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Abstract—Realistic mobility modeling is necessary for
testing disaster management strategies as well as perfor-
mance of disaster-resilient networks. Evacuation of the
people from a disaster area depends on the environment
and type of the hazard which cause certain changes in
the pedestrian flows. Although most models focus on the
building evacuations or city-scale evacuation planning,
there is a need for a mobility model that captures the
pedestrians’ movement behavior during evacuation from
large and crowded disaster areas such as theme parks.

In this paper, we propose a mobility model of the
pedestrians in disaster areas. In our application scenario
of theme parks, the main mission of the operators is the
evacuation of the visitors and providing access to trans-
portation vehicles such as ambulances. We use real maps
to generate theme park models with obstacles, roads, and
disaster events. We incorporate macro and micro mobility
decisions of the visitors, considering their local knowledge
and the social interactions among the visitors. We analyze
the outcomes of the simulation of our theme park disaster
(TP-D) mobility model with simulations of currently used
models and real-world GPS traces. Moreover, using the
proposed model as a baseline, we analyze the performance
of an opportunistic network application.

Index Terms—Mobility model, disaster resilience, wire-
less sensor networks, theme parks

I. INTRODUCTION

Performance results of mobile networks drastically
change with the mobility model used in the simu-
lations [1]. Therefore, accurate modeling of mobility
has utmost importance for realistic network simulations
and performance evaluation of protocols [2]. With the
increased popularity of smartphones and mobile appli-
cations, modeling human mobility has become a major
area of interest for networking researchers. While there
exist very limited publicly available GPS trace datasets,
synthetic mobility models which simulate the human mo-
bility are useful for evaluating performances of various
network models including urban sensing networks and
opportunistic social networks.

Human mobility is based on the combinations of many
factors including deterministic and non-deterministic de-
cisions and social factors which depend on the scenario.
Since generic human mobility models are not suitable
to represent the human mobility behavior in different
application scenarios, there is a need for scenario-specific
modeling. We consider the application scenario of theme
parks due to their certain characteristics such as allowing
limited use of vehicles, having large-scale areas and
including natural and man-made obstacles. Moreover,
theme parks have similarities to other environments
with limited vehicle use such as campus environments,
airports, shopping malls, state fairs, and so on. By
selecting theme parks as an application scenario, we
isolate the problem of modeling pedestrian mobility
from problems of vehicle mobility and mobility during
building evacuations.

Theme parks are large and crowded areas with thou-
sands of daily visitors. Particularly, large-scale theme
parks attract visitors from all over the world, and the
theme park industry is one of the main contributors of
their regions. While overall popularity of theme parks
and the size of the industry are growing every year, the
global success of theme parks is severely affected by
disasters such as Hurricane Irene [3]. Considering the
fact that climate change increases the risk of extreme
events such as forest fires and floods [4], effect of disas-
ters may cause damages to the regions such as Central
Florida. This region has 5 of the top-10 theme parks
with highest attendances in the world, while being home
to various natural disasters with a history of hurricanes,
floods, tornadoes, and tropical storms.

The studies on disaster recovery and opportunistic
communication networks have become major research
interests due to their prospective contributions on the dis-
aster management strategies. For instance, as an impact
of a disaster, communication infrastructures which are
pre-deployed in the area may become unoperational. For
this reason, communication systems independent from
the infrastructurens (e.g., [5]) are taken into account in



many disaster management studies. Crowd management
and evacuation of people from disaster areas are other
major challenges which have theoretical and practical
interests from the research community. Modeling disaster
mobility in theme parks is useful for finding novel
methods to solve the evacuation problem in theme parks.
In addition, these methods may become the base-case for
the evacuation problem of more complicated scenarios
such as evacuation of people from buildings and evacu-
ation from big cities.

We consider a wide range of disaster scenarios for
theme parks. These scenarios include natural disasters
such as tornado, thunderstorm, hurricane, and earth-
quake. We also consider man-made disaster scenarios
such as terrorist attacks which may threaten human lives
in crowded places. While effects of these various types
of disaster may differ from one another, the main goal of
the operators will be safe and quick evacuation of visitors
and providing them access to transportation vehicles.

We modeled visitor movements in theme parks to
represent daily routine mobility of theme park visitors
without any consideration of the disaster scenarios [6].
However, in our previous model and the other currently
used theme park mobility models, the movement deci-
sions of the visitors are based on visiting the attractions
and exploring the park. Considering disaster scenarios,
the movement decisions should be based on the security
of visitors. The main goal of the theme park operation
include finding easy ways to secure places and quickly
evacuating the visitors from the disaster areas.

In this paper, we extend our previous work ([7], [8]) on
disaster mobility in theme parks. The main contributions
of this work include adding visibility variable to model,
extending the model description and simulation study
and evaluating the performance of an opportunistic com-
munication network application based on our mobility
model.

We model theme park as a combination of roads,
obstacles, lands, and red-zones using real theme park
maps. To model the visitor movements, we consider the
macro and micro mobility decision problems separately.
We use the social force model [9] to represent the
dynamics of the human motion by the social interactions.
We analyze the simulation results of our model and
compare it with the currently used mobility models and
the GPS traces collected from theme park visitors. The
outcomes of the simulation of the proposed model are
mobility traces of theme park visitors.

The effects of various possible disaster response ap-
proaches can be tested using our mobility model. Placing
informative signs in strategic locations to direct the visi-
tors to desired regions, having trained security personnel

to manage crowd flows or forming visitor groups by
assigning one trained person to lead each group can
be considered as examples of disaster response strate-
gies. Furthermore, autonomous robots can be used for
missions such as search and rescue. Another use of our
model is evaluating performances of networks resilient
to disasters such as opportunistic social networks which
are formed for broadcasting messages and increasing
knowledge of the visitors.

The organization of the remaining of the paper is as
follows. We describe the model in detail in Section II.
The simulation results of our model are provided in
Section III. We discuss the recent literature in mobility
models, disaster mobility and disaster management ap-
proaches in Section IV and finally conclude in Section V.

II. MOBILITY MODEL

In this section, we present the human mobility model
in theme parks for disaster scenarios. Let us first describe
the characteristics of theme parks and creation process
of the theme park models. Later, we will describe the
mobility of the visitors in detail.

A. Characteristics of Theme Parks

To give a background on the problem, we first de-
scribe the fundamental characteristics of theme parks by
looking from the mobility modeling perspective. Theme
parks consist of attractions which are entertainment
places including rides, restaurants, and places for other
activities. Attractions consist of man-made structures
(i.e. buildings) and they are connected to each other
by roads (i.e. pedestrian ways). The roads also connect
the entrance and exit points of the theme park with the
attractions. They are usually used only by pedestrians,
specific for theme park environment. Each road has a
width which determines the capacity of the road for
pedestrian flows. For instance, if a road is narrow and
there are many people, the density of the people becomes
large and as a result people cannot move fast enough on
the road.

Theme parks are open-air areas but can also have
buildings such as indoor rides, restaurants and gift shops.
The area of theme parks include many physical obstacles
for pedestrians. The physical obstacles include man-
made and natural obstacles. People who spend their day
in theme parks have activities such as visiting rides,
walking among the attractions along the roads, and
eating at the restaurants.

Due to the nature of the large and crowded area,
a natural or man-made disaster may have devastating
effects. As a disaster response strategy, in time of a



disaster, the aim is secure and fast evacuation the visitors
from the theme park. Considering an example of tornado
alert in a crowded day, the visitors should leave the
park to reach the transportation services located outside
the park. Since there are thousands of people leaving
the park, the mobility of a single pedestrian cannot
be considered independent from others. As a result,
the social interactions between the pedestrians, which
may cause slowdowns in pedestrian flows, should be
considered for realistic mobility modeling.

The evacuation problem of theme parks is different
from other evacuation problems. For instance, in a city
scenario, the main purpose is a quick evacuation of the
city through the effective share of streets by cars and
public transportation services. Other types of evacuation
scenarios focus on indoor evacuation, such as evacuation
from buildings or from rooms of a building. On the other
hand, the evacuation problem of theme parks includes
large areas with physical obstacles and large numbers
of pedestrians. As expected, the mobility of pedestrians
during disasters has many differences compared with
the typical mobility of people. Because of the afore-
mentioned characteristics, theme parks require scenario-
specific mobility modeling for evaluating performance
of networks in disaster situations as well as simulating
and testing various evacuation strategies.

B. Theme park models

We model the theme park as the combination of roads,
obstacles, lands, and disaster events. Each road contains
a set of waypoints, which are the movement points
for the theme park visitors. In this case, length of a
road is equal to the sum of the distances between each
pair of its consecutive waypoints. The roads direct the
visitors to the target locations in the map. The gates are
considered as the target locations and they are placed
close to the borders of the park. The gates connect
the theme park with the outside world and facilities
such as transportation vehicles (i.e. cars, ambulances, fire
engines).

As mentioned, attractions contain man-made buildings
and other structures such as a roller-coaster. In the typical
times, the aim of the visitors is to visit the attractions.
For the disaster scenario in which the visitors should be
evacuated from the disaster area as quickly as possible,
we consider the buildings as the obstacles which prevent
the free movement of the visitors. Furthermore, we
model the man-made structures other than the buildings
in the park such as fences and walls as the obstacles.
There are also natural obstacles in the environment,
such as lakes, trees, forest, river, and so on. We do not

focus on the evacuation problem from the buildings and
assume that visitors do not spend time in the attractions
after having a disaster alert.

The areas which neither include the obstacles nor the
roads are classified as the lands. The lands can be used
by pedestrians but they are not preferred unless there
are unexpected conditions on the available roads. For
instance, when a road is unavailable due to an impact of
the disaster event, the lands might be chosen instead. In
some exceptional cases, lands provide shortcuts between
the waypoints. Disaster areas are classified as the red-
zones and represented by the circular areas reflecting
the effects of the disaster. In a real scenario, one can
think the red-zones as the events which damage roads
or bridges, caused by an earth-quake, a hurricane, a fire,
a terrorist attack and so on. The red-zones have radius
values which specify the damaged areas and active times.
If a red-zone is in its active time and it effects an area
including some portions of a road, the road is assumed
to be unavailable at that particular time.

The model of the theme park can be created syn-
thetically or using real maps. We choose to use Open-
StreetMap (OSM) [10] to extract the real theme park
maps and parse the OSM data to generate the roads, the
obstacles, the lands, and the gates. We collect the way-
points using the OSM data and connect the consecutive
waypoints to create the roads. We assign width values to
the roads according to their OSM types (footway, path,
and pedestrian way). Fig. 1 displays example of the real
map of the Magic Kingdom park from the Disney World
in Orlando (left-side), and the processed version of the
map including the waypoints, the roads, the gates, and
the obstacles (right-side). In these figures, the small dots
represent the waypoints, while the lines connecting the
waypoints are the roads and the closed polygons are
the obstacles. The model also include red-zones which
are added to the model according to their active times;
however, they are not included in this initial processing
of the maps. The two gates can be seen as the two small
thick lines close to each other. The generation of the
theme park models are done computationally, but it is
possible to create a non-existing theme park in design
stage manually and create the theme park model in the
same fashion.

C. Modeling mobility of the visitors

Mobility behavior of the visitors is mainly based on
the environment (e.g., obstacles, roads) and the disaster
effects. We assume that the visitors have local knowledge
of their environments as opposed to having a global
knowledge. The local knowledge of the visitors is de-
termined by their vision. The visibility of the visitors
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Fig. 1.

may change as an effect of the disaster. The visitors are
assumed not to communicate with each other and there
is no broadcasting system for raising awareness.

Initially, the visitors are randomly distributed to one
of the waypoints in the environment model. Each visitor
selects an exit gate (the gate that the visitor already used
to enter the area) and marks the gate’s position as the
target location (target point). A visitor is assumed as
evacuated after reaching the target location. The visitor
tries to reach the target point by moving among the
waypoints. Whenever the visitor reaches a waypoint,
marks it as visited. The next destination point is selected
among all the visible waypoints. The visited waypoints,
the waypoints positioned in a red-zone, or the waypoints
that are not in the visible area are not taken into
consideration as the candidates for the next destination
point. The visitor selects the next destination point based
on its distance and direction from the current position
of the visitor. In other words, the selected destination
point is the one closest to the target location among the
candidates. The selection of the waypoints is constrained
by the visitor’s knowledge of the world, obstacles, and
possible active red-zones along the way. Because of
these constraints the visitor may not be able to find any
candidate waypoint at certain times.

These are the times when the visitor does not see any
visible movement location. In this case, we assume the
visitor can shortly explore the surrounding to find new
visible destinations. The exploration is made randomly
by choosing a direction and a distance to move. The
random exploration distance is a parameter that bounds
the movement flexibility of the visitors in cases of the un-
expected disaster events. Another parameter that effects

(&

The maps of the Magic Kingdom park. Left: the map extracted from (OSM), right: the processed map with 1300 waypoints.

the flexibility is the maximum visibility parameter. The
visibility may differ based on the type and the impact
of the disasters. Moreover, it may also differ during the
disaster event by time and location of the visitor. The
model produces random visibility with the upper bound
of maximum possible visibility parameters throughout
the simulation. It could also be possible to involve a
more complex model to set the visibility parameter for
each visitor based on their location and the time of the
disaster (i.e., events happening at that time). In such
a model, the factors such as the geographical features
of the surroundings and the nature of different disasters
should be taken into account.

We classify all the above steps of a visitor considering
the global movement starting from the initial point
to the target point as macro-mobility behavior of the
visitors. The speeds of the visitors differ from one to
another. Basically, each visitor has a maximum speed
that depends on physical attributes of the individual such
as age, gender, and weight. The speed of each individual
is a random value between the global minimum and the
global maximum speed of the visitors. The speed of a
visitor varies from its minimum of 0 to maximum speed.
On the other hand, the global minimum value determines
the minimum value for the maximum speed value of
all visitors. The maximum speed is the speed when the
visitor is completely free to walk without disturbance or
the obstacles. In the disaster scenario, the actual speed
of a visitor is less than the maximum speed most of the
times due to the effects of the social interactions which
are explained below.

Fig. 2 illustrates the complete theme park model
generated using the map of the Epcot park in Disney
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Fig. 2. Illustrations from the mobility model. Left: Epcot simulation with 20 visitors and 5 red-zones. Right: Islands of the adventure with

40 visitors and 3 red-zones.

World. In this figure, the visitors and the red-zones are
included in the model. Twenty visitors moving on the
roads are represented by the triangles. The shapes of
the triangles illustrate the directions and velocities of
each visitors. The red-zones are represented by the big
circles. On the left figure, the two red-zones having
an intersection area appeared as an enlarged red-zone,
located in the middle of the figure.

We consider micro-mobility as the mobility of a visitor
between the two consecutive waypoints separately from
the macro-mobility model and the theme park model.
We use the social force model (SFM) [9] which is
used by the simulators such as SimWalk and VisSim
for the micro-mobility. According to the social force
concept, behavioral changes in the human motion can
be explained and is actually caused by the combination
of the social interactions. Using the SFM, we model the
social forces on the visitors according to their social
interactions with the environment. By this model, the
visitors adapt their speed and direction of the movement
from a waypoint to another. In SFM, the sum of the
social forces is given by

fall) = =00 —va)+ 32 Fas®+ S Faslt), (D
(a) i

Ta
for a visitor o where 7, denotes the relaxation time, v9e?,
is the desired velocity, and the sums correspond to the
social forces by the other visitors () and the obstacles
(7) respectively. The acceleration is then given by f,(¢)
and the individual fluctuations. Assuming f,g(t) =

f(dap(t)), circular specification is given by
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B, denote the interaction strength and the interaction
range respectively.

For the elliptical specification of the model, the cir-
cular specification formula is expressed as a gradient
of an exponential decaying potential V3, where ellip-
tical interaction force via the potential is V,5(bas) =
ABe~bs/B Tn this equation, bap 1s the semi-minor axis
of the elliptical equipotential lines and given by
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Equation 4 gives the repulsive force and V,, , denotes
the gradient with respect to distance between « and f.
Using chain rule, this leads to
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Considering the angular dependence between two en-
countered visitors, with an angle of ¢,3, the angular-
dependent pre-factor w(pag) is given by the below
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where the parameter )\, with 0 < A, < 1 is found by
evolutionary optimization (details can be seen in [9]) as
Ao ~ 0.1. The fitness of the social force model increases
with the addition of the angular dependence formulation
to the model.

As a consequence of SFM, the time it takes for the
visitor to move to a destination point varies. The main
impact of this model in the theme park scenario is that
the usage of the same roads by the visitors causes an
increase in the social interactions. This increase slows
down the flow of the visitors along the roads. Since the
theme parks are crowded areas with roads in which only
pedestrian movements happen, the social force model is
the best-fit model to represent the crowd dynamics and
the micro-mobility behavior for the evacuation of the
theme park visitors.

We illustrate the overall mobility behavior of a visitor
according to the model in Fig. 3. Initially, the visitor
starts with setting the target location by selecting the
gate. After deciding the target location, the visitor tries
to find waypoints in the visible local region and selects
the best candidate if waypoints exist or sets a random
point with the random exploration distance parameter.
Micro-mobility phase, which is based on SFM, starts
after deciding the next destination and ends whenever the
visitor arrives the next destination. If the arrived location
is not the target location, the movement continues by
exploration of the local region, while in the case of
reaching the target location, the visitors is marked as
rescued.

III. SIMULATION STUDY

In this section, we discuss the evaluation of the
mobility model. Our simulation study includes experi-
ments and analysis from two simulations. The first is a
mobility simulation in which we simulated the proposed
mobility model along with other mobility models and
compared with GPS traces of theme park visitors. We
used the outcomes of the model for the simulation of an
opportunistic network in which pedestrians carry mobile
devices and evaluated performance of the network.

A. Mobility simulation setup

There are several mobility metrics used in the liter-
ature. These metrics can be classified in three types:
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Fig. 3. Mobility behavior of a visitor during the simulation of the
model.

Fig. 4. The simulation of 2000 visitors and the impact of red zones
in Magic Kingdom.



movement-based, link-based, and network-based metrics.
In the mobility simulation, we focus on the movement-
and the link-based metrics. The movement-based metrics
are usually extracted from analyzing individuals’ move-
ment patterns. Flight lengths, average velocity, waiting
times, mean-square distances are among the movement-
based metrics. The link-based metrics analyze the effects
of the mobility w.r.t. the relations between the mobile
nodes such as their distances from each other. Average
node density, variance of node density, average pairwise
distances, relative mobility are examples of the link-
based metrics.

The simulations of our model of theme park mobility
for disaster scenarios (TP-D) are carried out to observe
its characteristics. We then compare TP-D with the cur-
rently used mobility models and the 41 GPS traces (taken
from the CRAWDAD archive at Darthmouth College)
collected from 11 volunteers who spent their Thanksgiv-
ing or Christmas holidays at Disney World. The average
duration of the mobility traces is approximately 9 hours
with a minimum of 2.2 hours and maximum of 14.3
hours. The GPS tracking logs have a sampling time of 30
seconds. The traces are filtered in such a way that when
a visitor is moving very fast, we assumed the visitor
is in a vehicle traveling from one park to another. The
remaining data is used for finding the set of flight lengths
of each visitor where the flight length is defined as the
distance between a pair of consecutive waypoints of a
visitor.

The theme park mobility model (TP) [6] and self-
similar least action human walk model (SLAW) [11]
are used as realistic mobility models to simulate typical
movement of theme park visitors. Random waypoint
(RWP) model [12] is used as a generic model since
it is the most commonly used mobility model in the
network simulations. Simulations of these models run
on 1000x1000 meters areas. Our goal is to gain insights
about the mobility trajectories produced by the proposed
TP-D model as opposed to these models. As these
models do not support evacuation scenario, we do not
aim to compare the success of these models.

Fig. 4 shows a snapshot from the simulation of 2000
visitors. The simulation of the model generates synthetic
mobility traces of visitors in the terrain specified by the
theme park map. The visitor in the theme park draws
their trajectory lines while moving upon the waypoints
with the goal of arriving at the gates. The dimension
lengths of the maps vary from one park to another.
For instance, the dimensions are close to 1000x1200
meters for Epcot and Magic Kingdom and approximately
650x750 meters for Islands of Adventure park of the
Universal Studios. We used the theme park model of the

Magic Kingdom in the experiments with 10000 visitors.
We employ the circular specification of the SFM with
the angular dependency using the same parameter values
proposed in [9].

While we do not consider visitors whose escape
time is more than 1000s as successfully evacuated, we
include the output from all pedestrians in our averaged
results such as the average evacuation times. Therefore,
simulation time is empirically set to 2000s as in this
duration almost all pedestrians achieve to arrive at their
final destinations and consider the ones who may still
stay in the disaster area as the outliers. Table I summa-
rizes the default mobility simulation parameters and the
parameters used for the SFM in the experiments.

TABLE 1
MOBILITY SIMULATION PARAMETERS
simulation time 2000s
sampling time 10s
number of visitors 10000
min speed 0.0m/s
max speed 1.0m/s
number of red-zones 50
red-zone active time 1000s
red-zone radius 100m
random move distance 10m
max visibility 100m
wireless communication range | 40m
SEM - interaction strength (A) | 0.11 +
0.06
SEM - interaction range (B) 0.84 +
0.63
SFM - relaxation time (7) 0.5s
SFM - A 0.1

The simulation parameter values may differ due to var-
ious types of natural and man-made disasters occurring
in different outdoor environments. For instance, disaster
simulation experiments can be conducted using different
active time of disaster events and visibility parameters.
Based on the expected number of people and the possible
types of disasters in certain environments, operators can
run the mobility simulations with realistic parameter
value ranges. In this simulation study, we focus on the
mobility during a disaster in a theme park as an example
disaster scenario.

B. Experimental results of the mobility model

1) Movement-based analysis: We start our evaluation
with flight lengths which is one of the key properties of
human mobility. A flight length is the distance between
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Fig. 5. Flight lengths probability distributions of TP-D for 5
simulation runs.

a pair of consecutive pause points of a visitor in its
trajectory. Mean, variance, and standard deviations of
flight lengths are important statistical characteristics to
observe diffusion characteristics [13] and characterize
the human mobility patterns [14], [15]. The metric can
be used for analyzing human mobility [16] in various
scenarios including mobility during disaster [17] and
theme park mobility [13], [18]. In our previous study [7],
we analyzed the flight lengths based on the distance
between waypoints in which a visitor decide the next
destinations. In this analysis, however, instead of using
waypoints on the map, the slowdown locations of the
visitors are generated when they move less than 5Sm
radius for more than 10s duration.

We first simulate flight length distributions of the TP-
D model. We observed that the results of the simulation
of the model for different simulation runs are almost
identical, which shows the overall consistency of the sim-
ulation. Fig. 5 shows this consistency for the probability
distribution function (PDF) of flight lengths among the 5
simulation runs which are randomly selected from a set
of simulation runs having the same parameter settings.
Moreover, Fig. 5 reveals that more than 50% of all flights
are shorter than or equal to 50m and more than 20%
are shorter than or equal to 100m. Hence, we observe a
shorter flights due to frequent waiting in the pedestrian
traffic caused by 10000 visitors.

We compared the flight length values of TP-D with
TP, SLAW, RWP and the GPS traces. Fig. 6 shows PDF
of flight lengths. We observed that the TP-D model pro-
duced shorter flight lengths compared to the TP model
and the GPS traces. The SLAW model produced the
shortest flight lengths due to the high density of fractal
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Fig. 6. Flight length probability distributions of TP-D, TP, SLAW,
RWP, and the GPS traces.

points used as waypoints of the simulation. However, the
TP-D model produces outcomes closer to TP and the
GPS traces. Being a mobility model which is specific to
evacuation situation of disasters, TP-D interestingly has
a similar flight length distribution. Moreover, all three
models (TP-D, TP, SLAW) and the GPS traces have
mostly lower than 200m flight lengths. On the other
hand, RWP produces dramatically longer flight lengths
with an average flight length of 500m and it can be
classified as the most unrealistic model among the 4
models due to its significant mismatch with the GPS
traces. While the default parameters of SLAW is used,
output of the model is dependent on the number of fractal
points created in the simulation area.

The mean values of the flight lengths with variations
are shown in Fig. 7. The mean flight length value and
the variation of TP-D is lower than TP and the GPS
traces and higher than SLAW. Considering the difference
between the ordinary movement of a visitor for the
model TP and the GPS traces, flight lengths vary with
the choices of the visitors such as visiting an attraction
or going to the nearest restaurant. On the other hand,
for the disaster scenario, the visitor has the only goal of
moving towards the target locations as much as possible
with the traffic. Due to the lack of choices and the similar
traffics in the crowd flows of different roads, the lower
variability with shorter flights is an expected outcome of
the TP-D model.

2) Link-based analysis: Node degree of a pedestrian
is defined as the number of neighbor pedestrians. The
neighbors of the pedestrian are the ones who are in
the communication range with the pedestrian. In other
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words, two neighbors are assumed to have a wireless
communication link between them if they are in the
communication range of each other. Average node de-
grees is a link-based metric calculated as the average
of the results of all pedestrians. Instead of comparing
each individuals’ node degrees, we observe the effects
of mobility on the overall average by simulation time.
Basically, a higher average node degree yields a better
network performance. We assumed a transmission range
of 40m. To be consistent in the comparison of average
node degrees, the results are normalized to 1000 visitors
in each model.

Fig. 8 shows the average node degrees by the simula-
tion time for TP-D, SLAW, TP, and RWP. All mobility
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Fig. 9. Average node degrees by simulation time for transmissions
ranges 25m, 50m, 75m, and 100m.

models generate distinct characteristic changes in node
degrees with respect to the simulation time. TP-D has
the highest average node degree along with SLAW at
the initial phase since the mobile nodes are the initially
distributed only on top of the roads while other models
distribute the visitors to the entire area. We also see
that the average node degrees stay close to the same
level without a significant change, while the values may
vary in short period of times. The main reason of the
significant increase in node degrees in the TP model is
the gathering behavior of visitors in the attractions. In
TP, visitors start waiting in the queues very close to each
other and therefore we see higher average node degrees
after 2000s. In TP-D, however, pedestrians travel along
the roads together, which do not produce the effect of
the gathering behavior. SLAW model has an initial phase
of 500s and the results converges to a constant level.
While the gathering behavior of SLAW is not visible
for 40m communication range, it may be observed for
longer ranges. RWP stays constant with some variances
in short times caused by the randomness.

We analyzed the average node degrees with various
transmission ranges to see the possible effects of the
mobility of the visitors on the performance of networks
in various simulation times. Fig. 9 reveals that for various
transmission ranges (25m, 50m, 75m and 100m), average
node degree stays consistent throughout the simulation
with the fluctuations which also exist in the previous
results. Moreover, as an expected overall effect of the
transmission range parameter, average node degrees in-
creased for higher transmission range values.

The distances between all pairs of mobile nodes are
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averaged to calculate average pairwise distances. As
a link-based metric, average pairwise distance helps
us to evaluate the closeness of a node to another on
average. This metric shows the possibility to form a
new network with a desired subset of all the mobile
nodes. Smaller pairwise distances are expected for better
network performances. As in the average node degree
results, we observed the effects of the mobility on the
results by simulation times.

As it can be seen in Fig. 10, all the models again
have distinct characteristics. TP-D has a consistency
with a small overall constant decay of average pairwise
distances. As also observed in the previous experiment,
the pedestrians becomes closer to each other as the
time passes. An interesting difference of this experiment
compared to the previous one is that the significance of
the change in the results of TP becomes weaker.

For instance, when a visitor goes to an attraction, the
pairwise distance with the other visitors in the same
attraction becomes smaller, while the visitor’s pairwise
distance with the rest of the crowd in other attractions of
the park may become larger. In TP-D, on the other hand,
people mostly move towards the similar target locations.
Furthermore, since we consider the pedestrians who
reached the exit gates as removed and do not take them
into consideration, quick increase due to the gathering
behavior does not exist in TP-D. After the initial phase
of 500s, SLAW and RWP models reach steady-states
having constant average pairwise distances with some
variances due to randomness in the models.

3) Evacuation performance: Evacuation time is the
time it takes for the visitors to reach the target (exit)
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points from the beginning of the simulation. The results
of the evacuation times are analyzed for various values
of the visibility and the number of red-zones parameters.
The simulations of TP, SLAW and RWP are not used
for analysis, since these models do not involve the
evacuation of the environment.

In order to see the impact of the local knowledge,
we compare the TP-D model with various maximum
visibility values. We see in Fig. 11 that the increase in the
visibility causes an overall decrease in evacuation times
as expected. However, after the maximum visibility value
of 80 meters, this effect loses its significance.

As shown in Fig. 12, we observed the relation between
the number of red-zones and the evacuation times. The
higher numbers of red-zones constantly produce the
higher evacuation times, which is an expected negative
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effect of the red-zones. The reason behind this negative
effect can be easily observed by looking at the snapshot
of the visitor flows in Fig. 4. Among the 7 currently ac-
tive red-zones which are randomly positioned, 2 of them
are located in a way that they prevent the regular flow of
the visitors. This impact of preventing the visitors from
moving along the road and tunneling them to other ways
is the reason for the increase in the average evacuation
times. Since red-zones are generated at random regions
of the map, in some simulation runs red-zones happen
to occur on top of the roads and therefore produce
significantly higher evacuation times as in the 200 red-
zones example shown in Fig 12.

We define the evacuation success ratio as the ratio of
the number of visitors who were evacuated in less than
a specified time limit. We assume that the visitors who
could not reach the gates in the acceptable time are not
successfully evacuated. We set the time limit as 1000s
and analyze the evacuation success ratio according to the
visibility and number of red-zones parameters.

Fig. 13 shows the evacuation success ratios with
visibility ranging from 20m to 100m. As it can be
seen in the figure, increased visibility produce higher
evacuation success ratios. Specifically, from 20m to
40m, the success ratio increases more than two times
and the maximum visibility value of 60m allows the
dynamic flow of the visitors with a 75% success ratio.
The significance of the increase decreases dramatically
for values higher than 60m. Because of the fact that
visibility plays an important role in the evacuation time
and success ratio, the parameter should be set according
to the specific simulated disaster. While the limitation
caused by various types of disasters in the vision of
pedestrians is not within the scope of this study, this
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should be further investigated for realistic simulations.

Fig. 13 shows the evacuation success ratios with no
red-zone and red-zone ranging from 50 to 200. The
success ratio drops from approximately 80% to 40% with
200 red-zones compared to the 0 red-zone which is the
case of no direct disaster impact in any region of the
theme park. Again, due to the occurrence of the red-
zones on the roads, 200 red-zones produced significantly
lower success ratios, while 150 red-zones have more than
70% evacuation success ratio.

C. Network simulation setup

We include the network simulation results to show a
practical application of our disaster mobility model. The
mobility model can be used to evaluate success of dif-
ferent network models and various disaster management
strategies such as using trained personnel to assist the
visitors for faster evacuation during or before disasters.

In this section, we discuss the effects of the TP-D
mobility model on the performance of an opportunis-
tic network with mobile sinks. As a disaster response
strategy, mobile sinks are used for search and rescue
operations and tracking the theme park pedestrians dur-
ing their evacuation. In this experiment mobile sinks
broadcast a message to sensor nodes using epidemic
routing and mark the sensor nodes as detected if they
send acknowledgment. For the application scenario of
theme park visitors carrying smartphones as sensor de-
vices and sending message in need of a rescue and a
limited number of mobile sinks, we analyze the network
coverage and rescue success performances.

The network model is previously proposed [19] with
the three mobile sink modalities: “physical force-based”



(PF), “grid allocation-based” (GA) and “road allocation-
based” (RA). In PF, mobile sinks position themselves
according to gravitational forces from sensor devices
and mobile sinks. Sensor devices have a pulling force
while sinks have a pushing force on each other. In
GA, the roads in the theme park map is divided into
grids and each sink is given a close to even number
of grids for patrolling. In RA, the mobile sinks share
the available roads for patrolling. We also included two
random sink mobility models for comparison, which
we call “random target location” (RTL) and “random
waypoint distribution” (RWD) models. In RTL, each sink
chooses any random target location on the map, then
sets the closest waypoint to the location as the sink’s
next destination. In RWD, each sink chooses a waypoint
randomly among all waypoints as the next destination.
RWD favors the popular roads because popular roads
tend to include more waypoints than the other roads.
The network performance-based metrics show the ef-
fects of the mobility on the performance of the network.
Unlike the movement-based and link-based metrics, the
results with network-based metrics depend on not only
the movement of the mobile nodes, but also the network
model. For instance, along with the movements of the
mobile nodes, the transmission range and protocols for
routing and transmission scheduling affect the results.
We analyzed transmission counts, number of detected
sensors, recontact rates and rescue success ratios in order
to observe the network coverage and energy efficiency
results according to the chosen sink mobility models.
We evaluated the success of a network with varying
mobile sinks from 1 to 10 and transmission ranges
10m through 100m to analyze the effects of available
resources. Evaluation of each setting is based on 50
simulation runs. Each simulation run generates at least
2000 message transmissions among sensor nodes or with
mobile sinks, while the number of transmissions to the
mobile sinks varies because of the sink mobility model
selection and parameters such as the number of mobile
sinks. The wireless transmissions between the sensor
nodes and from the sensor nodes to the mobile sinks
are based on the epidemic routing protocol [20].
Table I includes the list of the simulation parameters.
Disasters tend to have effects on the random locations
of the area during the simulation time. In the network
simulation, instead of creating artificial disaster zones,
we marked the pedestrians effected by the disaster.

D. Opportunistic network performance

We start analyzing the network performance with the
number of transmissions occurred among all the pairs
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TABLE II
SIMULATION PARAMETERS
number of sensor nodes 200
sensing range 20 m
sensor message storage capacity | 100
transmission probability 0.9

number of effected people 20
rescue failure time 600 s
mobile sink max speed 1 m/s
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Fig. 15. Number of transmissions of PF, GA, RA, RTL and RWD
for 10m, 25m, 50m and 100m transmission ranges.

during the simulation. A pair may include either two
sensor nodes or a sensor node and a mobile sink and each
session includes 3 message transmissions. We consider
average number of transmissions of all nodes in the
network including the transmissions in successful or
failed sessions. For the number of transmissions metric,
there is a tradeoff such that higher number of message
transmissions may cause excessive energy consumption
while lower number of transmissions may be a result of
unsuccessful network coverage.

Fig. 15 shows the results of the approaches with 5
mobile sinks for transmission ranges of 10m, 25m, 50m
and 100m. First of all, we observed that increase in
transmission range dramatically increases the number
of transmissions. This is an expected result caused by
the exponential increase in the number of neighbors of
a sensor node. In the case of having limited energy
resources, a more effective routing protocol may provide
better energy preservation for sensor nodes with high
transmission ranges. Secondly, since the sinks are in
limited number compared to 200 sensor nodes, the effect
of the mobile sink mobility is not very significant. Even
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though the number of sensor nodes are only 10% of
all 2000 visitors, the sensor nodes are highly active
for transmission range of 50m. Each sensor node has
on average approximately 200 transmissions occurred
during the pedestrian’s walk to target point. While 100m
transmission range produces significantly higher number
of transmissions, it may cause an excessive energy
consumption due to wireless communication.

During the simulation time of the network, mobile
sinks have direct encounter with some of the sensor
nodes such that the distance between them is less than
the transmission range. In this case, we count the sensor
device as a detected device and define the number of
detected sensors as a network coverage metric.

Fig. 16 reveals the number of detected sensor for
transmission ranges of 10m, 25m, 50m and 100m.
Among all the approaches, RA and PF are the overall
winners reaching up to more than 80% of the 200 sensor
nodes. RWD also provides a reasonably good coverage
of sensor nodes since the mobile sinks mostly choose the
popular locations where sensor nodes are also most likely
present. With higher transmission ranges, the coverage
performance is better for all the approaches. Most sink
mobility approaches provide an acceptable coverage with
50m or 100m transmission range such that most sensors
have direct encounter with at least one mobile sink along
their way.

We analyzed the recontact count for each pair of
sink and sensor node, which is the number of contacts
of the mobile sink and the sensor node after their
first communication. Recontact rate of a mobile sink is
its average recontact count with all the sensor nodes.
Fig. 17 shows the results of average recontact rates for
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1 to 10 mobile sinks.

simulation settings with 1 to 10 sinks. PF outperforms
others with an average rate of more than 5.0 due to sinks’
behavior of following sensor nodes and keeping in touch
as much as possible.

For the setting with only 1 mobile sink, we observed
that recontact rates of GA, RA, RTL and RWD are low
without any significant difference between them, while
the rate difference becomes significant with multiple
sinks.

In the case of emergency events during disasters such
as visitors in need of urgent help, the mobile sinks should
be able to reach the regions of these events as quick as
possible. For the successful event coverage, we consider
the maximum acceptable time for a mobile sink to arrive
to an emergency event region as the rescue time.



We observed the message delay, the time it takes for
the sink after receiving a message to reach the effected
pedestrians. We assume a rescue time of 10 minutes,
which includes the message delay and the travel time of
the mobile sink. Fig. 18 shows the rescue success ratio
with respect to varying the number of mobile sinks with
the transmission range of 25m. With 10 mobile sinks, PF
reaches more than 70% of an effected pedestrian in less
than 10 minutes. For RTL, success ratio increases from
10% to 60% from 1 to 10 mobile sinks while for the
other approaches it increases approximately from 30%
to 70%.

Overall, the network simulation study provides
promising results for disaster scenarios in theme parks
in terms of opportunistic communication with the use of
200 mobile devices, which corresponds to participation
of only 2% of the 10,000 visitors. Moreover, limited
number of mobile sinks can be used to track the visitors
carrying mobile devices and rescue them if needed.
Higher rescue success ratios can be achieved with higher
speed vehicles. A possible real-world implementation of
a mobile sink can be a rescue robot or a security guard
driving a personal electric transportation vehicle (e.g.
Segway Patroller [21]) with a tablet computer.

IV. RELATED WORK

In this section, we summarize the related work for
the mobility models and studies of disaster mobility and
management.

A. Mobility models

Gonzélez et al. [14] analyze the trajectory of 100,000
mobile phone users for a time period of six months and
find that the trajectories have a high degree of temporal
and spatial regularity. While commercial telecom net-
works do not track movement patterns of every mobile
user, Lin et al. [22] propose the use of standard outputs
from cell phones such as handover rates, call arrival
rates, call holding time, and call traffic to investigate
human movement patterns. Social force model [9] is
proposed by Helbing and Johansson to represent the
micro-mobility behavior of the pedestrians in crowded
areas. Helbing [23] also studied evacuation problem and
disasters mobility [24]. Song et al. [25] analyzed the
mobile phone users trajectories and found 93% potential
predictability in mobility of the users. De Domenico
et al. [26] consider movements of friends and their
correlated mobility patterns by their social interactions
for predicting human mobility.

Munjal et al. [27] review the changing trends of
mobility models used for simulations of opportunistic
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communication networks. They offer use of mobility
models based on real data or well-known features of
human movement decisions, instead of random mobility
models. They also list challenges for future research of
human mobility. Wu et al. [28] propose a technique to
improve the accuracy of global positioning with the help
of human mobility. A cooperative sensing framework is
proposed for mobile opportunistic networks by Zhao et
al. [29]. The performance of their proposed data for-
warding schemes, namely Epidemic Routing with Fusion
(ERF) and Binary Spray-and-Wait with Fusion (BSWF),
rely on the human mobility as well as vehicle mobility in
various scenarios. Wu et al. [30] proposed opportunistic
data collection by leveraging human mobility as they
carry smartphones.

Self-Similar Least-Action Walk (SLAW) [11] is a
generic human walk model which produces synthetic
mobility traces. These traces have certain statistical
characteristics of human mobility. These five character-
istics are listed as: 1) flight lengths and pause times
with heavy-tail distribution, 2) heterogeneously bounded
movement regions, 3) truncated power-law ICTs, 4) self-
similarity, and 5) least-action trip planning. SLAW tries
to emulate individual mobility and each individual’s
movement is independent from each other, assuming that
they do not have any social interactions. SLAW model
uses self-similar waypoints which are generated over a
2D plane. As the gaps between the waypoints determine
the flight lengths, Hurst parameter (H) of self-similar
points controls the gap distribution characteristics. The
waypoints are clustered and each individual randomly
chooses a cluster as the movement region for a daily trip.
Each individual starts their walk by randomly choosing a
waypoint as the starting point and later makes movement
decisions based on the least-action trip planning (LATP)
algorithm. In LATP, a person decides the next destination
by selecting a waypoint in the cluster and straightly
moves to that destination. The equation in LATP algo-
rithm for assigning probability values for deciding the
next destination waypoints is given as follows.

d(v,w)™®
ZleW—W/ d(v7 wz)_a )

where P(w) is the probability of visiting the next des-
tination waypoint w (w € W —W’), v is the waypoint on
top of which the person is currently waiting, and d(v, w)
is the Euclidean distance between the two waypoints. W
is set of the waypoints which are planned to be visited
and W’ is the set of already visited waypoints. The
value of the parameter « is set according to the GPS
traces collected from the specific outdoor environment

P(w) = (8)




for providing statistical match. For instance, a = 3
produces the difference less than only 2% between the
synthetic mobility traces and the GPS traces for Disney
World. LATP is shown to produce mobility traces that
matches the real GPS traces very well for the range
1 <a<a.

Munjal et al. [31] propose a simple mobility model,
SMOOTH, that represents the similar characteristics of
SLAW. Schwamborn and Aschenbruck [32] extend the
SLAW with their Map-based SLAW (MSLAW) model
which takes the effects of the geographical restrictions
into account for human walks. Vukadinovic et al. [33]
propose a simple framework to simulate mobility of
theme park visitors. They use OSM for generation of
maps and calibrate the framework parameters according
to the GPS traces. ParkSim [34] by Vukadinovic et
al. is a software tool simulating the mobility of theme
park visitors. The mobility model of ParkSim is driven
by the possible activities of the visitors in the park.
Mei and Stefa [35] propose SWIM, a simple mobility
model which generates synthetic mobility traces for ad
hoc networking and Papageorgiou et al. [36] propose
a human mobility model considering obstacles as the
integral part of the areas and study the properties of the
resulting network topologies. Our mobility model differs
with the previously mentioned models as it simulates
the mobility of visitors during evacuation in disaster
scenarios.

A variety of mobility models have been proposed for
simulating specific-scenarios. Liu et al. [37] propose a
physics-based model of skier mobility in mountainous
regions by considering the physical effects of gravity
and the steepness of the terrain. The goal of the model is
to evaluate the effectiveness of wireless communication
devices in improving avalanche safety. Hsu et al. [38]
propose the Weighted Waypoint Mobility model for the
pedestrian mobility inside campus environments. Kim et
al. [39] propose a mobility model for urban wireless
networks, in which the model parameters are derived
from urban planning surveys and traffic engineering
research. Helgason et al. [40] investigate the effects
of the human mobility on the wireless communication
performance of ad hoc and delay tolerant networks.

B. Disaster mobility and management

There exist various studies related to disaster manage-
ment. Winter et al. [41] study the evacuation problem in
disaster areas and propose the use of a mobile service
“Get-Me-Out-Of-Here” (GOH) running on smartphones.
Benefits of communication among people are observed
for the evacuation scenarios in which individuals have
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only the local knowledge of the environment. Uddin et
al. [42] propose an agent-based mobility model for the
mobility of people with different roles such as rescue
workers and volunteers as well as vehicles such as
police patrol cars and ambulances. They also propose the
intercontact routing [43] for disruption-tolerant disaster
response networks to reduce the resource overhead.
Zheng et al. [44] propose a disaster management system
framework based on data mining and information re-
trieval techniques for disaster preparedness and recovery.

Patrix et al. [45] model mobility of agents and disaster
area for crowd behavior detection. In this study, they
model obstacles, dangers, and shelters as separate zones
in their simulation of the disaster scenario. An agent
makes movement decisions according to these zones and
the movement of the other agents. A role-based mobility
model is proposed by Nelson et al. [46] for disaster
areas. In this model, movement patterns of objects with
distinct roles such as police and civilians differ according
to their various reactions to the events. Aschenbruck et
al. [47] propose a heterogeneous area-based movement
of different roles, such as vehicles and firefighters. They
separate the disaster area in various sub-areas such as
incident site, casualties treatment area, transport zone,
and hospital zone. Bagrow et al. [48] study collective re-
sponse behavior and changes in communications of peo-
ple in extreme emergency conditions such as bombing,
plane crash, earthquake and power blackout. Patterson et
al. [49] highlight models which focus on the effects of
communities on preparedness, response, and recovery of
people from disasters. Kirchhoff et al. [50] propose link
quality based routing, prioritization of control messages,
and overhead reduction mechanisms for mobile wireless
multi-hop networks. These mechanisms are useful for
disaster scenarios with major challenges such as limited
network capacity and link variability. Song et al. [51]
propose a disaster mobility model based on the earth-
quakes occured in Japan over 4 years period. Their
human mobility dataset includes GPS measurements
from 1.6 million people. These GPS measurements can
be seen as the products of the transportation services
in Tokyo. Our model differs from the above models
such that we focus on modeling human mobility in
disaster areas by isolating it from other challenges such
as transportation or security.

V. CONCLUSION

In this paper, we studied pedestrian mobility for
disaster areas. We considered the application scenario
of theme parks and proposed the theme park disaster
(TP-D) mobility model. We used real theme park maps
to model the environment. The mobility of theme park



visitors are modeled by the theme park models and
the social force model. We analyzed the outcomes of
the simulation of our model in comparison with the
simulations of currently used models and the GPS traces
of theme park visitors. Using our mobility model, we
evaluated the success of an opportunistic communication
network with mobile sinks.

The proposed mobility model can be used for evaluat-
ing new disaster response strategies and various network
models for use in theme park environments. Moreover,
the techniques used for developing our mobility model
of theme park visitors can be applied for modeling
human mobility in other environments such as university
campuses and shopping plazas.
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