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Abstract

Background: Polychromatic flow cytometry is a popular technique that has wide usage in the medical sciences,
especially for studying phenotypic properties of cells. The high-dimensionality of data generated by flow cytometry
usually makes it difficult to visualize. The naive solution of simply plotting two-dimensional graphs for every
combination of observables becomes impractical as the number of dimensions increases. A natural solution is to
project the data from the original high dimensional space to a lower dimensional space while approximately preserving the
overall relationship between the data points. The expert can then easily visualize and analyze this low-dimensional
embedding of the original dataset.

Results: This paper describes a new method, SANJAY, for visualizing high-dimensional flow cytometry datasets. This
technique uses a decision procedure to automatically synthesize two-dimensional and three-dimensional projections of
the original high-dimensional data while trying to minimize distortion. We compare SANJAY to the popular
multidimensional scaling (MDS) approach for visualization of small data sets drawn from a representative set of
benchmarks, and our experiments show that SANJAY produces distortions that are 1.44 to 4.15 times smaller than
those caused due to MDS. Our experimental results show that SANJAY also outperforms the Random Projections
technique in terms of the distortions in the projections.

Conclusions: We describe a new algorithmic technique that uses a symbolic decision procedure to automatically
synthesize low-dimensional projections of flow cytometry data that typically have a high number of dimensions. Our
algorithm is the first application, to our knowledge, of using automated theorem proving for automatically generating
highly-accurate, low-dimensional visualizations of high-dimensional data.
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Background
Polychromatic flow cytometry is a popular technique
for measuring cell properties. These properties include
DNA and RNA content, intracellular phosphoproteins,
cytokines, and cell-surface proteins [1]. In this technique,
multiple fluorescent dyes corresponding to desired phe-
notypic observables are first used to label cell compo-
nents. The cells are then made to flow through a detector
in a single file, and their fluorescence is measured. Flow
cytometry has applications in lymphoma phenotyping,
cell sorting, HIV, stem cell identification, tumor ploidy,
and solid organ transplantation [2]. Unlike traditional
techniques that take the statistical average of a sample,
flow cytometry works on a per-cell basis. Therefore, it
can be used to analyze multiple phenotypic observables
simultaneously and at a rate of thousands of cells per
second [2].

Data generated from flow cytometry analysis enables
an experimental scientist to identify rare properties of
small groups of cells that would not have been tradi-
tionally possible through observing the average proper-
ties of all cells in a sample. The analysis of such groups
of rare cells becomes even more important if we con-
sider the case of cancer patients, where early detection
of rare cell phenotypes might be key to saving a patient.
Similarly, the absence of rare phenotypic observables in
a sample may suggest the termination of certain medi-
cation or treatments in subjects already suffering from
cancer. The analytical power of flow cytometry brings
with it two major barriers that need to be overcome
for its effective and widespread employment in scientific
practice:

(i) Since polychromatic flow cytometry can observe
multiple phenotypes simultaneously, this leads to
data with multiple dimensions. According to various
cognitive processing studies, the data analysis capac-
ity of human beings is limited, on average, to about
four dimensions that can be processed in parallel
[3, 4]. Therefore, flow cytometry techniques that
often produce data in 10 or more dimensions cannot
be easily analyzed by human experts.

(ii) Polychromatic flow cytometry is used to generate
data about individual cells; so, the size of the data
obtained from the analysis is usually very large. The
dataset can consist of millions of data points per
sample which is well beyond the cognitive memory
limit of human beings [5]. Standard statistical meth-
ods that involve summarization negate the advan-
tages of flow cytometry by making the result similar
to traditional measurement methods that produce
observables only on the average property of a sample.
Statistical methods may lead to loss of small but sig-
nificant details needed to detect rare but interesting
cellular phenotypes.

We address these problems by designing a new auto-
mated technique for synthesizing low-dimensional visu-
alizations of flow cytometry data. This paper makes the
following contributions:

(i) We describe SANJAY – a new algorithmic approach
for automatically synthesizing 2D and 3D visual-
izations of high-dimensional flow cytometry data.
SANJAY’s main contribution is to employ automated
algorithmic synthesis techniques [6, 7] and symbolic
decision procedures [8] to create low-dimensional
projections of high-dimensional data that can be
easily visualized.

(ii) This algorithmic projection approach approximately
preserves the original relationship between the
points in the high-dimensional space. This algorithm
avoids stastical summarization thus minimizing the
loss of small but rare events.

(iii) We compare SANJAY to the popular multi-
dimensional scaling (MDS) algorithm on small
high-dimensional data sets and show that our pro-
jections produce distortions that are on average
2.56 times smaller than those produced by MDS
(see Table 1).

Automated gating of flow cytometry data
Machine learning methods have been deployed for auto-
matically labeling subpopulations of cells in flow cytom-
etry data sets – a process popularly referred to as gating.
In particular, supervised and semi-supervised machine
learning algorithms [9, 10] have been extensively investi-
gated for automatically identifying related cells.

Sequential gating [11] enables two-dimensional visual-
ization of any two colors or dimensions of data from a
polychromatic flow cytometer. The human expert then
attempts to manually identify subsets of cells that cor-
respond to the same subpopulation. While the process
is computationally simple, the result is highly subjective
and depends on the intuition of the oncologist. Further,
an n-dimensional flow cytometry data has n × (n − 1)/2
possible two-dimensional visualizations. Thus, a 20-color
polychromatic flow cytometer will produce 190 different
2-dimensional visualizations and it is a cognitive chal-
lenge for a human expert to verify clinical or experimental
conjectures against all 190 visualizations obtained from a
biological sample.

Probability binning [12] is an unsupervised quantitative
methodology for analyzing polychromatic flow cytometry
data that identifies the difference between the distribution
of cells in a given sample and a standard control sample.
Frequency difference gating [13] extends this approach
by enabling multidimensional gating of the bins iden-
tified by the probability-binning algorithm that contain
the largest differences between the given and the control
sample.
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Table 1 Distortions produced by the MDS approach and SANJAY when 10 randomly chosen high-dimensional data points from 30
flow cytometry datasets were projected onto two dimensions

Dataset Maximum Maximum Ratio of Dataset Maximum Maximum Ratio of
ID distortion distortion maximum distortions ID distortion distortion maximum distortions

for MDS for SANJAY MDS/SANJAY for MDS for SANJAY MDS/SANJAY

1 3197.8 1000 3.197 16 3150.4 1200 2.625

2 2711.1 1200 2.259 17 2497.2 1100 2.270

3 1953.0 1000 1.953 18 2925.5 1400 2.089

4 2917.2 1200 2.431 19 3813.3 1300 2.933

5 3483.5 1400 2.488 20 3700.8 1300 2.846

6 2925.9 1100 2.659 21 3011.8 1200 2.509

7 4233.0 1800 2.351 22 3252.4 1000 3.252

8 2898.0 1300 2.229 23 3381.4 1200 2.817

9 1876.7 1300 1.443 24 2963.9 1100 2.694

10 4314.1 1500 2.876 25 3428.3 1600 2.142

11 3543.6 1400 2.531 26 2712.2 1200 2.260

12 2449.8 1300 1.884 27 3679.7 1500 2.453

13 3835.2 1500 2.556 28 3286.0 1200 2.738

14 4153.3 1000 4.153 29 2449.7 1000 2.449

15 2858.6 1000 2.858 30 4160.0 1400 2.971

The maximum distortion produced by SANJAY was, on average, 2.56 times less than that produced by MDS

Cluster analysis methods [14, 15] employ varying lev-
els of expression of antigens to construct subsets of cells
that share the same combination of fluorochromes mark-
ers. While the technique is unsupervised, the result is
only a semi-quantitative two-dimensional visual descrip-
tion (such as a heat map) of the data set and still needs
to be interpreted subjectively by an expert for biological
correctness. Standard machine learning algorithms such
as k-means [16] and expectation maximization [17] have
been applied to perform cluster analyses of polychromatic
flow cytometry data.

The most popular clustering algorithm that operates by
building and refining partitions is the k-means algorithm
[18, 19]. The popular k-means algorithms have also been
applied to flow cytometry data [17]. The k-means algo-
rithm requires three inputs from the user: the number
of clusters, an initial cluster assignment, and a metric to
measure distance between data points. As the k-means
algorithms converge only to one of the local minima, dif-
ferent initializations of the k-means algorithm can lead
to different final clustering of the data. Such sensitivity
to initial conditions is undesirable for an objective flow
cytometry data exploration framework.

Principal Component Analysis (PCA) is a particu-
larly popular approach for generating two-dimensional
visualizations of flow cytometry data [15]. However,
low-dimensional visualizations lose a lot of information
because of the low correlation between different fluo-
rochromes, and such plots mostly serve as an exploratory
tool in the hands of well-trained experts.

In our recent work [20], we have proposed the use of
complex network models and their topological properties
for discriminating between cancer and normal patients. In
our approach, each node in the complex network corre-
sponds to the measurements obtained from a single cell
and an edge between two nodes exists if the Euclidean
distance between them is smaller than a threshold. The
evolution of the network through time can be derived
by studying periodically acquired patient samples. By
constructing such complex network models for multiple
normal patients, we propose to develop a stochastic gen-
erative model that describes the flow cytometry data for
normal patients. In particular, topological properties such
as number of connected components, edge density, num-
ber of clusters, etc. are studied. The goal of our stochastic
generative modeling is to capture the natural diversity that
occurs in the normal patient population (age, race, gender,
BMI), and thereby compute the probability that a given
flow cytometry sample does not arise from this stochastic
generative model. Rare behavior identification algorithms,
including our own work [21], can then be employed to
compute the probability that a given flow cytometry sam-
ple indicates the presence of a physiological anomaly in a
patient.

Decision procedures
To the best of our knowledge, our current work is the first
effort towards the application of symbolic decision pro-
cedures for the algorithmic synthesis of projections from
high-dimensional data to low-dimensional visualizations.
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In 1929, Mojzesz Presburger introduced a first-order the-
ory of arithmetic for natural numbers with addition and
equality – a consistent, complete and decidable fragment
of logic [22]. Fifty years later, Robert Shostak presented
an algorithm for deciding quantifier-free Presburger arith-
metic that permits arbitrary uninterpreted functions [23].
More recently, a number of decision procedures for veri-
fying various decidable fragments of logic involving arith-
metic and function symbols have been proposed and
implemented using the popular SMTLIB standard [24]. In
particular, a number of decision procedures for bit-vectors
involving arithmetic and logical operations have been suc-
cessfully implemented [25, 26]. Many of these approaches
build upon the foundation work of Martin Davis, Hilary
Putnam, George Logemann and Donald W. Loveland who
introduced the DPLL algorithm for checking the satisfi-
ability of propositional logic formulas in 1962 [27]. We
show that our approach based on bit-vector decision pro-
cedures outperforms classical multi-dimensional scaling
approach – at least on small high-dimensional data sets –
by consistently creating projections with at least 80% less
distortion.

Some notations and definitions
We now recall some basic ideas relevant to our use
of decision procedures for the automated synthesis of
visualizations.

Definition 1 (Basic bit-vector operations) A bit-vector
is a vector of Boolean values of a given length. Given two
bit-vectors, their bitwise logical operations are performed
by applying the logical operation to the corresponding bits
of the bit-vectors.

¬x = λi ∈ {0, 1, . . . , l − 1}.¬xi

x ∨ y = λi ∈ {0, 1, . . . , l − 1}. (xi ∨ yi)

x ∧ y = λi ∈ {0, 1, . . . , l − 1}. (xi ∧ yi)

The above equations define the formal semantics of bit-
vector NOT, OR, and AND operations. Similarly, arith-
metic operations such as addition and subtraction can be
defined on bit-vectors by extending the standard defini-
tion of these operations from the decimal to the binary
representation.

Definition 2 (Bit-vector concatenation) Two bit-vectors
of length l and l′ can be concatenated into a single bit-
vector of length l + l′.

xy = λi ∈ {
0, 1, . . . , l + l′ − 1

}
.bi where,

bi =
{

xi if i < l
yi−l otherwise.

Relational operations on bit-vector are defined similarly,
using both signed and unsigned interpretations [24]. As
these formulas naturally arise in software and hardware
verification, several solvers for bit-vector decision proce-
dures are widely deployed. The top solvers in the 2015
SMT-COMP competition for bit-vectors include Boolec-
tor, CVC4, STP, Yices, Mathsat and Z3. Most of these
solvers use a combination of bit-blasting and rewriting to
translate the bitvector decision problem into a combina-
tion of lemmas that can be discharged using results from
number theory and satisfiability solving [28].

Definition 3 (Distortion) Distortion is defined as the
change of distance between two points when they are pro-
jected from a high-dimensional space to a lower dimension.
Let the distance between points x and y in the original
space be d(x, y). Let the projections of x and y in the lower
dimension space be x′ and y′ respectively. Let d

(
x′, y′) be

the distance between the projected points. The distortion
due to this projection is defined by:

distortion(x, y) = ∣∣d
(
x′, y′) − d (x, y)

∣∣

Methods
Graph representation of flow cytometry data
There is an inherent complex network structure in poly-
chromatic flow cytometry data arising from the well-
governed biological process of cell differentiation. Using
our earlier approach [20], we can build a complex network
representation of the observed flow cytometry data set.
We follow the steps outlined in Fig. 1 to create a structural
representation of flow cytometry data.

Definition 4 (Flow Cytometry Network) Given N
m-dimensional data points representing N cells, each
representing m observed properties measured by a poly-
chromatic flow cytometer, the flow cytometry network with
threshold T (a T-FCN) is a graph G = (V , E) where V is
the set of nodes and E is the set of edges, such that:

• a node v ∈ V denotes the m quantities measured for
a single cell, i.e. v = (v0, v1, . . . , vm−1), and

• (
v, v′) ∈ E if and only if

|| (v0, . . . , vm−1) − (
v′

0, . . . , v′
m−1

) || ≤ T .

The second property above specifies that there’s an edge
between two nodes (i.e. between data points representing
a pair of cells), when the Manhattan distance between
them is less than threshold T. Recall that the Manhat-
tan distance between vectors v = (v0, . . . , vm−1) and u =
(u0, . . . , um−1) is defined to be

∑m−1
i=0 |vi − ui|.

Given flow cytometry data, a T-FCN (flow cytometry
network) is determined by the threshold T that is used to
decide whether two nodes in the flow cytometry network
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Fig. 1 Steps for generating the structural representation of flow cytometry data for use in the SANJAY visualization synthesis technique

are connected by an edge in the T-FCN. The threshold T
is typically learned from experimental data. As T is var-
ied from ∞ to 0, the T-FCN goes from being a clique of N
nodes to being a network with N components – each node
being a component by itself. The variation in T causes
changes in the distribution of the topological properties.

Using information theoretic arguments [29, 30], we
can compute the value of T that maximizes the infor-
mation content or entropy of the distribution of the
topological properties. Thus, the generated T-FCN is the
most informative network describing the flow cytometry
data set.

Community detection in flow cytometry data
Several existing algorithms are capable of identifying com-
munities in large complex networks [31]. Due to the
massive size of the network generated by a typical flow
cytometry dataset, one can readily rule out the use of
matrix and spectral graph theory based methods. Mod-
ularity based methods are known to be biased against
small communities and are hence not a method of choice
for identifying communities in flow cytometry networks,
where small communities may represent rare but interest-
ing anomalies [32].

Keeping in mind our high-assurance requirement for
biomedical applications, and the large size of flow cytom-
etry datasets, we suggest the use of a parallel version of
the Walktrap algorithm for community detection [20] in
our flow cytometry networks [33]. The main idea behind
Walktrap approach is based on the intuition that random
walks of a graph must be trapped in densely connected
communities of the T-FCN that are only sparsely con-
nected to the rest of the network. As several random
walks can be instantiated in parallel on multiple process-
ing nodes, the approach is readily deployable on large
supercomputing clusters [34].

Structural representation of flow cytometry networks
Each flow cytometry data set is represented by a T-FCN
that maximizes the information content of the network.
A flow cytometry network T-FCN is then decomposed
into a number of communities C1, . . . , Cn, using methods
described in the previous section where each Ci is itself
a T-FCN. The centroid of a community can serve as a
surrogate representing the approximate position of all the
points in the community. To preserve the relative position
of the communities, we compute the centroids O1, . . . , On
of the communities and seek to approximately preserve
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the distance between these centroids. In order to preserve
the geometry of the individual communities, we also must
compute the 3-centroids E1

i , E2
i , E3

i for each community
Ci when projecting into two dimensions (and 4-centroids
when projecting into three dimensions). To calculate 3-
centroids of a community Ci, we break the community
into 3 component communities C1

i , C2
i , C3

i using k-means
clustering algorithm where the input k for the k-means
algorithm is equal to 3. We then calculate one centroid for
each of the 3 component communities for a total of 3 com-
ponent centroids E1

i , E2
i , E3

i corresponding to each com-
munity Ci. For projecting onto two dimensions, the set
of points

{
O1, E1

1, E2
1, E3

1, O2, E1
2, E2

2, E3
2, . . . , On, E1

n, E2
n, E3

n
}

,
that we will also denote by Q1, . . . , Qd where d = 4n
and n is the number of communities in the T-FCN,
serves as a structural representation of the flow cytometry
network.

Automated synthesis of projections using decision
procedures
Given the structure-defining points {Q1, . . . , Qd} ={

O1, E1
1, E2

1, E3
1, O2, E1

2, E2
2, E3

2, . . . , On, E1
n, E2

n, E3
n
}

in
m dimensions, SANJAY synthesizes an embedding
{R1, . . . , Rd} of the points in two-dimensional or any other
lower dimensional space that approximately preserves the
pairwise Manhattan distances between these points up
to an error of ε > 0. The following expression specifies
relationship between the original points Q1, . . . , Qd and
the synthesized lower-dimensional projection R1, . . . , Rd
with respect to the distortion ε:

∃R1, R2 . . . , Rd , ∀i, j ∈ {1, . . . d},
∧

i,j,i
=j
||Ri − Rj|| ≤ ||Qi − Qj|| + ε

∧

i,j,i
=j
||Ri − Rj|| ≥ ||Qi − Qj|| − ε

To help in discussing our projection algorithm, we now
state, without proof, a lemma that describes the require-
ment for the location of a point in 2D or 3D space to be
fixed.

Lemma 1 (Fixing points in two and three dimensions)
For any given point in two-dimensional space, its distance
from three unique points uniquely identify its coordinates.
Similarly, for any point in three-dimensional space, its
distance from four unique points uniquely identify its coor-
dinates [35].

Therefore, the two-dimensional projection of all points
in a community Ci can be obtained using the 2D pro-
jections of the 3-centroids E1

i , E2
i , E3

i of that community.

Similarly, the three-dimensional projections of the points
in a community can be obtained from the projections of
the 4-centroids E1

i , E2
i , E3

i , E4
i of the community.

However, a direct translation of the problem to bit-
vector decision procedures involves a tradeoff between
computational tractability and the accuracy of the
obtained projections. Large values of ε lead to deci-
sion problems that can be readily solved by decision
procedures but correspond to poor projections. Small ε

values represent high-quality distance-preserving projec-
tions but create computationally challenging instances of
the decision problem.

The SANJAY algorithm solves the problem by using an
iterative refinement to derive the points R1, R2, . . . , Rd in
the lower-dimensional space from the pairwise distances
between the points Q1, . . . , Qd in the higher dimension.
The algorithm starts by synthesizing the highest-order bit
in the bit-vector representation of these points, and then
searches for the other bits.

Algorithm 1 The SANJAY algorithm for automated
synthesis of two dimensional visualizations for flow
cytometry data.
Require:

Pairwise distances Di,j, 1 ≤ i, j ≤ d, i 
= j between
every pair of d points {Q1, . . . Qd} to be projected in
the higher-dimensional space
Maximum distortion ε

The maximum length b of the bitvectors used to store
points
The number of bits l to be learned in each iteration of
the refinement process

Ensure:
Synthesized points {R1, . . . , Rd} in the lower
dimension

1: s ← 0 {Current no. of bits in synth. points}
2: r ← b {Remaining bits to be synthesized}
3: For all i, P0

xi ← φ

4: For all i, P0
yi ← φ

5: repeat
6: For all i, compute Al

xi and Al
yi such that

(1 − ε)D2
i,j ≤ maxa,b,c,d∈{0,1} ||

(
Ps

xi A
l
xi a

r , Ps
yi A

l
yi b

r
)

−
(

Ps
xj A

l
xj c

r , Ps
yj A

l
yj d

r
)

||2 ≤ (1 + ε)D2
i,j

7: For all i, Ps+l
xi ← Ps

xi .A
l
xi

8: For all i, Ps+l
yi ← Ps

yi .A
l
yi

9: s ← s + l
10: r ← r − l
11: until r = 0
12: For all i, Ri ←

(
Pb

xi , Pb
yi

)

13: return {R1, . . . Rd}
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SANJAY is formally illustrated in Algorithm 1. The
algorithm accepts the pairwise distances Di,j

(
1 ≤ i, j, ≤ d

)

between every pair of d points as an input. It also accepts
two other inputs: the length b of the bit-vector represent-
ing the projected points to be synthesized and the number
of bits l that should be learned in every iteration of the
projection synthesis loop.

In Algorithm 1, a point Qi is represented by the bit
vector representation

(
Ps

xi a
r , Ps

yi b
r
)

where Ps
xi a

r is the
x-coordinate and Ps

yi b
r is the y-coordinate. The Ps

xi and
Ps

yi are the parts of the vector that have been calculated
by the algorithm, the ar and br are the parts of the vector
that have still not been calculated. When all the bits
of any vector ar are 1 then we denote it by 1r similarly
when all the bits of the vector are 0 we denote it by 0r .
The bit vector ar has the property that 0r ≤ ar ≤ 1r .
So, any point Qi with representation

(
Ps

xi a
r , Ps

yi b
r
)

can take all the values within the square with corners(
Ps

xi 0
r , Ps

yi 0
r
)

,
(

Ps
xi 0

r , Ps
yi 1

r
)

,
(

Ps
xi 1

r , Ps
yi 0

r
)

,
(

Ps
xi 1

r , Ps
yi 1

r
)

.
Algorithm 1 initializes the length s of the projected

points to 0. The algorithm also initializes the length
r of the remaining bit-vectors to be synthesized with
the value b. This means that the point Pi can take
all the values within the square denoted by the points(
1b, 1b) ,

(
1b, 0b) ,

(
0b, 1b) ,

(
0b, 0b). This square spans the

whole search space, which implies that at the start of the
first iteration, the point Pi can be found anywhere in this
search space.

A bit-vector decision procedure then searches for a bet-
ter approximation of the projected point by searching for
the next l higher order bits A1

1, A1
2, . . . , A1

l in the binary
representation of the projection of the points by solving
the following decision problem:

Bi =
∥∥∥
(

Ps
xi A

l
xi a

r , Ps
yi A

l
yi b

r
)

−
(

Ps
xj A

l
xj c

r , Ps
yj A

l
yj d

r
)∥∥∥

2

(1)

(1 − ε)D2
i,j ≤ max

a,b,c,d∈{0,1}
Bi ≤ (1 + ε)D2

i,j (2)

Each iteration of the algorithm breaks down the previ-
ous square into 22l sub-squares in which the point Pi can
be found and Eq. 2 using bit vector decision procedure
selects the best possible sub-square for the point Pi. At the
end of the iteration, each of the points is projected to a
sub-square with the diagonal

(
Ps

xi A
l
xi 0

r−l, Ps
yi A

l
yi 0r−l

)
and

(
Ps

xi A
l
xi 1

r−l, Ps
yi Al

yi 1
r−l

)
, where Ps

xi and Ps
yi denote bit vec-

tors of s bits, Al
xi and Al

yi denote bit vectors of l bits, and
0r−l is a zero bit vector of r − l bits.

As the algorithm iterates, it builds finer abstractions
of the bit-vector representation of the points being pro-
jected. When the algorithm has computed b number
of bits in the bit-vector representation of the projected
points, it assigns the generated bit-vectors to the output
R1, . . . , Rd.

Table 2 Average distortions produced by the MDS approach and SANJAY when 10 randomly chosen high-dimensional data points
from 30 flow cytometry datasets were projected onto two dimensions

Dataset Average distortion Average distortion Dataset Average distortion Average distortion

ID for MDS for SANJAY ID for MDS for SANJAY

1 1042.4 540.8 16 1034.4 733.8

2 1024.4 653.3 17 919.5 623.0

3 649.2 537.5 18 1056.8 822.4

4 897.4 765.3 19 1117.4 757.5

5 1089.6 806.3 20 989.5 773.6

6 1069.4 634.0 21 1057.5 684.8

7 1374.4 1010.7 22 1412.6 605.7

8 949.8 709.4 23 915.0 712.8

9 765.9 752.5 24 824.3 741.1

10 1011.7 892.9 25 1178.1 1033.5

11 1050.4 882.8 26 949.2 713.3

12 1050.3 760.0 27 1114.2 833.6

13 1241.7 849.7 28 935.4 611.7

14 985.7 613.4 29 1004.8 561.3

15 1249.6 612.4 30 1178.4 874.1
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Results and discussion
We performed our experimental evaluation on a 64-core
1.40GHz AMD Opteron(tm) 6376 processor with 64 GB
of RAM. We analyzed 30 flow cytometry data sets – each
of them having 12 dimensions.

For each dataset, we used MDS [36], random pro-
jections [37] and our SANJAY technique, to search for
two-dimensional projections of 10 randomly selected data
points from the original high-dimensional data, while
seeking to maintain the original inter-point distances. We

(a) (b)

(c) (d)

(e) (f)
Fig. 2 Plots of the two dimensional projections synthesized by the SANJAY algorithm for 1000 randomly chosen data points from 6 flow cytometry
datasets (dataset IDs 9, 24, 11, 14, 17, and 5 respectively in Table 1). For these and 24 other flow cytometry datasets, Table 1 lists the maximum
distance distortion when 12-dimensional flow cytometry data is projected onto two dimensions, and Table 2 lists the average distortions
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Table 3 Maximum distortions produced by SANJAY and Random Projections technique when 10 randomly chosen high-dimensional
data points from 30 flow cytometry datasets were projected onto two dimensions

Dataset Maximum Maximum distortion Ratio of maximum Dataset Maximum Maximum distortion Ratio of maximum
ID distortion for random distortions ID distortion for random distortions

for SANJAY projections RP/SANJAY for SANJAY projections RP/SANJAY

1 1000 4069 4.07 16 1200 6732 5.61

2 1200 4179 3.48 17 1100 4298 3.90

3 1000 3982 3.98 18 1400 4922 3.51

4 1200 5289 4.40 19 1300 6719 5.16

5 1400 5045 3.60 20 1300 5583 4.29

6 1100 5092 4.62 21 1200 5311 4.42

7 1800 5364 2.98 22 1000 4447 4.44

8 1300 3566 2.74 23 1200 4731 3.94

9 1300 4357 3.35 24 1100 6251 5.68

10 1500 4262 2.84 25 1600 5919 3.69

11 1400 4945 3.53 26 1200 5385 4.48

12 1300 4370 3.36 27 1500 4886 3.25

13 1500 4747 3.16 28 1200 5884 4.90

14 1000 7029 7.02 29 1000 5398 5.30

15 1000 6161 6.16 30 1400 3900 2.78

then computed the maximum and the average distortion
of the projections produced by all three techniques.

The comparison between SANJAY and MDS is pre-
sented in Tables 1 and 2. SANJAY performed at least 1.44
times better and sometimes as much as 4.15 times better
than MDS in terms of minimizing the maximum distance

distortion among all the projected points. The average dis-
tortions due to SANJAY were as much as 2.33 times lower
than those produced using the MDS approach. Figure 2
shows the results of using SANJAY to project 1000 ran-
domly chosen points from 6 of the 30 flow cytometry
datasets discussed above.

Table 4 Average distortions produced by SANJAY and Random Projections when 10 randomly chosen high-dimensional data points
from 30 flow cytometry datasets were projected onto two dimensions

Dataset Average Average distortion Ratio of average Dataset Average Average distortion Ratio of average
ID distortion for random distortions ID distortion for random distortions

for SANJAY projections RP/SANJAY for SANJAY projections RP/SANJAY

1 540.8 1289.2 2.38 16 733.8 1791.5 2.44

2 653.3 1226.5 1.87 17 623.0 1361.3 2.18

3 537.5 1095.5 2.03 18 822.4 1480.3 1.80

4 765.3 1637.1 2.13 19 757.5 1912.7 2.52

5 806.3 1654.7 2.05 20 773.6 1806.0 2.33

6 634.0 1555.5 2.45 21 684.8 1535.2 2.24

7 1010.7 1608.8 1.59 22 605.7 1440.1 2.37

8 709.4 1111.8 1.56 23 712.8 1355.4 1.90

9 752.5 1439.5 1.91 24 741.1 1944.2 2.62

10 892.9 1376.7 1.54 25 1033.5 1943.4 1.88

11 882.8 1578.5 1.78 26 713.3 1762.9 2.47

12 760.0 1395.6 1.83 27 833.6 1519.0 1.82

13 849.7 1363.1 1.60 28 611.7 1648.0 2.69

14 613.4 2084.7 3.39 29 561.3 1513.4 2.70

15 612.4 1916.6 3.12 30 874.1 1047.5 1.19
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The comparison between SANJAY and random pro-
jections is shown in Tables 3, and 4. When compared
with random projections, SANJAY performed 7.02
times better at minimizing the maximum pairwise
distortion among points. We envision that such auto-
matically generated visualizations can be used to
identify patients whose flow cytometry data indicates
a significant number of cells showing abnormal
behavior.

Conclusion
In this paper, we described a new algorithmic tech-
nique for automatically generating low dimensional visu-
alizations of high-dimensional flow cytometry data. We
used symbolic decision procedures to exhaustively search
for low-dimensional projections in a finite, discretized
search space. Our results show that visualizations syn-
thesized using our technique (SANJAY) were better than
those produced by the multi-dimensional scaling and
random projections approaches in terms of the maxi-
mum distortion in the pairwise distances. The results
themselves are not surprising as symbolic decision proce-
dures are often used for solving optimization and search
problems.

Our experimental results have so far focussed on small
fragments of high-dimensional flow cytometry data sets.
However, their use in generating such high-fidelity visu-
alizations has not been reported before. In the future, we
plan to investigate how our approach can be extended
to visualize large data sets while establishing provable
bounds on the approximation errors.
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