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Abstract— Theme parks can be modeled as geographical areas
where large crowds of people move among different attractions.
The operators of a theme park are interested in quickly and
efficiently handling events occurring at various locations in the
park. We propose a model which deploys a wireless network
with mobile sinks to facilitate event coverage. The event coverage
problem can be divided into two sub-problems: the static problem
of mobile sink positioning and the dynamic problem of event
handling decisions of the mobile sinks. For the mobile sink posi-
tioning problem we propose two strategies: crowd density based
probability estimation (CDPE) and hot-spot based probability
estimation (HSPE). For the event handling decision problem, we
propose an approach which represents movement opportunities
in the park as a graph with dynamically changing weights,
and searches for the shortest path in this dynamic graph. The
proposed approaches are simulated on scenarios which model the
movement of the visitors using two sophisticated human mobility
models.

I. INTRODUCTION

Theme parks are an important part of the entertainment
industry and their successful operation can be a driver of local
economic development. The operators of theme parks must
solve a combination of technological and human challenges.
Operationally, a theme park is a large geographical area where
groups of visitors move between various attractions such as
rides, restaurants, sights or rest areas. The operator of the
theme park needs to manage the flow of visitors such that
it maximizes their satisfaction by reducing the wait times
at the various attractions. At the same time, the operator
must be prepared to respond to events such as the operation
of pickpockets, purse snatching, and disturbances caused by
unruly visitors or medical emergencies. This leads to the
challenge of event coverage [1]: the operator must acquire
information about the events and decide how to handle them.
Event handling and coverage is one of the major challenges in
such environments due to inevitable security and emergency
problems. In addition to the technological security measures,
theme parks also deploy a large number of security employees,
for some parks more than a thousand, walking on foot or riding
bicycles [2]. We think that using of wireless sensor network
with mobile sinks can increase the safety of the theme parks,
and it may reduce the number of personnel needed for security.

In this paper we describe a method for optimizing event
coverage using a wireless sensor network with mobile sinks.
To achieve this, the theme park operator deploys two types
of nodes in the geographical area of the park. Static sensor
nodes are distributed throughout the theme park, passively
sense the environment and transmit their observations to the

mobile sinks. Mobile sinks collect data from the nodes, and
move to the location of events. In general, we assume that
the mobile sinks have more powerful networking and data
processing capability, and they can act as actuators, actively
resolving the events. Mobile sinks can be implemented, for
instance, by security personnel carrying tablet computers and
using electronic transportation devices. The movement of the
mobile sinks is constrained by the capabilities of the mobility
devices and the density of the visitors in various areas of the
park.

We define the event coverage problem as the calculation of
the movement of the mobile sinks for achieving an optimal
coverage of events. Solutions to the event coverage problem
must consider the a priori knowledge about the attractions
and geography of the theme park and dynamic information
about the movement of the visitors. Thus, the event coverage
problem can be divided into two sub-problems: the positioning
of the mobile sinks in the park in the absence of events and
the event handling decisions of the mobile sinks.

The rest of the paper is organized as follows. We summarize
related work in Section II. Section III describes the models of
the landmarks of the theme park, the visitor movement and
the wireless sensor network. Section IV describes the pro-
posed solution strategies to the event coverage problem. The
strategies are validated through a simulation study described
in Section V. We conclude in Section VI.

II. RELATED WORK

In recent years, various studies focus on the use of mobile
elements in wireless sensor networks. Mobility has significant
effects on the performance of these networks and brings new
research challenges for the existing problems such as data
collection [3] and dissemination [4], relay node placement
[5], [6], [7] path planning [8], latency [9], [10], lifetime
maximization [11], [12], [13], [14], routing [15], [16], [17],
[18] and security [19].

Let us briefly summarize the research on mobility models
for network applications. Camp et al. [20] survey the mobility
models used for ad hoc research and human mobility models
that simulate the movement patterns of the mobile users. The
human mobility models can be classified into synthetic [21]
and trace-based [22] models mostly using GPS traces and
Bluetooth connectivity. Synthetic models, which are defined on
mathematical basis are widely used in the network simulations
with human mobility since the amount of publicly available
real-life data is limited.



Among many, some of the literature on human mobility
models also focus on using the models for performance evalua-
tion of networks. Rhee et al. [23] show through the SLAW [24]
model, the Levy walk features characterize the mobile network
routing performance. ParkSim [25] by Vukadinovic et al. is a
software tool for the simulation of wireless ad hoc networks
and its mobility model is driven by the possible activities of the
visitors. Using the model based on the GPS traces collected in
a theme park, Vukadinovic et al. [25] observed the effects of
human mobility on opportunistic message forwarding through
wireless devices carried by the theme park visitors. Wang
et al. [26] survey movement strategies for improving the
performance of event coverage in wireless sensor networks.

Most research on wireless sensor networks with mobile
elements (MEs) focus on settings such that large numbers of
static sensor networks distributed in a large area and limited
numbers of mobile sinks move between the sensor nodes to
collect data. Data collection and management, transmission
scheduling of the collected data, routing, and localization are
major challenges in these networks. Di Francesco et al. [27]
survey data collection schemes in WSNs with MEs, while
Zhu et al. [28] survey communication and data management
issues in mobile WSNs. Anastasi et al. [29] investigate data
delivery to one or multiple MEs in the context of sparsely
deployed sensor nodes. Turgut and Bo616ni [30], [31] propose
heuristic approaches for the transmission scheduling prob-
lem and compare the performances of each of the proposed
strategies for WSNs with multiple mobile sinks. B6l6ni and
Turgut [32] suggest a decision-theoretic approach for the same
problem. Luo et al. [33] show the benefits of routing towards
a mobile sink approach for improving lifetime of WSNs in
different scenarios. Furthermore, there are studies related to
other types of WSNs with MEs, where the sensor nodes are
also mobile [34], [35], [36] or the sensors are mobile and
the sinks are static [37], [38]. There are also studies of using
WSNs with MEs in 3D environments including aerial [39] and
underground [40] scenarios. Erol-Kantarci et al. [41] survey
distributed localization techniques used in mobile underwater
acoustic sensor networks.

For managing positioning and mobility of the sink nodes,
various approaches are proposed in the literature. Younis and
Akkaya [42] survey techniques for careful node placement
strategies used in WSN for effective optimization. Vincze
et al. [43] use an approach similar to our crowd density
based positioning strategy, for positioning multiple sinks opti-
mally in a sensor network based on an electrostatic model
by assigning positive or negative charges to sensor nodes
according to their energy level, and positive charges to the
sinks. In this study, the goal is to optimize energy usage of
sensor nodes in the network. Wang et al. [44] survey the
mobility management methods for mobile sensor networks
and compare the methods in terms of their categories and
characteristic features. Melodia et al. [45] suggest a location
management scheme to handle the mobility of actors with
minimal energy expenditure for the sensors, based on a hybrid
strategy including location updates and location prediction.
Vincze et al. [46] use an adaptive approach for sink mobility in
event-driven multi-hop WSNs to minimize the maximum load

on sensors and prolong the lifetime of the networks. They use
an intruder movement model as the event model and propose
two strategies to: a) minimize the sum of event distances and
b) minimize the maximum energy consumption. Angelopoulos
et al. [47] compare three coverage-adaptive random walks for
fast sensory data collection. In Random Walk with Inertia, the
mobile sink assigns probability to each directions and changes
the probabilities by discovery of sensors. In Explore-and-Go
Random Walk, the sink decides on moving in a straight line
or changing direction based on a bias factor at each step. The
last proposed walk is Curly Random Walk. In this approach,
the sink traverses the network area starting from the center
and expanding its mobility area by consecutive circular-like
moves.

III. SYSTEM MODEL
A. The Operation of a Theme Park

Theme parks are entertainment areas containing a number
of attractions associated with specific geographic locations
(landmarks). A visit in a theme park consists of three kinds
of activities: (a) time spent moving between attractions, (b)
time in the queue waiting for an attraction and (c) time spent
visiting the attraction. Depending on the type of the attraction,
different service models might exist. In restaurants, visitors are
served individually, and the time spent at the table varies with
the type of the meal and the customer’s preferences. Other
attractions, such as rides and theater performances, admit a
limited number of visitors at a time, who remain there for the
fixed duration of the show. There are also attractions which
are available only at specific time-slots (open air concerts,
parades). Visitors move among attractions on walking paths.
In most cases, visitors can freely choose which attractions to
visit next, but they are limited by the time it takes to walk
from one to the other and the queues at the attraction.

In general, the goal of the visitors is to visit as many
attractions as possible, with a higher preference for the more
popular attractions. Although statistics of the visitors at various
attractions and typical routes followed are available, there is
a significant intra-day and day-by-day variation. The total
number of visitors depends on the season, the day of the
week and the time of the day. Unique entertainment events
at specific time-slots can attract away the visitors from other
attractions while meal times increase the traffic at restaurants.
Long queues at one attraction might encourage visitors to try
other attractions. Crowded walkways slow down the movement
of the visitors. In conclusion, the movement of visitors in the
theme park requires a complex model which takes into con-
sideration the geography, the service models of the attractions,
and the decisions of the visitors.

B. Modeling the Movement of the Visitors

As we have seen, the mobility of the visitors in a theme park
depends strongly on the specific geography, attractions and
schedules of the theme park, but it also contains many random
elements due to arbitrary decisions taken by specific visitors.
Thus, generic human mobility models do not predict well the
visitor movement in a theme park: we need to use scenario



specific models which take as input the a priori knowledge
about the operation of the theme park.

We have developed the human mobility model [48] specif-
ically to describe the movements of the visitors in theme
parks. We start by generating fractal points representing the
visiting points of the human walkers. The dense regions where
visitors spend most of their time, corresponding to popular
attractions are found using the DBScan [49]. Figure 1 shows
the initial steps of the model. In the first step, 2000 fractal
points synthetically generated, and in the second step, the 15
clusters of fractal points found by DBScan. These clusters
correspond to the attractions in a theme park. The non-
clustered points in the model represent points visited by human
walkers outside the attractions. The number of clusters (i.e. 15)
and the percentage of non-clustered fractal points (i.e. 10%)
are two parameters of the model, which are used in the second
step. We call the geographic location of the clusters and non-
clustered points landmarks.

To model the behavior of the visitors waiting in queues and
visiting attractions, we associate with each attraction (cluster)
a queue model. The nature of the queue depends on the type
of attraction. For instance, food stalls are modeled by M/M/1
queues, representing the fact that the arrival happens indepen-
dently, and the service time is variable. Rides are modeled
by M/D/n queues, as their service time is deterministic and
they can serve n customers at a time. Live shows, where the
time of the event is not deterministic and visitors can leave
at any moment are modeled as M/M/n queues. We call the
non-clustered fractal points as the noise points.

Figure 2 illustrates the attractions (queues), the non-
clustered visiting points (noise points), and the positions of
200 visitors in the park. The queues, which are generated
using the clustered points, are represented by squares. The
non-clustered visiting points and visitors are shown by small
dots and circles respectively. Each queue is labeled with its
queue type: major rides (RD), medium-sized rides (M-RD),
live shows (LS), and restaurants (RT).

The algorithm for deciding the next destination [48] chooses
the next target from the set of unvisited locations based on
probabilities which favor the closer locations and locations
which correspond to more popular attractions. Visitors try to
minimize the Euclidean distances traveled between popular
attractions and visiting points. On the other hand, all selected
attractions and visiting points have the chance to be selected
as next destinations.

Visiting an attraction is physically represented by the visitor
moving to a random point inside the region of the attraction
(this can be, for instance, the location from where the visitor
watches a show). Each queue has a service rate, the number
of visitors per service, and capacity. The waiting time of a
visitor in a queue depends on the number of visitors already
waiting in the queue ahead of the visitor, the service rate, and
the number of visitors per service of the queue. On the other
hand, when a visitor goes to a noise point, the visitor spends
time in that location for a waiting time generated randomly
by truncated Pareto distribution.

In the model, the visitors of theme parks are represented by
mobile nodes. The mobile nodes have states representing their

current activities during their hangout times in the landmark:
initial, inQueue, moving, inNoisePoint and removed. All the
mobile nodes are in the initial state at the beginning of
the mobility simulation. The node is in inQueue state if it
is waiting in the queue or is serviced by the queue. Thus,
waiting time in the queue for the mobile nodes is the sum
of waiting time and service time. Furthermore, if a queue
is on its full capacity whenever a mobile node arrives, the
node bypasses the queue without marking the queue as visited
and selects another destination to visit. If a node selects a
noise point as the next destination, it changes its state to
inNoisePoint whenever it arrives to the noise point and waits
for the generated waiting time. There are two different waiting
states in the model to differentiate the queues and the noise
points. After the waiting time of a node in a queue or in a noise
point passes, the node decides a new destination, changes its
state to moving, and starts to move to the new destination.
Finally, whenever the hangout time of a mobile node in a
landmark passes, the state of a mobile node becomes removed.

Let us describe the pre-planning phase of the visitors. In
the initial state, each node decides its own hangout time
for the landmark. The hangout time is generated randomly
by exponential distribution. Based on the hangout time, each
visitor selects a subset from the set of all queues and marks
the queues in the subset as planned to be visited. The number
of queues to be visited (size of the subset) is proportional
with the hangout time. Having a plan in the initial phase does
not guarantee that all the selected subset of queues is going
to be visited, but each mobile node aims to visit as many of
them as possible. During the simulation, a mobile node can
behave non-deterministically by selecting a noise point and
spend time there or by selecting a queue which is not the
closest one as the next destination. The queues, on the other
hand, have a deterministic behavior since they have specified
parameters such as expected service time, number of mobile
nodes serviced at each service time, and capacity.

To serve as a basis of comparison, our simulations also
use an alternative human mobility model, the self-similar
least action walk (SLAW) [24]. The SLAW model provides
an effective strategy for representing social contexts present
among people sharing common interests or those in a single
community such as a university campus, companies and theme
parks. In this model, the social contexts of common gathering
places are represented by fractal points and heavy-tail flights
on top of these fractal points. Both models used in our
simulations are validated by GPS traces collected from theme
park visitors.

C. Wireless Sensor Network Model

In the following we describe the model of a wireless sensor
network with mobile sinks specifically designed to allow the
operator of the theme park to efficiently and promptly handle
events. The sensor network consists of two types of nodes.

Static sensor nodes are deployed throughout the theme park.
Their capabilities are limited to sensing events occurring in
their physical vicinity, and the transmission of their observa-
tions to the mobile sinks using hop-by-hop transmissions. The
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Fig. 1.
the theme park.

Fig. 2. Queues, non-clustered points and 200 visitors in the theme park.

static nodes are passive observers, they cannot take actions
to handle events. Sensor nodes may stay idle when there is
no event or they may sense environmental data for regular
monitoring purposes. We assume that static nodes are deployed
uniformly and randomly in the geographical area of the theme
park. In this study we focus on mobile sink positioning and
the selection of the best sink for event coverage. Naturally, for
a complete system, an appropriate routing protocol for WSNs
with mobile sinks must be chosen [50].

Mobile sinks are nodes with the ability to receive informa-
tion from the static nodes, move to the location of the events
and take active steps towards handling the event. We assume
that every event has an associated timeout, a window of time

Generating a model of the visitor mobility. Left: 2000 fractal points representing visitor destinations, right: 15 clusters representing popular areas in

within which the event can be handled. If no mobile sink
reached the event before the timeout, we consider that the
system missed the event. The objective of the system is to
minimize the time from the detection of an event to the time
it is handled. We assume that mobile sinks have the ability
to share among each other their locations, computation results
(decisions) and event information. highightThe information is
assumed to be shared directly via wireless communication
between the mobile sinks whenever possible or transmission
via sensor nodes between them. Moreover, we assume that the
conditions of the roads and attractions in terms of the estimated
traveled time and crowdedness are shared between the mobile
sinks in the same way. For instance, a mobile sink computes
the estimated travel time according to the conditions of the
road and share this information. Note that this information
can be shared by a control center which globally estimates
the number of people in the attractions and roads if the mobile
sinks are accessible. A possible real-world implementation of a
mobile sink can be a security guard driving a personal electric
transportation vehicle (e.g. Segway Patroller [51]) with a tablet
computer attached to the vehicle.

Between handling events, mobile sinks must be positioned
such that the handling time of future events is minimized. The
number of mobile sinks deployed can change during the day
(for instance, due to equipment failure or their operators taking
a break). The position of the mobile sinks must be adapted to
the number of currently active units.

Mobile sinks have a maximum speed determined by the
technology used. Furthermore, their speed is limited by envi-
ronmental obstacles, such as the density of the crowd on the
paths. The mobile sinks need to plan their movement with a
consideration of such slowdowns; the shortest path might not
necessarily be the fastest way to reach the destination.



M2

®
AF/4-...

A2

Fig. 3. The dynamic directed graph model.

D. Event Model

Let us now consider a model of the occurrence of the events
in the theme park environment. We model the start times of
the events through a Poisson process, while the location of
an event follows one of the following three random spatial
distributions:

e Uniform random event distribution: events occur close
to one of the attractions, with all attractions having the
same probability to host the next event.

e Biased event distribution: events are distributed accord-
ing to initial probabilities of attractions, with events more
often occurring at popular attractions.

e Scenario-specific event distribution: certain attractions
have a significantly higher probability of an event to
occur. This might be caused, for instance, by insufficient
safety or security measures.

The distribution of events may change in time. For instance,
new security and safety measures may change the distribution
of the events from scenario-specific to biased event distribu-
tion. The wireless sensor network must adapt to all of the three
cases using effective strategies.

E. Dynamic Directed Graph Model

In the previous sections we introduced the various entities
which contribute to the description of the state of the theme
park augmented with a sensor network: attractions, movement
paths, visitors, mobile sinks and events. In this section, we
combine these in a formal model which supports the algo-
rithms implementing the decisions of the mobile sinks. The
model is implemented as a directed weighted graph. The nodes
of the graphs represent the locations of the attractions, the
current locations of the mobile sinks and the locations where
the events happened. The edges represent available movement
paths. The weights of the edges represent the time estimate
for a mobile sink to travel between the nodes. For instance,
to estimate the time for a mobile sink to reach an event, we
need to find the shortest path from the current location of the
sink to the event. In order to simplify the graph, we will not

include edges which are irrelevant from the point of view of
the movement of the mobile sinks (for instance, edges from
the attractions and events to the mobile sink locations).

Figure 3 shows an example graph where Al...A5 are
attractions, M1 and M2 are mobile sinks and E1 is an event.
The graph is dynamic in the sense that some of its components
depend on the current circumstances of the theme park. The
attractions and their connecting links are permanent features
of the graph. However, the weight of the edges connecting
the attractions varies with the population of the visitors on
these paths. The nodes describing the current mobile sink
locations and events, as well as their edges must be generated
dynamically based on the current situation.

Attraction nodes are marked with the probabilities of event
occurrences. The initial probability values are set according
to the estimated number of visitors for each attraction. This
estimation can be based on the previous observations and
statistics of the attractions. In our model we use fractal points
to estimate the average number of visitors in an attraction. The
distribution of the fractal points corresponds to the popular
areas in the theme park. The initial probability values for the
attraction nodes are computed as follows:

F(Ai)
(A1) + F(A2) + ...+ F(An)

P(Ai) = =

where P(Ai) is the probability value of an attraction A,
F(Ai) is the number of fractal points in the cluster correspond-
ing to the attraction Ai and n is the number of attractions in the
landmark. The sum of the probability values of all attractions
is equal to 1. Clearly, this is a rough estimate, since we do
not consider some properties of the theme park model, such
as the capacities of the attractions, statuses of the queues, and
so on. These estimates are only used for the initial values of
the attraction probabilities and they are updated dynamically.
The update mechanisms for probability values are described
in the following section in detail.

Algorithm 1 Computation of the edge weights

1: s,t: Source and target nodes

2: V(s,t): Set of movement directions of visitors between s
and ¢

3: m(s,t): Movement direction from the s to ¢

4: d(s,t) := Euclidean distance between s and ¢

5. c:=a/(d(s,t) - w)

6: S := Maximum mobile sink speed

7: for each v in V(s,t) do

8

9

a:=m-—uv
: Si=85-p-¢-(S—v-5-cosa)
10: end for

1: W=d(s,t)/S
12: return Estimated travel time as the weight W

The most challenging part of the graph construction is the
calculation of the weights, which represent estimates of the
travel time of the mobile sinks on specific paths. Intuitively, if
the path is empty, the mobile sink can move with its maximum
speed - in our case, the 12.5 mph speed of the Segway Patroller
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Fig. 4. The dynamic edge weights created when an event E'1 happens.

device. However, if the mobile sink shares the road with
visitors, it needs to slow down to avoid collisions. The higher
the density of the visitors on the road, the more significant the
slowdown. Finally, visitors moving in the same direction as the
sink trigger less slowdown than visitors moving in the opposite
direction - which means that the weights attached to opposite
edges can be different. Thus, calculating the weights of the
graph requires estimates of the density and the movement
of the visitors, and information provided by the static sensor
nodes.

The algorithm for calculating the weights is described in
Algorithm 1. The visitor density c is the number a of visitors
currently located in the road divided by the area of the road.
The area of the road is equal to d(s,t) - w where w is the
width. « is the direction difference between the sink and a
visitor and 7y € (0, 1] is the constant for adjusting the effect of
the direction . The parameter 3 allows us to scale the impact
of each visitor on the speed of the mobile sink. This parameter
allows us to approximate the effect of larger crowds than the
ones we are effectively simulating.

An example of the results of this algorithm are shown in
Figure 4. In this figure, the edges drawn with dotted lines are
the dynamic edges: the edges updated through the movement
of the mobile sinks and the edges connecting the new event
E1 to the closest attractions. We use an adjacency matrix to
represent the graph in the implemented algorithm. Figure 5
shows the adjacency matrix associated with the graph in
Figure 4 with the value z in the cells showing no edge between
the two nodes.

IV. SOLVING THE EVENT COVERAGE PROBLEM

Solving the event coverage problem involves resolving the
events occurring during the operation of the theme park as
efficiently as possible. This involves two sub-problems. The
mobile sink positioning problem chooses the location of the

Al | A2 | A3 | A4 | A5 [ M1 | M2 | E1

A1 X 40 65 X X X X X

A2 50 X X 30 X X X X

A3 | 50 X X 130 | 170 X X X

120 X 30 X X 60

A5 X X 155 | 45 X X X 15

M1 20 X 15 X X X X X

M2 b3 20 X 10 X X X X

E1 X X X X X X X X

Fig. 5. The adjacency matrix with dynamic edge weight values, corresponds
to the graph model in Figure 4.

mobile sinks in the absence of any event. The goal is to
distribute the mobile sinks in such a way that when events
happen, there will be a sink nearby which can quickly reach
the location of the event. Naturally, in order to find such a
solution, we can rely on our statistical knowledge about the
locations where events are likely to occur, and about the time
to reach specific locations from the current location of the
sink. The second sub-problem relates to the handling of events.
Once an event occurred, we need to decide which mobile sink
will handle the event, and which path it will follow to the
location of the event.

For both sub-problems, we assume that the mobile sinks
know the location of each other and the events each of them
are handling. The dynamic model of the theme park, in the
form of the weighted directed graph described in the previous
section, is shared by all the mobile sinks.

A. Mobile Sink Positioning

We propose a mobile sink positioning algorithm which is
based on estimating the probability of events happening at
various locations, then assigning the mobile sinks in such a
way that they are grouped towards the most likely locations of
events. Algorithm 2 shows how to update the location of the
mobile sinks. We assume that the mobile sinks are stationed
at attractions, A(m) representing the current attraction of the
mobile sink m. At each step, the mobile sink must make a
decision to either stay at its current attraction, or to move
to a neighboring attraction, if that attraction has a higher
probability of an event to occur and is not already occupied
by another mobile sink.

This algorithm, taken as a high level framework can be
customized in a number of ways. First, we can choose different
definitions of the neighbors of a node: it can represent either
a distance of a single edge in the graph, or it can represent all
the attractions which are within a distance threshold. Another
way in which the algorithm can be customized is by adapting
the definition of an occupied attraction: for very high event



probabilities, we can allow for more than one mobile sink to
be stationed at the same attraction.

Algorithm 2 Location updates

1: M: Set of all mobile sinks

2: A: Set of all attractions

3: O :={} : Set of occupied attractions

4: for each m in M do

5. a+ A(m)

6:  N(a) := The neighbor attractions of a
7. for each n in N(a) do
8
9

if P(n) > P(a) An ¢ O then
: a+n
10: end if
11:  end for
122 A(m) < a
13: 0O+ 0OUa
14: end for
15: return Updated attraction set A

The positioning algorithm requires an estimate of the prob-
ability of future events. In the following we propose two such
estimation techniques, based on different assumptions about
the nature of events: a crowd density based and a hot-spot
based probability estimation technique.

The crowd density based probability estimation (CDPE)
assumes that the number of events at an attraction is propor-
tional to the number of visitors. The number of visitors at the
attraction is estimated by the sensor nodes.

CDPE assumes that each visitor contributes equally to
the probability of an event. However, experience shows that
certain locations are more likely to have events (possibly
due to the nature of the attraction). Furthermore, events are
frequently clustered into hot-spots (possibly, due to a common,
but hidden cause).

The hot-spot based probability estimation (HSPE) takes
into consideration the history of events at specific locations.
The occurrence of an event increases the probability another
event will occur at the same attraction. The equation below
shows the formula used for updates done after an event occurs.
For each event e, the probability of an event at attraction
Ai increases if the event happened in that attraction. The
magnitude of the increase is calculated by multiplying the
priority of the event p € 1...5 with the adaptivity value
constant 6 (e.g. § = 0.05). It decreases for all other attractions
by the same value divided by the number of other attractions
(n—1).

P(Ai)+p-0
PAD=9 play - 222
I

if e occurred in Ai

otherwise

B. Event Handling

The second sub-problem we are considering is that of event
handling. Let us assume that the mobile sinks are positioned
using one of the algorithms from the previous section, and an
event E'1 occurs. The event handling algorithm needs to decide

50 .-

.-

e

Route 1

Fig. 6. An example mobile sink selection and covering of the attractions.

(a) which mobile sink will handle the event and (b) which path
it will follow when moving to the event’s location.

We have developed two algorithms, corresponding to differ-
ent levels of information available about the state of the theme
park. If the information collected from the sensor nodes allow
us to estimate the density and movement directions of the
visitors on the paths, we can deploy the Fastest Responder
(FR) strategy, which assigns to every event the mobile sink
which can get there the fastest. To implement this, we create
the dynamic graph of the current state of the node using
Algorithm 1. The weight of the edges correspond to time
needed to traverse them. On this time-weighted graph, we
calculate the shortest path from every mobile sink node to
the event node. The mobile sink which will be assigned to the
event will be the one which is at the shortest distance in this
graph. Note that the fastest responder might not be the one
which is physically the closest.

Figure 6 illustrates an example run of this algorithm. In this
figure, numbers near the arrows represent the edge weights
while numbers inside the graph nodes are probabilities of
attractions. There are two routes, Route I and Route 2, for
the two sinks to follow. In this example, the mobile sink M2
is responsible for the attraction A5 and the other mobile sink
M1 is responsible for A3 at the beginning. When the event £'1
occurs, the mobile sink M2 is selected to handle the event E'1
since the shortest path of M2 is 160 while the shortest path
of M1 is 220. M2 follows Route 1 to reach the event. The
movement of M2 to handle the event, however, also triggers
changes in the static positioning of the other mobile sinks.
The probability of attraction A5 is P(A5) = 0.35 while the
probability of A3 is P(A3) = 0.15. Therefore the mobile sink
M1 changes its position to cover the attraction A5 with higher
probability by following the Route 2, the shortest path from
its current location to the attraction A5.

For the case when the monitoring of the movements of



visitors is not possible, we use the Closest Sink (CS) strategy.
In this strategy, the shortest path algorithm is used on a
static graph, where the edge weights correspond to Euclidean
distances rather than in travel times.

V. SIMULATION STUDY
A. Simulation setup

In the following we describe a series of simulation exper-
iments which study the performance of the proposed event
coverage algorithms.

Let us start with describing the simulation setup. We are
considering a rectangular theme park of size 1000m x 1000m,
with 15 geographically distributed attractions, whose locations
have been determined using a fractal point model with 1000
fractal points. Between these attractions, we created the paths
in two ways: (a) by connecting all attractions with a vertex
degree of 4 or higher and (b) by adding paths between random
attractions until the graph density reaches 0.7.

We have considered 500 visitors who move around and visit
attractions in the park. We generated two different datasets of
visitor movement based on the theme park mobility model
(TP) [48], and the SLAW movement model [24]. Each dataset
contains trajectory files for 10 hours of mobility with a 10
seconds sampling time. The movement speed of visitors had
been set to 1m/s. According to Wanhill [52], the attractions
in a theme park are defined by queuing models and their
percentages are distributed as given in Table I [48].

TABLE I
ATTRACTION PERCENTAGES

Attraction Queue model | Percentage
Main rides (RD) M/D/n 17%
Medium-size rides (M-RD) | M/D/n 56%
Restaurants (RT) M/M/1 17%
Live shows (LS) M/M/n 10%

The theme park contains from 1 to 20 mobile sinks with a
maximum speed of 5.58 m/sec. The location update time for
adaptive mobile sinks was set to 30 minutes. Sensor nodes are
assumed to transmit the information of events to the mobile
sinks whenever an event occurs, and mobile sinks share the
current conditions of the dynamic theme park graph in the
specified location update times.

Let us now discuss the generation of the events. We need to
consider three aspects: the location of the events, their starting
times, and their active duration. The location of the events
had been created using one of the three event distribution
algorithms described in Section III-D. The arrivals of the
events are modeled with a Poisson process with an average
arrival rate of 30 events / hour. The active time of the events
is randomly distributed in the range of 60 to 300 seconds.

Throughout the simulation scenarios, we measured two
performance metrics. The average event handling time is the
travel time for the selected mobile sink to reach an event. This
also includes situations where the sink reaches the location of
the event after the event’s active time expired. The handling
success ratio is the fraction of the times the sink reaches the
event before its active time had expired.
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Fig. 7. Average event handling times for CDPE vs. random sink positioning.
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B. Simulation results

1) Performance of CDPE: In the first of set of experiments,
we evaluated the performance of the crowd density based prob-
ability estimation (CDPE) strategy. As a comparison baseline,
we used the random sink positioning (RSP) strategy, where
the sinks are deployed uniformly and randomly in the theme
park. The experiments considered 5 sinks. The location of the
events was generated using the biased event distribution. For
both positioning strategies, the fastest responder (FR) strategy
was used to handle the events. The experiments were repeated
with the visitor movements generated from the TP and the
SLAW mobility models respectively.

Figure 7 shows the average event handling times for the
combinations of positioning strategies and visitor mobility
models. For both mobility models, the CDPE strategy clearly
outperforms the RSP strategy, in average providing a 40%
faster event handling time. Incidentally, the handling times
are about 8% longer for the TP mobility model compared
to SLAW. This difference justifies the development of theme
park specific mobility models (compared to general purpose
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Average event handling times for sink positioning by HSPE vs.

mobility models).

The faster response times of the CDPE strategy are also
reflected in the higher success ratio as shown in Figure 8.
CDPE can handle about 65% of the events within their
deadlines, while RSP handles 30% for the TP mobility model
and about 40% for SLAW. We notice that the binary nature of
the event handling success magnifies the difference between
the success ratios of RSP for the TP and SLAW models
respectively.

2) Performance of HSPE: We designed the HSPE posi-
tioning technique to handle scenarios where the events occur
more frequently at certain attractions (the event hot spots). To
study the performance of HSPE, we generated scenarios where
three attractions are randomly selected to become hot spots.
Our hypothesis is that under these circumstances, HSPE will
outperform CDPE.

The simulation was run using 3 sinks and the FR responder
strategy. We repeated the simulation for both the TP and
SLAW mobility models. Figures 9 and 10 show the average
event handling times and handling success ratios of 500
experiments for each result. We decided to present the results
using box plots to illustrate the variation of the performances.
The results show that the HSPE algorithm highly outperforms
CDPE in these scenarios for both performance metrics. In
addition, HSPE shows very little variation in the performance.
In contrast, CDPE shows a significant performance variation.

The performance increase is attributable to the additional
information exploited by the HSPE algorithm about historical
event locations. As a note, as HSPE will behave the same as
the CDPE strategy in the absence of hot spots, we recommend
the use of the HSPE strategy for all deployments.

In the experiments shown in Figures 9 and 10, we consid-
ered the specific case where the number of hot spots matched
the number of mobile sinks. While this might appear arbitrary,
it is, in fact, a good deployment strategy to have at least as
many mobile sinks as the number of hot spots.

In the following, we compared performance of the HSPE
strategy against sink positioning by CDPE for various numbers
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of hot spots. 3 mobile sinks are used for handling events
created randomly from 1 to 5 hot spots. As before, we used
the FR event handling strategy, and generated events with the
TP mobility model.

Figure 11 shows the average event handling times and Fig-
ure 12 shows the handling success ratios for the two strategies.
Overall, HSPE significantly outperforms CDPE for all the
scenarios. In general, HSPE obtains its best performance when
the number of sinks is equal to those of the hot spots. Once
the number of hot spots exceed the number of sinks, the
average event handling time increases and correspondingly,
the handling success ratio decreases. CDPE on the other hand
not only has a lower performance, but the performance varies
with the number of hot spots significantly and without a clear
pattern. The reason behind this erratic behavior is that for this
scenario CDPE had simply made the wrong assumptions: it
assumed that the events follow the crowd distribution, while
in reality, they were concentrated in hot spots.
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3) Performance of CDPE and HSPE Function of the Num-
ber of Mobile Sinks: In general, we expect that increasing
the number of mobile sinks improves the performance of the
event handling, because if enough mobile sinks are spread
around in the area, no matter where the event occurs, some
mobile sink will be close enough to reach it fast. However,
adding sinks is a significant expense, thus it is important to
investigate the point where adding more mobile sinks provides
minimal advantages.

We have run a series of experiments using the HSPE, CDPE
and RSP positioning algorithms. We used the TP mobility
model and the FR strategy to handle the events. The number
of mobile sinks was varied between 1 and 20. The results for
the event handling time is shown in Figure 13 while for the
handling success ratio in Figure 14. As expected, for all the
algorithms the performance increases with the number of sinks
deployed, and the increase is especially fast when moving from
1 to 2 and from then on to 3 sinks. However, the performance
eventually reaches a plateau: even for the best performing
HSPE algorithm, no additional increase appears to decrease
the average handling time below 70 seconds, nor push the
handling success ratio above 93%.

The comparative performance of the algorithms, is as ex-
pected: HSPE is the best, followed by CDPE and RSP. This
holds true for all sink numbers (a single outlier aside). More
important however, is the difference in the level of the plateaus.
While HSPE reaches a plateau at around 93%, CDPE and
RSP cannot be pushed above 80% regardless of the number
of mobile sinks deployed. In fact, HSPE can achieve better
performance with 6 mobile sinks, than the other algorithms
would achieve with 20.

The graphs in Figures 13 and 14 can also be used for
efficient allocation of human resources. It is not economically
justified to add additional mobile sinks after reaching the
plateau. With the assumptions we considered, for HSPE there
are very few benefits to gain from adding more than 10 sinks,
and none in adding more than 14. These values might change
with different assumptions.
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4) Performance of Event Handling Decision Strategies
Function of the Number of Mobile Sinks: In this series of
experiments we studied the relative performance of various
solutions to the event handling decision problem. From the
two strategies we introduced, the FR (first responder) strategy
requires ongoing information about the density and movement
pattern of the visitors. In contrast, the CS (closest sink)
strategy only requires a priori information about the layout
of the attractions and paths of the park. As a baseline, we will
use the RS (random sink) strategy, where the event is handled
by a randomly assigned sink. All the strategies (including RS)
require inter-sink coordination to avoid multiple assignments.
We used CDPE for sink positioning with the number of mobile
sinks varied between 1 and 20. The events are distributed
according to the biased event distribution for all experiments.
The results are the average of 20 experiments with different
random seeds. We used the SLAW mobility model for this
experiment.

Figure 15 shows the average event handling times and
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Figure 16 the handling success ratios. The ranking is as
expected, FR performing best, followed by CS and RS. While
the performance of FR and CS increase with the number of
sinks, the performance of RS does not. This is justified by the
fact that with more sinks, it is more likely that FR and CS
can find a sink which is close to the event. However, for RS
which picks a sink randomly, the likelihood of being close or
far is about the same independently of the number of sinks.
While FR is consistently better than CS, their performance is
relatively close: this additional benefit needs to be weighted
against the expense of the crowd tracking sensor network.

5) The Impact of Event Distribution Types: In the last series
of experiments, we study the effect of the different event
distribution types outlined in Section III-D on the performance
of the network. We used HSPE for 3 mobile sinks and the FR
strategy for event handling and the TP visitor mobility model.
Figure 17 shows the event handling times and Figure 18 the
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handling success ratio for 5 different experiments. We find the
event distribution has a very strong impact on the performance:
the more random the distribution of the events, the lower the
performance. The same setup which achieves 90% success rate
on the scenario-specific distribution manages only 60% on the
biased and about 35% at the random distribution. We conclude
that stakeholders should perform careful initial studies on
the distribution of events in the park, as the spatio-temporal
distribution can have a critical impact on the event handling
success, even if all the other parameters are the same.

VI. CONCLUSION

In this paper, a wireless sensor network with mobile sinks
model is proposed for event coverage in theme parks. A
realistic human mobility model for theme parks (TP) is used
to simulate the movement of theme park visitors. A dynamic
directed graph model representing attractions, mobile sinks
and dynamic events as the nodes and movement paths as the
edges is proposed to model the environment. New strategies
for sink positioning and event handling decision problems



are introduced for the goal of event coverage. For mobile
sink positioning, crowd density based probability estimation
(CDPE) and hot-spot based probability estimation (HSPE)
strategies are proposed. For event handling, we proposed
fastest responder (FR) and closest sink (CS) strategies for both
static and dynamic edge weights in the directed graph model.

The success of the model and strategies are evaluated
through extensive simulations of different scenarios using TP
mobility model and SLAW model. Furthermore, it is shown
that using multiple mobile sinks has a significant advantage
over using one mobile sink. We find that our model of wireless
sensor network with multiple mobile sinks can be used for
security and emergency applications in theme parks.

The techniques developed in this paper can be adapted to
many applications which require the management of security
in scenarios where a large number of people are visiting
waypoints in a specific geographic area. Such applications
include security in shopping malls, fairs and festivals. A
related problem is the security in large transportation hubs
such as airports and train stations.
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