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Abstract— Theme parks are large crowded areas with unique
characteristics in terms of movement behavior of visitors, at-
tractions in different locations and walking paths connecting
the attractions. Wireless sensor networks (WSNs) with mobile
sinks can be used for various purposes including security and
emergency issues as major challenges in such environments.
Modeling of human mobility in theme parks allows us to consider
scenario-specific applications of WSNs in these entertainment
areas for event coverage purposes.

In this paper, we propose a WSN model with mobile sinks
and provide a novel approach to cover the events occurring in
the environment. Furthermore, we propose new strategies for
mobile sink positioning and event handling decision problems.
We evaluate the benefits of our approach through extensive
simulations using two sophisticated human mobility models for
visitor movement.

I. INTRODUCTION

Wireless sensor networks usually consist of a set of static

sensor nodes and a static sink collecting data from the sensor

nodes through hop-by-hop wireless communication. Energy

consumption by wireless communications between sensor

nodes is a major concern and due to the limited resources of

the sensor nodes, decreasing the energy consumption allows

maximizing the lifetime of the network. Another problem of

the networks with static sensor and sink nodes is adaptivity

in dynamic environments. In recent years, variety of research

related to WSN applications focus on the use of mobile devices

as the elements of the networks. The mobility of nodes in these

networks brings new research challenges since the choice of

mobility patterns, positioning (placement) of mobile elements

and routing protocols significantly affect the performance of

the network.
Theme parks are are usually very large, bordered and

crowded areas. These environments usually consist of separate

various attraction areas distributed in different locations and

walking paths connecting these attractions to each other.

Visitors are usually walkers without vehicles and the nondeter-

ministic behavior of human movement decisions are combined

with the deterministic behavior of the attractions. Realistic

modeling of human mobility [1] for such environments allows

us to simulate different types of applications and designs of

WSNs. Such applications can be used for various purposes in-

cluding data collection from visitors for commercial purposes,

entertainment of customers, crowd management, and so on.

Event handling and coverage is one of the major challenges

in such environments due to inevitable security and emergency

problems.
Almost all the research on network applications in theme

parks consider urban sensing applications since most people

have smart phones. For instance, mobile applications including

multi-player games among the visitors of the park and nav-

igation applications are used for further entertainment. Even

though some of these applications are already in use today,

none of them considers deploying a WSN application with

sensor nodes and mobile sinks without the need of visitor

participation. The use of WSN in theme parks may help

effective handling of security events such as pick-pocketing by

reducing the crime rates and managing emergency situations

such as accidents and first-aid.

In this paper, we propose to apply the technology of wireless

sensor networks with mobile sinks in the management of a

theme park. We tackle the event coverage problem in which the

operator needs to acquire the best possible information about

the events occurring in the area. The unique characteristics of

human mobility and locations of different types of attractions

are considered in the model. We evaluate the benefits of the use

of WSNs in theme parks by simulations of different scenarios

and using two realistic human mobility models for movements

of the visitors.

The rest of the paper is organized as follows. We provide a

detailed description for our model in Section II. The simulation

results are presented in Section III. Section IV summarizes the

related work and we conclude in Section V.

II. EVENT COVERAGE

A. Network model

The WSN model consists of static sensor nodes randomly

distributed and deployed in the theme park and mobile sinks.

The sensor nodes have limited energy resources and lifetime

while they have the ability to sense an event from their

environment and send it to the closest sink via multi-hop

transmission at the same time of an event detection.

There are multiple but limited number of mobile sinks with

the ability to move very fast to handle the events. We may

consider the mobile sinks as expensive but powerful event-

handlers that have the ability to move inside an attraction or

between attractions. They collect data from the sensor nodes

and share the information about their locations, computation

results or event information among each other without any

significant time delay. In reality, a mobile sink may be a

police officer driving personal electric transportation vehicle

(e.g. Segway Patroller [2]) with a powerful computation and

wireless communication device such as a tablet computer

attached to the vehicle.

The speed of a mobile sink changes dynamically since

the environment includes physical constraints such as visitors



Fig. 1. Queues, non-clustered points and 200 visitors in the theme park.

walking in the same road that a mobile sink needs to move. For

synthetic simulations of mobile sink movements, we estimate

a speed between two locations for a mobile sink using a

simple micro-mobility approach which is explained in the next

subsection.

The events occur inside or close to an attraction. We assume

that more people in an attraction causes an increase in the

possibility of an unwanted event occurring at the attraction.

This means crowded areas are more likely to have security

events. Each event has a timeout which changes the mode

of the event from active to passive. Mobile sinks aim to

move towards the event location before the mode of the event

becomes passive. We assume that if a mobile sink can move

to the location of an event during its active time, the sink

handles the event and if the mobile sink is unable to arrive at

the event location in a timely manner, the event is considered

missed. Each event has a priority value between 1-5 according

to the importance of the event. This value is used for adaptive

position updates of the mobile sinks.

We use the scenario-specific human mobility model [1] to

model attractions and the mobility of the visitors. This mobil-

ity model synthetically creates the attractions in a park using

different types of queueing models. For instance, restaurants

are modeled by M/M/1 queues while rides are modeled by

M/D/n queues and open-air live shows performed in the park

are modeled by M/M/n queues. The queues are created using

the fractal points generated as visiting points. DBScan [3]

algorithm is used for clustering the visiting points to find the

most-populated areas (attractions) people gather to spend time.

In Figure 1, the queues generated using the clustered points

are represented by squares. The non-clustered visiting points

and visitors are shown by small dots and circles respectively.

Each queue is presented with its queue type: main rides (RD),

medium-sized rides (M-RD), live shows (LS), and restaurants

(RT).

B. Dynamic directed graph model

We propose a dynamic directed graph to model the envi-

ronment. In this graph model, the nodes represent attractions,

mobile sinks and events while the edges are the alternative

Fig. 2. The directed graph consisting of queues, mobile sinks and an event
as nodes.

roads for movement of the mobile sink between the nodes.

An example of this graph is illustrated in Figure 2, where

A1, A2, ..., An are attraction nodes, M1,M2, ...,Mm are mo-

bile sink nodes and E1, E2, ..., Ee are event nodes. Permanent

and temporary directed edges are shown by the arrows. Some

pair of nodes do not have an edge connecting them, meaning

that there is no direct connection or even a need for connection

between these nodes. For instance, an edge from an event to

a mobile sink or an attraction is not necessary since the goal

is to find possible routes for mobile sinks. Attractions have

capacities set by a ratio equal to the number of visitors in

the attraction divided by the number of all the visitors in the

park. These capacities stand for the probability of an event

occurring in each of these attractions. In the adaptive approach,

the capacities may change by the history of events. Initially,

we use weights of the queues for attraction capacities since

the number of visitors is proportional to these weights. The

total capacity (probability) of all attractions is equal to 1.

The edges of the graph are weighted and directed. The

weights of the edges are the time estimates for mobile sink to

travel along this edge from the source node to the target node.

The estimated time for an edge is computed by Algorithm 1.

In this algorithm, we assume the number and directions of

visitors, distance and width of a road effect the moving time

of a mobile sink. This assumption is based on the fact that

if the density of people is high then the number of collisions

avoided by slowing down along the road for the mobile sink is

also high. The edge weights change dynamically and updated

according to the current movement patterns and positions of

visitors in the park. c is the density calculated by the total area

a of visitors currently located in the road divided by the area

of the road. The area of the road is equal to d(s, t) ·w where

w is the width. α is the direction difference between the sink

and a visitor and γ ε (0, 1] is the constant for adjusting the

effect of the direction α. For instance, the effect of collision

detection is highest when a visitor moves to the opposite

direction and lowest if they are moving in the same direction.

β is a constant parameter which configures the magnitude of

the speed change. We used 12.5 mph as the maximum mobile

sink speed as it is listed in the Segway Patroller specification

sheet [2] for the models x2 and i2. Today, more than 1,200

police departments and public safety organizations in the world

use these devices for security purposes.



Algorithm 1 Algorithm for computing the edge weights

1: s, t: Source and target nodes

2: V (s, t): Set of movement directions of visitors between s
and t

3: m(s, t): Movement direction from the s to t
4: d(s, t) := Euclidean distance between s and t
5: c := a/(d(s, t) · w)
6: S := Maximum mobile sink speed

7: for each v in V (s, t) do
8: α := m− v
9: S := S − β · c · (S − γ · S · cosα)

10: end for
11: W := d(s, t)/S
12: return Estimated travel time as the weight W

C. Event coverage strategies

The problem of the event coverage is the capability of

the mobile sink reaching an event sensed by sensor nodes in

minimal time. To achieve this goal, we first need to position

the mobile sinks in the theme park. Then, we need to select

the best path and the best mobile sink for all events.

For the problem of positioning mobile sinks in the dis-

tinct attractions, we first propose a weighted sink positioning
strategy for the multiple mobile sinks. In this strategy, we

assume that the number of visitors is proportional to the

number of events occurring in the attraction. By monitoring

the approximate number of visitors of all attractions, we assign

the capacity values to attractions as the probability of having

events and update their values iteratively at discrete update

times. The mobile sinks are distributed to the attractions

according to the current capacities of the attractions.

For some scenarios, there may be a subset of attractions

having higher rates of events compared to the other attractions

and these rates may also change in time. This behavior seems

probable since the theme park environments are dynamic and

likely to have unexpected changes.

As a result, we propose another strategy called, the adap-
tive sink positioning. In this approach, sinks are distributed

according to attraction capacities in the same fashion, but this

time the mobile sinks keep history of all events happened by

sharing the event data among each other. The data includes the

index of the closest attraction node and priority of the event.

After occurring of a new event, the capacity of the closest

attraction increases by a value that is the multiplication of a

constant value δ (e.g. δ := 0.05) and priority of the event,

while the capacities of other attractions decrease by the same

value divided by the total number of the other attractions. The

sinks have common location update times. Each of the sinks

decide and move to the next attraction at the update times

according to the current capacities, occupancy by the other

sinks and existence of an edge between the current and the

next attraction.

For effective event handling, we apply shortest path al-

gorithm by using the directed graph with values updated

according to the current edge weights for each mobile sinks.

In this Shortest Path (SP) strategy, each mobile sink finds its

shortest path to the event in terms of travel times when an

event occurs and the mobile sinks share their estimated travel

times among themselves. The mobile sink with the minimum

estimated travel time is selected as the best sink to handle

the event. When the chosen sink move to an event area, other

sinks update their positions according to the new unoccupied

attraction left by the selected sink.

For the environments in which monitoring movements of

visitors is not possible, we propose the Closest Sink (CS)
strategy. In this strategy, the shortest path algorithm is used in

the same fashion as in the SP strategy, but edge weights are

static. The weights of the edges are calculated by the Euclidean

distances between the attractions.

III. SIMULATION STUDY

A. Simulation environment and metrics

We use theme park (TP) [1] and SLAW [4] mobility

models to model the human movements. Using the synthetic

simulations of the two models, trajectory data for mobility of

visitors in the theme park is integrated into our simulation of

WSN with mobile sinks. We used the same fractal point files

including data for 1000 points distributed in the terrain of the

same size in order to compare the performances with these

two mobility models.

The simulation environment consists of 15 attractions dis-

tributed as the directed graph attraction nodes and one or

multiple (up to 10) mobile sink nodes. Edges between the

attraction nodes are created initially in two ways, one is having

edge between the closest attractions with a vertex degree

of 4 and the other is creating edges randomly between the

attractions with the graph density of 0.7. Temporary edges

for the mobile sinks and the events are created to the closest

attraction. Event nodes are created temporarily and distributed

in three ways: uniformly random selection, selection according

to the weights and selection from a number of randomly

selected specific attractions. In figures with simulation runs,

each simulation run represents an average result of a set of 20

experiments with the same selected attractions to hold events.

The attractions having events vary for different simulation runs

due to the event attraction selection schemes.

Location update time for adaptive mobile sinks is 30 min-

utes and starting times of 300 events are distributed to the

total simulation time by uniform random distribution. For the

events, active times are generated randomly between the mini-

mum of 60 seconds and the maximum of 300 seconds. Table I

summarizes the other parameters used in our simulation study.

TABLE I

SIMULATION PARAMETERS

simulation time 10 hours
terrain size 1000x1000 m
number of visitors 500
speed of visitors 1.00 m/sec
max mobile sink speed 5.58 m/sec
δ for adaptive updates 0.1
sampling time of visitors 10 sec

The simulation metrics used in simulations are average

event handling time, that is the travel time for the selected

mobile sink to reach to an event after it occurs, and hit ratio,

that is the success rate of mobile sinks calculated by dividing

the number of hits by the total number of events occurred.
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Fig. 3. Average event handling times: Weighted vs. Random sink positioning.

B. Simulation results

1) Weighted sink positioning: In the first of set of exper-

iments, we evaluated the performance of the weighted sink

positioning strategy. We compared the performance of this

strategy against the random sink positioning. In the random

positioning, the mobile sinks are distributed to the attractions

by uniformly random selection of one attraction for each one

of the sinks. The number of mobile sinks is 5 and events are

created according to the distribution of visitors in attractions.

The shortest path (SP) strategy is used for event handling of

the mobile sinks.

Figure 3 shows the average event handling times for

weighted and random sink positioning for TP and SLAW

mobility models. For both mobility models, the weighted

sink positioning is a clear winner compared to the random

positioning since the sinks need less time to handle an event.

2) Adaptive sink positioning: Next, we evaluated the suc-

cess of adaptive positioning of mobile sinks in the case

when events consistently occur specifically from a subset of

attractions. We compared the adaptive sink positioning against

the weighted sink positioning and observed the positive effects

of adaptive positioning on event handling capabilities. The

number of sinks is 3 and 3 attractions are selected uniformly

random from all attractions as specific attractions where events

occur. As in the previous experiments, the SP strategy is used

for event handling of the mobile sinks.

Figure 4 shows that there is a significant difference for the

average event handling times, comparing the results of the

adaptive and weighted sink positioning strategies. For each

simulation run, adaptive positioning produces results more or

less stable and successful average times from 70 seconds to

90 seconds, while the results of weighted positioning fluctuate

between 160 seconds and 360 seconds. These are expected

behavior of both strategies, since in adaptive positioning, no

matter where the sinks are located initially, they are able to

move to the attractions where events consistently occur. On

the other hand, in weighted positioning, the sinks do not

change their allocation of attraction according to the past

events. For instance, in one simulation run, events may occur

close to the initially heavy weighted attractions but in another
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simulation run, events may occur close to the attractions with

low capacities. Although events occur in different attractions,

sinks are always located close to the attractions with high

capacities for the weighted positioning strategy.

3) Event handling decision: We evaluated the performance

of generation of shortest path strategy using the dynamic edge

weights for each mobile sink. For this reason, we compared

the Shortest Path (SP) event handling strategy with Closest

Sink (CS) strategy in which we generate shortest paths for

each mobile sink using the distances between the attractions

as edge weights if there is an edge in the directed graph and

the Random Sink (RS) strategy in which we select one of the

mobile sinks randomly and send the selected sink according to

its shortest path. We used weighted positioning with 3 mobile

sinks and events are distributed randomly according to the

attraction capacities in all experiments.

As shown in Figure 5, SP strategy has better results in

terms of hit ratios and CS strategy produces significantly better

results compared to RS strategy. Although results may differ in

different simulation runs, SP strategy always has the significant

advantage over the other two strategies.



1 2 3 4 5 6 7 8 9 10
20

30

40

50

60

70

80

90

Number of mobile sinks

H
it 

ra
tio

 (%
)

Theme Park
SLAW

Fig. 6. Effect of multiple mobile sinks on hit ratio.

4) Use of multiple mobile sinks: Lastly, we compare the use

of different numbers of mobile sinks in the network. Since

sinks are expensive elements of the network, we expect to

reach a convergence point for the results of the hit ratios.

As in Figure 6, using two or three mobile sinks produced

better hit ratios compared to the use of single mobile sink. On

the other hand, after a certain point, the effect of additional

sinks starts losing its significance. For instance, using no more

than 7 mobile sinks seems reasonable since the impact of the

3 extra sinks is not significant. By looking at the hit ratios of

single mobile sink and multiple mobile sinks, it is clear that

using multiple mobile sinks increased the success rate of the

event handling from values below 30% to the values close to

90%. This is the main reason why we propose the WSN model

with multiple mobile sinks for the theme park scenario.

IV. RELATED WORK

For managing positioning and mobility of the sink nodes,

various approaches are proposed in the literature. Mulligan

and Ammari [5] provides an extensive survey on coverage

in WSN. Younis and Akkaya [6] survey techniques for node

placement strategies used in WSN. While Vincze et al. [7] use

an approach, similar to our weighted positioning strategy, for

positioning multiple sinks optimally in a sensor network based

on an electrostatic model by assigning positive or negative

charges to sensor nodes, and positive charges to sinks. In this

study, the goal is to optimize energy usage of sensor nodes in

the network. Melodia et al. [8] suggest location management

scheme for the mobility of actors based on a hybrid strategy

including location updates and location prediction. Akbas

et al. [9] propose the actor positioning algorithm utilizing

the Valence Shell Electron Pair Repulsion (VSEPR) theory

of chemistry, which is based on the correlation between

molecular geometry and the number of atoms in a molecule.

Akbas et al. [10] have eliminated the limitations of the

basic VSEPR theory by extending the approach for multiple

central data collectors. Vincze et al. [11] introduce an adaptive

approach for sink mobility in an event-driven multi-hop WSN

to minimize the maximum load on sensors and prolong the

lifetime of the network. The intruder movement model is used

as the event model. They propose to minimize both the sum

of event distances and the maximum energy consumption. For

transmission scheduling problem, Turgut and Bölöni [12] [13]

first describe a graph-theory based approach for calculating the

optimal policy and compare three heuristics based on different

principles (imitation of human decision making, stochastic

transmission and constant risk) to control the transmission

behavior of the nodes in the presence of multiple mobile sinks

in WSN. Bölöni and Turgut [14] suggest a decision-theoretic

approach. They first develop a dynamic programming based

optimal algorithm for the case when the mobility of the sinks

is known in advance and then propose two decision theoretic

algorithms which use only probabilistic models learned from

the history of interaction with the mobile sinks, and do not

require knowledge about their future mobility patterns. Wang

et al. [15] survey movement strategies for improving the

performance of event coverage in wireless sensor networks.

V. CONCLUSION

In this paper, we tackled the event coverage problem in

theme parks and proposed new strategies for event handling

and sink positioning. The success of our approaches are evalu-

ated through extensive simulations of different scenarios using

the scenario-specific theme park (TP) and SLAW mobility

models.
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