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Abstract—Appliance-level load forecasting plays a critical role
in residential energy management, besides having significant
importance for ancillary services performed by the utilities. In
this paper, we propose to use an LSTM-based sequence-to-
sequence (seq2seq) learning model that can capture the load
profiles of appliances. We use a real dataset collected from
four residential buildings and compare our proposed scheme
with three other techniques, namely VARMA, Dilated One Di-
mensional Convolutional Neural Network, and an LSTM model.
The results show that the proposed LSTM-based seq2seq model
outperforms other techniques in terms of prediction error in most
cases.

Index Terms—load forecasting, deep learning

I. INTRODUCTION

Appliance-level load forecasting for residential consumers
is of significant importance for the modern power system,
particularly considering the dynamic loads such as PV power
and EVs that will stress the distribution system and conse-
quently call for fine-grained control of micro-loads by home
energy management systems [1]. Therefore, mid-term and
short-term load forecasting is essential for distribution system
operation and control, while the long-term prediction plays a
key role in infrastructure planning [2]. Short-term forecasting
of household loads is closely related to consumer habits.
An accurate and robust household load forecasting benefit
the utility company and individual consumers. The utility
company could better manage the electricity distribution and
ancillary services while offering dynamic pricing to reduce
peak demand. Meanwhile, individual consumers can better
schedule the operation of their appliances to save from their
electricity bills.

Electrical load forecasting is generally affected by many
factors, e.g., such as weather conditions, social activity, con-
sumers’ habits, and so on. However, compared with load fore-
casting for a community or a commercial building, it is more
challenging to forecast the short-term household load [3]–[7]
due to the stochastic habits of consumers and the varying status
and types of household appliances.

Several classification methods have been proposed in the
literature for grouping similar load curves and eliminating the
uncertainty [3]. The extraction of the consumption patterns of
the electricity load can be accomplished by preprocessing the
information using Fourier transforms or wavelet analysis [8].

The adoption of smart appliances by the consumers lead to
changes to the traditional residential electrical load profiles [4].

To this end, modern AI techniques, e.g., Recurrent Neural
Networks (RNNs), Convolutional Neural Networks (CNNs),
Deep Belief Network (DBN), have been employed for house-
hold load forecasting [5]. Neural networks are capable of
extracting the nonlinear and non-stationary nature of energy
consumption. For instance, CNN has been used for short-
term load forecasting in [6], [9], and the results show that
CNNs outperform the Support Vector Machines (SVM), which
is another machine learning algorithm. Furthermore, Long
Short Term Memory (LSTM) network has been applied in [2],
[7], [8], [10] for load forecasting, which presents a lower
prediction error compared with traditional methods.

In this paper, we propose a novel LSTM-based Sequence
to Sequence learning load forecasting method. While most
previous studies mainly predict the overall household energy
consumption, our work focuses on appliance-level short-term
load forecasting, which has a higher level of uncertainty.
Sequence to Sequence Learning (Seq2Seq) technique was
initially proposed in [11], in which a multilayered LSTM
network maps a sequence of input to a fixed-size vector and
then, another multilayered LSTM network maps the fixed-
sized vector to the sequence of target words. We use an
LSTM network to map the sequence of past 24-hour energy
consumption values to a fixed-size vector, then detect the
appliance type, regenerate the input sequence in reverse form
from the fixed-sized vector using another LSTM network, and
produce a sequence of energy consumptions for the next hour
from the fixed-length using another LSTM network. We show
that Seq2Seq learning effectively deals with variable input
and output sequence length and has more effective feature
extraction abilities. We can see that our proposed model
can distinguish the appliance type by its trend and learns
appliances’ typical usage duration. Our main contribution is
the more accurate prediction of appliance-level consumption
using a novel LSTM-based Seq2Seq learning algorithm.

The remainder of the paper is organized as follows. In
Section II, we review previous work. We present our proposed
LSTM-based Sequence to Sequence learning load forecasting
method in Section III. The evaluation study provides detailed
results in Section IV. Finally, Section V concludes the paper.



II. RELATED WORK

There have been a number of studies in the electric load
forecasting area, and the typical prediction methods used in-
clude i) traditional machine learning (e.g., Linear Regression,
SVM, AutoRegressive Integrated Moving Average), ii) deep
learning algorithms (e.g., RNNs, CNNs, and LSTM networks),
iii) probabilistic forecasting (e.g., Quantile Regression, Den-
sity Regression), and iv) hybrid methods (e.g., combining
CNNs with Gated Recurrent Units).

Most recently, modern AI techniques, especially machine
learning and deep learning, became the mainstream techniques
for load forecasting [12]. A sparse coding-based learning
approach for household electricity demand forecasting has
been proposed by Yu et al. [13], and 10% higher accuracy
has been observed compared to the existing studies. Based
on multiple kernel learning, Wu et al. [14] proposed an
improved gradient boosting framework, and the framework is
extended to transfer learning context for both homogeneous
and heterogeneous settings. Feng et al. [15] developed a two-
step Q-learning, leveraging both deterministic and probabilistic
load forecasting.

As stated earlier, recent years have witnessed the great
potential of deep learning in many areas, which provides
new opportunities for load forecasting as well. Bayesian deep
learning has been applied in [16] to implement probabilistic
load forecasting, and a clustering-based pooling method has
been designed to prevent overfitting to improve the predictive
performance. The overfitting problem has also been considered
by Shi et al. [3], where a novel pooling deep RNN is proposed
to learn the uncertainty of load forecasting directly. Deep
learning has also been used in non-intrusive load monitoring
where no sub-metered information is needed to estimate the
demand of individual appliances [4], [17]. LSTM network has
been applied by Kong et al. [2] for short-term residential load
forecasting and has been shown to outperform the conventional
neural network-based approaches.

There are also a few hybrid methods proposed. For instance,
LSTM has been combined with stationary wavelet transform
technique for individual household load forecasting in [8].
CNNs and Gated Recurrent Units have been unified in [9],
resulted in lower computational complexity and higher pre-
diction accuracy.

The inputs and targets should be encoded with vectors
of fixed dimensionality to apply the deep neural network,
which is a significant limitation. Different than prior works,
in this paper, the sequential problem is solved by sequence to
sequence learning. The idea of sequence to sequence learning
is to use a multilayered LSTM to map the input sequence to a
vector of a fixed dimensionality, and then another deep LSTM
to decode the target sequence.

III. LOAD FORECASTING WITH SEQUENCE TO SEQUENCE
LEARNING

In this paper, we use a Sequence to Sequence (Seq2Seq)
encoder/decoder model to predict the energy consumption
of smart home appliances, which represents the behavioral

pattern of smart home residents. The Seq2Seq encoder/decoder
model derives occupants’ habits from historical data and
predicts hour-ahead appliance-level energy consumption in a
household.

Sustkever et al. [11] first introduced the sequence to se-
quence learning technique in 2014. The idea was to encode a
sequence of inputs to a fixed-length vector with a multilayered
LSTM and then decode the fixed-length vector to a sequence
of outputs with another multilayered , noting that input and
output sequences length can vary. They used Seq2Seq learning
to translate sentences from English to French.

We employed Seq2Seq learning to predict the energy con-
sumption of smart home appliances for the next hour based on
the previous 24 hours of historical data. As shown in Fig.1, our
network architecture has three main LSTM network modules.

Considering (x1, x2, ..., xn) as the input sequence for the
encoder module, the LSTM encoder network maps the input
sequence to a fixed-length vector Z, which is mainly based
on the last hidden state of LSTM. The initial hidden state
of the LSTM network in the decoder module is set to the
fixed-length vector Z and its goal is to compute and maximize
the conditional probability of sequence (x

′

n, x
′

n−1, ..., x
′

1) of
(x1, x2, ..., xn):

p
(
x

′
n, ..., x

′
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)
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′
n, ..., x

′
n−t+1, Z

)
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In the Equation 1, (x
′

n, x
′

n−1, ..., x
′

1) is the reversed form of
input sequence (x1, x2, ..., xn) enforcing encoder network to
obtain long term dependencies of input sequence with putting
more weight on most recent ones by minimizing a weighted
MSE loss function (Equation 2). Besides this, by applying a
Softmax function to the fixed-length vector Z, the decoder
module learns the appliance working pattern and predicts the
type of appliance that was not given in the input features.

WeightedMSE =
1

n

n∑
i=1

W ∗ (x
′

i − xi)
2 (2)

Finally, the LSTM network in the generator module,
estimates the conditional probability p (y1, ..., ym|x1, ..., xn)
according to the Equation 3:

p (y1, ..., ym|x1, ..., xn) =

m∏
t=1

p (yt|y1, ..., yt−1, Z) (3)

In Equation 3, (y1, ..., ym) is the prediction results for next
m data points obtained from the fixed-length vector Z by
minimizing a MSE loss function:

MSE =
1

m

m∑
i=1

(yi − ŷi)
2 (4)
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Fig. 1: Seq2Seq encoder decoder model.

TABLE I: Datasets used.

Building No. Days Monitored Appliances

Building 0 236 dishwasher, lamp, fridge, radio,
washing machine

Building 1 226 dishwasher, lamp, fridge, radio,
washing machine

Building 2 231 dishwasher, TV, network at-
tached storage, laptop, washing
machine

Building 3 151 dishwasher, TV, fridge, com-
puter, washing machine

IV. EVALUATION STUDY

A. Experiment Setup

In the evaluation study, we used a publicly available dataset,
GreenD [18], collected from eight different households, in-
cluding apartments and detached houses, from December 2013
to October 2014 in Austria and Italy. After data-processing,
only four buildings had sufficient data for training a deep
learning model (more than 150 days) with 1

60 Hz frequency.
This dataset contains appliance-level energy consumption for
an average of nine appliances per household at 1Hz frequency.
However, not all of the monitored appliances display a re-
peated pattern of the occupant’s lifestyle. Therefore, Table I
presents the five selected home appliances that were in com-
mon among all four buildings and had a repetitive trend. With
70%, 20%, and 10% ratio, we split data into three training,
validation, and test sets.

We used three load forecasting methods from the literature
as the baseline for evaluating the performance of the proposed
model:

• Vector Auto Regression Moving Average (VARMA):
This model is a combination of Vector Auto-Regression
(VAR) and Vector Moving Average (VMA) models. VAR
is a generalization of the Auto-Regressive model and used
when there are multiple parallel variables to forecast.
VAR models the variables as a linear function of their past
variables, and the order of the VAR model determines
the number of earlier time steps the model utilizes for
predictions. VMA predicts the next steps based on a linear

function of residual errors, that is, the difference between
predicted and observed values to predict.

• Dilated One Dimensional Convolutional (CONV1D):
This model is based on the WaveNet network, proposed
in [19] that has dilated causal convolution layers to
transform text to speech. The 1-dimensional convolution
slides a filter on an input series usually by one stride, but
then in the causal convolution, the ordering of the input
data will remain the same, and the model will not be
learning based on future data. In a dilated convolution, the
sliding filter skips input data with certain steps. Multiple
stacked dilated convolutional layers allow larger input
sequences but keep the network complexity efficient.

• Long Short-Term Memory Neural Network: LSTM
network is a type of Recurrent Neural Network specifi-
cally designed to learn long-term dependencies in input
data by relying on feedback from previous stage outputs.
We used a 2-layer LSTM network in this paper.

• Seq2Seq Learning: As described in Section III.

B. Performance Indices

We have used the Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) metrics to evaluate regression
prediction accuracy. However, since both RMSE and MAE are
scale dependant, we have also considered Normalized Root
Mean Square Error (NRMSE) in our experiments. RMSE,
MAE and NRMSE are shown in Equations 5–7 where n is the
total number of samples, yj is the target value and ŷj is the
predicted value, max (yj ) and min(yj ) refer to the maximum
and minimum electrical usage recorded for the appliance j in
the data, respectively.

RMSE =

√√√√(
1

n
)

n∑
i=1

(yj − ŷj)2 (5)

MAE =
1

n

n∑
i=1

|yj − ŷj | (6)

NRMSE =
RMSE

max(yj)−min(yj)
(7)



C. Data Preprocessing

Linear interpolation is used to complete missing data. More-
over, instead of using minute-by-minute energy consumption
of appliances, we smooth out the energy consumption of
appliances for T=10 minutes without losing generality. In our
dataset, appliance energy consumption varies between 10W to
2000W; therefore, the values are normalized before used in
deep learning models.

Trends in energy consumption for electrical appliances
can expose the living habits of household inhabitants. Some
appliances would be used daily, such as TV or refrigerators,
while others in a weekly fashion, such as vacuum cleaner, and
some of them display no specific usage patterns. It is worth
noting that appliances with repetitive usability patterns are
more suitable candidates to make predictions based on them.
Accordingly, the historical data of power consumption and the
day of the week are selected as the network input features.
The row index decides the minute and hour specification when
the dataset is sorted in terms of time, so they are no longer
needed as an additional feature input. Instead, for this model,
the input sequence length of 144 points is chosen with T -
minute intervals covering 24 hours.

D. Evaluation Results

Table II summarises RMSE, NRMSE, and MAE findings
of four load forecasting algorithms for Building 0-3 with
the lowest error in bold. Figure 2a–2f plot and compare the
forecasting performance of all four prediction algorithms in a
day snapshot against the ground truth for dishwasher, lamp,
fridge, radio, laptop and TV.

The results demonstrate that the LSTM-based Seq2Seq and
LSTM model, respectively, outperform the other forecasting
models and have noticeably lower prediction error. LSTM
model architecture is quite similar to the Seq2Seq model
architecture (encoder, decoder, and generator). Consequently,
the LSTM model has the closest results to the Seq2Seq model;
however, the Seq2Seq model does a better job of learning
the appliance’s working pattern and detecting the appliance
type. Unlike the LSTM model, the Seq2Seq model has no
information about appliance type as an input.

As shown in Figure 2c, all four prediction models were
effective in learning patterns for the appliance with the most
seasonal energy usage pattern (fridge), which means that these
models are more promising when there is a recurring pattern
of behaviors of smart home residents. However, the Seq2Seq
model performs better in load forecasting for appliances with
a higher level of uncertainty in usage patterns.

V. CONCLUSION

In this paper, we proposed an appliance-level load fore-
casting model for residential homes. Our proposed LSTM-
based Sequence to Sequence learning model forecasts energy
consumption for smart home appliances for the hour ahead
with 10-minute resolution using historical data of the past
day. We evaluated the performance of our model compared
with the VARMA model, Dilated 1D Convolution, and LSTM

model on a publicly available dataset that contains historical
data for multiple buildings. The consistent outperforming re-
sults demonstrate that the LSTM-based Sequence to Sequence
learning model does not depend on the data and can be used
for any household. As future work, we intend to combine
optimization algorithms with prediction results to provide
energy-efficient scheduling for a smart home.
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Fig. 2: Energy consumption prediction for 24 hours with a 10-minute resolution.

TABLE II: Evaluation Results.

Building 0

Model Dish Washer Lamp Fridge Radio Washing Machine

RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE

VARMA 229.237 0.111 53.722 18.452 0.450 9.456 44.993 0.179 34.197 4.191 0.408 2.056 236.026 0.112 64.035
Conv1D 198.400 0.096 39.421 9.837 0.240 3.842 46.133 0.183 34.073 2.395 0.233 1.156 214.037 0.102 51.723
LSTM 493.948 0.239 168.236 11.632 0.284 3.942 46.601 0.185 33.218 3.513 0.342 1.805 246.735 0.117 46.816
Seq2Seq 189.799 0.092 37.394 9.185 0.224 3.623 43.748 0.174 30.587 2.314 0.225 0.954 215.298 0.102 48.373

Building 1

Dish Washer Lamp Fridge Radio Washing Machine

RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE

VARMA 166.513 0.091 36.364 17.736 0.168 6.140 39.480 0.330 31.445 4.615 0.246 1.766 140.496 0.069 23.545
Conv1D 164.924 0.090 27.609 14.757 0.140 5.298 25.534 0.213 15.541 2.860 0.152 0.867 129.324 0.063 11.285
LSTM 154.280 0.084 18.174 11.855 0.112 2.875 36.070 0.301 20.999 2.211 0.118 0.351 120.479 0.059 33.571
Seq2Seq 119.308 0.065 13.782 12.803 0.121 3.420 23.346 0.195 10.920 2.314 0.123 0.420 119.215 0.058 11.960

Building 2

Dish Washer TV Network attached storage Laptop Washing Machine

RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE

VARMA 294.618 0.135 86.852 203.580 0.478 141.565 79.463 0.550 69.964 16.122 0.030 3.785 138.297 0.112 23.292
Conv1D 294.417 0.134 73.202 116.982 0.275 68.136 10.406 0.072 3.808 16.236 0.030 6.329 137.647 0.111 43.017
LSTM 299.399 0.137 63.336 124.385 0.292 61.287 7.906 0.055 2.418 15.800 0.029 3.364 177.153 0.143 98.461
Seq2Seq 256.000 0.117 69.832 113.047 0.266 54.230 9.307 0.064 2.450 14.537 0.027 3.061 142.829 0.115 34.219

Building 3

Dish Washer TV Fridge Computer Washing Machine

RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE

VARMA 157.059 0.088 29.454 34.862 0.363 14.512 70.842 0.558 49.705 38.798 0.433 25.994 189.403 0.095 39.776
Conv1D 152.446 0.085 16.818 22.188 0.231 8.625 41.075 0.323 24.815 15.416 0.172 8.242 165.717 0.083 20.852
LSTM 135.093 0.076 12.546 18.148 0.189 4.666 46.150 0.363 25.728 14.639 0.164 5.947 187.217 0.094 40.206
Seq2Seq 131.433 0.073 18.913 21.599 0.225 7.167 32.821 0.258 17.385 15.813 0.177 7.124 164.082 0.082 31.318


