window gathers the 
coming data in a pre-specified time interval (�t), and when the 
elapsed_time > window_time_limit , the accumulated data are sub-
mitted to the processing by the Adapted-DBSCAN algorithm.

After providing traffic data stream clustering, the first reduction 
process is offered automatically by discarding everyday noises re-
sulting from the Adapted-DBSCAN algorithm. The next step is to 
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reduce the amount of traffic data sent to the cloud. Thus, based on 
the vehicles’ density distribution on the road for each sliding win-
dow, each created cluster is transformed into a new smaller cluster 
but maintaining the same similarity representation as the origi-
nal one. However, before reducing the number of elements within 
each cluster, we choose the most representative point within each 
cluster to act as a centroid element. In the ordinary DBSCAN, there 
is no notion of a centroid, and we built this option to provide a 
central element inside the cluster k with the minimum distance 
from one another. The goal is to choose a spread set of points (λ) 
in each cluster with the same similarity (position and speed) from 
the centroid. As a result, we sent to the cloud a subset represent-
ing more relevant elements for each cluster. As aforementioned, 
this data selection strategy was also implanted in Adapted-OPTICS 
algorithms in order to create a fair comparative analysis environ-
ment.

Algorithm 3: Adapted-OPTICS.
Require: Set of stream points (D) containing all

positional vehicle information in the time
interval �t , as well as MinPts and
NeighborRadius ε

1: Initialize clusters k = Unprocessed
2: for all points P ∈ D do
3: pt.reachable_dist = undef ined
4: end for
5: for all unprocessed point P ∈ D do
6: Nbrs = getNbrs(P , ε)
7: mark P as processed
8: k′ .append(P )
9: if core_dist(P , ε, MinPts) != undef ined then

10: Seeds = empty priority queue
11: update(Nbrs, P , Seeds, ε, MinPts)
12: for all q ∈ Seeds do
13: Nbrs′ = getNbrs(q, ε)
14: mark q as processed
15: k′ .append(q)
16: if core_dist(q, ε, MinPts) != undef ined then
17: update(Nbrs′, q, Seeds, ε, MinPts)
18: end if
19: end for
20: end if
21: end for
22: return (k′)

The first step of the Adapted-OPTICS Algorithm 3 is to initialize 
the distance of all points in D with undef ined (lines 1 to 3). Then, 
for each point not yet processed, the following tasks will be per-
formed: In line 5, all neighbors of P are captured given a distance 
defined by ε, in line 6, the point is marked as processed, and in 
line 7 it is added to an ordered list k′ (which is the output of the 
algorithm). Soon after (line 8), it is verified that the point pt is not 
a noise, that is, if the core distance of P is not undef ined. If true, a 
priority queue is initialized and assigned to Seeds (line 9). In line 
10, the update function (detailed in the next paragraph), responsi-
ble for updating the reachable distance of each neighbor from P , is 
invoked, passing as parameters the neighbors of P (Nbrs), P itself, 
the queue Seeds previously initialized, ε and MinPts. After updat-
ing neighboring points and filling out the Seeds queue, each item 
within this queue is processed (lines 11 to 18). The neighbors for 
each q item in Seeds are retrieved on line 12, marked as processed 
(line 13), and added to the ordered list k′ (line 14). In line 15, it 
is checked whether the core distance of q is not also noise. If so, 
the update function is again invoked to process q and its neigh-
bors Nbrs′ . In the end, the Adapted-OPTICS algorithm returns an 
ordered list k′ with all P and q processed points.

The Adapted-OPTICS update method (lines 10 and 16) works as 
follows:
7

Table 4
HCM Classification.

(wi ) LOS Traffic Congestion Classification

[0,0.15] A Free-flow
[0.15,0.33] B Reasonably free-flow
[0.33,0.50] C Stable-flow
[0.50,0.60] D Approaching unstable-flow
[0.60,0.70] E Unstable-flow
[0.70,1.00] F Breakdown-flow

1. First, it calculates the central distance to a given point P ;
2. Second, a loop is made for all P neighbors so that their reach 

distance is updated;
3. Then, if the object in the loop has not been processed, pro-

ceeds to the next step;
4. It calculates the new reach distance of this object in the loop;
5. If the object does not have the defined distance yet, then this 

object receives the value of the previous step, and it is added 
to the Seeds queue;

6. Otherwise, it is checked whether the newly calculated distance 
is less than the object’s current reach distance;

7. If true, the current distance is replaced by the previous one, 
and the object is moved up in the Seeds queue.

3.3.3. Cloud computing layer
After the clustering algorithm reduces the traffic data in the fog 

layer, it is forwarded to the cloud via LTE/5G. In this article, we 
are concerned only with minimizing communication costs for this 
network link (LTE/5G) due to the high communication costs ap-
plied by cellular operators. In the cloud computing layer, cloud act 
as a global vehicular traffic manager that discovers the congestion 
roads in a VANET environment. Once the cloud receives the data, 
it calculates the traffic condition wi for each road ei , providing the 
traffic condition for all road segments on road map. The definition 
of the traffic congestion is as follows:

Definition 3. Let a road segment ei be modeled as a set of 
weights W = {(w1, t1), (w2, t2), ..., (w |W |, t|W |)} representing the 
traffic condition w j over the time ti , in which w : E −→ R∗+ , that 
is, each wi is addressing the traffic condition at the time ti for the 
road segment ei .

Based on data received from the fog computing layer, the 
framework at the cloud layer is responsible to perform the clas-
sification of the traffic flow. The traffic classification process used 
in this article uses the Level of Service (LoS), as metric defined by 
Highway Capacity Manual (HCM) [4]. This approach is structured 
in six levels that provide a reference to classify the traffic condi-
tion based on Equation (1):

wi = 1 − savg
i

smax
i × di

| di > 0 (1)

where savg
i , smax

i , and di represent the average speed, maximum 
allowed road speed, and density, respectively, of ei . Each wi is 
used to detect high traffic density areas combined with low speeds, 
providing information about the congestion, location, and sever-
ity. Thus, the cloud is used to classify the traffic condition in each 
road ei based on each weight wi obtained. As shown in Table 4, 
LOS defines six different levels of service, providing a reference of 
measurement used to describe the conditions of traffic flow. Each 
of these levels represents the minimum and the maximum speed 
based on the maximum road speed allowed.

TCDS (Algorithm 4) in the framework describes the traffic clas-
sification condition at the cloud layer.
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Algorithm 4: TCDS: Traffic Congestion Detection System.
Require: Set of clusters (k′ ∈ R) with traffic data

reduced
Ensure: Set of traffic classification (LoS) given by

traffic condition wi for each road segment ei

1: Initialize clusters set LoS = 0 and visited = 1
2: for all new cluster k ∈ k′ do
3: if k is visited then
4: ki = ki+1
5: else
6: k = visited
7: vavg = k.avg()

8: vmax = k.max()
9: di = k.density()

10: wi = 1 − vavg
i

vmax
i ×di

| di > 0;

11: LoS = wi .value
12: end if
13: end for
14: for all k ← (k = 0, ..., k = n) do
15: wi .classi f ication = wi .value (Table 4)
16: LoS = wi .classi f ication
17: end for
18: return (LoS)

Table 5
Simulation Parameters.

Parameters Values

Simulation Area 1 km2

Number of road segments 12
Scenario Grid
Vehicles Speed 13 - 80 km/h
MAC layer IEEE 802.11p PHY
Mobility Simulator SUMO 0.32.0
Vehicular Network Simulation Veins 4.7
Discrete Event Simulator OMNeT++ 5.3
Transmission Power 20 mW
Bit Rate 6 Mbps
Beacon Transmission Rate 1 Hz

4. Performance analysis

In order to perform an initial validation of the proposed ap-
proach, a series of experiments was defined to be executed on a 
simulation environment for vehicular networks. For that, we con-
sidered an environment based on three main elements: 1) Veins 
(4.7v) [39], an open-source tool to model the connectivity among 
elements of the urban context (offering an implementation of the 
IEEE 802.11p protocol for the simulated connectivity); 2) SUMO 
(0.32v) [36], responsible for modeling the urban context (Roads, 
vehicles, and maps); and 3) OMNET++ (5.3v) [24], which deals with 
the network and connectivity aspects. The performance parameters 
used in our experiments are described in Table 5.

We performed the simulations using one Grid scenario but with 
two distinct behaviors, i.e., sparse and congested vehicular den-
sity. While the 1 to 6 road segments have low traffic flow (sparse), 
the 7 to 12 road segments are highly congested. All experiments 
were performed for all methods implemented in the fog (Base-
line, Adapted-DBSCAN, and Adapted-OPTICS) for later transmission 
of data to the cloud (TCDS). We assume a scenario with only one 
RSU with a coverage of 1 km2.

Data forwarding methods were employed in the fog Layer to 
deal with the continuous data stream environment. (i) Baseline
(Algorithm 1) represents a well-spread algorithm that works with 
a packet frequency of 1 Hz to identify traffic congestion, sending all 
traffic data collected in the VANET environment to the cloud. (ii) 
Adapted-DBSCAN (Algorithm 2), which uses a sliding window to 
reduce traffic data and efficiently extract online traffic congestion 
levels, and (iii) Adapted-OPTICS (Algorithm 3), the third employed 
method.
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An ordinary DBSCAN requires two parameters: the maximum 
distance between two points given by ε and the minimum num-
ber of points required in a neighborhood (MinPts). In addition to 
these parameters, our Adapted-DBSCAN requires the λ, represent-
ing a set of data stream points to each cluster. Thus, as we deal 
with fewer data in each time window in a continuous data flow 
environment, the parameter MinPts was defined ≥ 3 to identify 
the formations of the traffic congestion, but it is important to high-
light that the greater the amount of data, the more significant the 
chosen value for MinPts should be, which avoids the increase of 
noise. The neighborhood radius ε is related to the radius cover-
age and was defined according to coverage of the RSU (1 km2) and 
λ = 10%. Both algorithms were explained in detail in Section 3.3.2.

Adapted-OPTICS is closely related to Adapted-DBSCAN; how-
ever, unlike it, this algorithm implements an automatic variable 
neighborhood radius. This feature tries to deal with the problem of 
detecting meaningful clusters in data of varying density. Adapted-
OPTICS receives two parameters ε and MinPts, which are used to 
define the coverage of the data that should be processed. In this 
work, ε was defined based on a knee method [30], which is repro-
cessed for each data set received from the temporal window. The 
MinPts was configured using a percentage of this resultant data 
set.

Following our proposed goals, we analyzed the algorithms’ im-
pact on network cost and accuracy in the next subsections.

4.1. Network cost evaluation

The traffic data generated over time by vehicles is usually large 
in volume, leading to network congestion and higher communica-
tion expenses. We assume a wireless network link between fog and 
cloud with a max rate of 340 (KB/sec). Network Bandwidth N B of 
this wireless link is given by S B/T , where S B represents the traffic 
data, and T is the channel bandwidth. S B is also given by LB + Bx, 
where LB is the 

∑i=n
i=0 B , representing the sum of all packets sizes 

and Bx is the average arrival rate. The greater the number of vehi-
cles, the greater is N B . We approach this problem minimizing LB , 
which is subjected to the constraint Ao ≥ Amin, where Ao is the 
accuracy obtained, and Amin is the minimum accuracy acceptable 
(LOS from HCM) to detect traffic congestion.

N B was obtained from an average of 30 replication of an ex-
periment (cf., Table 5) regarding the network usage for Baseline, 
Adapted-DBSCAN, and Adapted-OPTICS. These replications of a sin-
gle experiment were conducted to quantify 95% Confidence Inter-
val (CI) of the network usage variable. Hence, the performance 
analysis project is composed of factors and levels to shows the im-
pact on the response variables. The factors analyzed were the (i) 
algorithms, which we alternate among Adapted-DBSCAN, Adapted-
OPTICS, and Baseline; (ii) flow of vehicles, based on “SUMO” sim-
ulator to generate a random flow; and (iii) beacons rate, which is 
based on the frequency generation. These factors were evaluated 
to show the impact on the response variables, which allowed us to 
get measures such as network used rate, average speed, and accu-
racy, which can be obtained by the level of service implemented 
in Algorithm 4.

As shown in Fig. 3, the Adapted-DBSCAN generates less use 
of the network than other methods over time. This occurs due 
to the data reduction rate achieved with this adaptation and the 
way how this algorithm tackles the clustering forming. Adapted-
DBSCAN minimizes the network usage by 60% compared to the 
Baseline and by 40% compared to the Adapted-OPTICS. Analyzing 
the Baseline algorithm, it is possible to note that the network us-
age increases over time. This can be explained by the increase in 
the number of vehicles during the experiment. To a lesser scale, 
a trend of growth can also be observed in the Adapted-OPTICS al-
gorithm. On the other hand, network usage decreases for Adapted-
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Fig. 3. Single Road Segment Experiment: Analysis of Network Usage.

Fig. 4. Analysis of Speed Accuracy.

DBSCAN as more groups are formed, and therefore less data is sent 
over the network link.

Although the proposed framework provides an efficient model 
for data reduction and minimizing network cost, we need to en-
sure that the data reduction process maintains its original main 
characteristics without compromising the necessary accuracy to 
identify the variation in traffic congestion.

4.2. Accuracy evaluation

In order to check the LOS metric (accuracy) results in-depth, we 
assume in this subsection that the Baseline algorithm ensures high 
accuracy when detecting traffic congestion due to the absence of 
data reduction. Therefore, we use Baseline as a reference for the 
Adapted-DBSCAN and Adapted-OPTICS algorithms. Therefore, Fig. 4
shows each traffic data containing the vehicle speed over time for 
each road. The first six roads have a higher average speed than the 
last six. These two different behaviors offer a view of the environ-
ment with and without traffic congestion.

As shown in Fig. 4, both Adapted-DBSCAN and Adapted-OPTICS 
show a very close trend for speed monitoring; Adapted-OPTICS 
demonstrates a slight advantage in terms of hits compared to the 
Adapted-DBSCAN. Moreover, we can observe that while the level of 
traffic increases, the clustering algorithms behave in a similar way. 
Fig. 5 shows the similarity when using LOS precision.

Fig. 6 shows a regression model for all strategies of our frame-
work. As we can observe, the correlation between algorithms in-
creases as the simulation time also increases. This scenario can 
be explained by an increase in the traffic level over the sim-
ulation time and the increase in the amount of data analyzed. 
Within this context, we can observe that the cluster-based algo-
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Fig. 5. Analysis of LoS Accuracy.

Fig. 6. Analysis of Traffic Congestion Classification (LOS).

Fig. 7. Cumulative Distribution Function for Speed.

rithms Adapted-DBSCAN and Adapted-OPTICS reach a better accu-
racy when applied to high traffic flow scenarios.

Fig. 7 shows an Empirical Cumulative Distribution Function 
(ECDF), which presents an analyze data behavior during the sim-
ulation. We analyze the increase in the speed frequency during 
the experiments. Fig. 7 presents that 70% of speed data are upper 
to 20km/h. This trend was observed for all algorithms. Thus, we 
can note that even using less data, Adapted-DBSCAN and Adapted-
OPTICS were able to follow the data distribution of the Baseline 
during the experiments.

The average accuracy (LOS) of the Adapted-DBSCAN per road is 
shown in Fig. 8. It is possible to notice a high accuracy achieved by 
the framework using Adapted-DBSCAN despite the data reduction. 
There are fewer vehicles in scenarios of low traffic congestion, and 
therefore the number of clusters is reduced. For example, we have 
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Fig. 8. Average of LOS Accuracy.

a few data clusters produced in road number 2, leading to a 5% loss 
of accuracy. This minimum decrease in accuracy occurs for most 
roads number 1 to 6 when the scenario has a light traffic flow. 
On the other hand, when the scenario is overloaded, our algorithm 
reaches almost 100% accuracy, following the Baseline method and 
Adapted-OPTICS.

The Silhouette Coefficient is a measure of quality for a struc-
tured cluster. In this work, we use this measure to evaluate the 
quality level of clusters generated by the Adapted-DBSCAN and 
Adapted-OPTICS in the whole simulation. This method quantifies 
both the cohesion and separation between groups of instances n. 
The cohesion axi of an instance xi is calculated as the average dis-
tance between xi and all other instances in the same group as xi. 
The separation bxi is the minimum distance between xi and in-
stances in all other groups. Rousseeuw [29] denotes the Silhouette 
Coefficient by Equation (2):

1

n

∑

xi∈X

(bxi − axi)

max(axi,bxi)
(2)

The Silhouette ranges in [−1; 1], with larger values suggesting 
better cohesion and separation among clusters. Fig. 9 shows the 
result of the Silhouette Coefficient for the clustering algorithms 
used in our framework. To compare both clustering methods, the 
x-axis is given by a normalized simulation time, which represents 
the aggregated results at different points in time. Moreover, Fig. 9
shows all the groups formed during the simulation time. There is 
a certain variation in the values found for the two algorithms over 
each simulation time unit. Adapted-OPTICS presents great variabil-
ity due to the natural characteristic of cluster a more number of 
disjunct groups in relation to Adapted-DBSCAN. There is a greater 
difference between the results at the beginning of the simulation. 
This occurs due to the reduced number of vehicles, which gener-
ates fewer groups for analysis. As the number of vehicles increases, 
the density grouping algorithms tend to maintain regularity and 
similarities in the results, with coefficients between 0.5 and 0.7 
with low variability.

Silhouette is one of the most important metrics to represent 
quality for general clustering algorithms. However, the Silhouette 
is not appropriate to fully explain the dynamic of flow vehicles on 
the roads, as it disregards issues related to traffic, such as the di-
rection of the vehicle and the position on the road for the creation 
of the groups.

5. Conclusion

Traffic congestion is one of the major problems for citizens liv-
ing in large cities worldwide, leading to economic, environmental, 
and social issues in urban centers. In this way, traffic congestion 
10
Fig. 9. Silhouette Coefficient.

detection systems use a large amount of traffic data stream to 
measure the source and severity of traffic flow online, increase net-
work costs, and overload the existing network link infrastructure, 
especially from the edge of the network to the cloud. To over-
come this continuous traffic data stream issue, we presented in 
this article a data clustering framework to reduce the traffic data 
stream, avoiding flooding the network link between RSUs/fog and 
the cloud.

The traffic data clustering framework employs two adapted 
clustering methods to reduce traffic data used by TCDS. Besides, 
a non-clustering method called Baseline was used to cover conges-
tion detection without data reduction. As expected, Baseline has 
high accuracy but affects the network usage due to the absence of 
a data reduction method. On the other hand, our Adapted-DBSCAN 
and Adapted-OPTICS were able to reduce network usage and de-
lay by clustering the traffic data based on vehicle density. As a 
comparative basis to the Adapted-DBSCAN, we used the clustering 
density algorithm Adapted-OPTICS, which showed a good level of 
accuracy compared to Baseline, but with a lower data reduction 
than Adapted-DBSCAN. For clustering methods, the more density, 
the less proportional information is transmitted from fog to the 
cloud due to the increasing number of vehicles per cluster. There-
fore, the Adapted-DBSCAN proves worth reducing the traffic data 
while maintaining accuracy, mainly when the vehicular traffic en-
vironment is highly congested.

As future works, we intend to make improvements in the Sil-
houette Coefficient to cover traffic congestion aspects, allowing us 
to incorporate traffic flow characteristics in the equation that mea-
sures the quality of the clusters.
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