
Utilizing Object-Oriented Databases for Concurrency Control in Virtual
Environments

Damla Turgut, Nevin Aydin, Ramez Elmasri and Begumhan Turgut
Department of Computer Science and Engineering

The University of Texas at Arlington
P.O. Box 19015, Arlington, TX 76019-0015

E-mail: {turgut, aydin,elmasri,bturgut}@cse.uta.edu

Abstract

Virtual Reality Modeling Language (VRML) is widely
used to represent, create, and display virtual reality objects
and their environment. Some VRML applications require
concurrent interaction by multiple users in a real-time dis-
tributed fashion. Such applications need a method for users
to share and update the VRML objects in real-time. To al-
low concurrent shared real-time access, our approach is to
store the VRML objects in an object-oriented database sys-
tem (Objectstore) in order to utilize the concurrency con-
trol mechanisms of the system. In this papec we presenl
an architecture that allows multiple users to interact in a
non-trivial way in such a shared VRML environment. We
outline how the VRML world can be saved in Objectstore
and implement a series of test cases demonstrating concur-
rency issues arising from simultaneous updates. Our ar-
chitecture uses ordinary Java enabled web browsers with a
VRML plug-in. A commercial web server routes client re-
quests to a custom application serve< which interacts with
the object-oriented database. As users change the VRML
world, our application server orders the requests and up-
dates the master copy in the database.

Keywords: Object-Oriented Databases, Concurrency Con-
trol, Virtual Environments.

1. Introduction

Complex virtual reality applications are increasingly us-
ing VRML (Virtual Reality Modeling Language) to model
the objects and their interactions [11,3]. When dealing with
VRML worlds and objects we often find the need to retrieve,
manipulate and store the states of a VRML object as it
changes over time. This is called VRML persistence and is
gaining importance among VRML applications. As VRML
applications become more complicated and process real-

time data, the need for adequate persistence [9] capabilities
increases. VRML, Java, and object-oriented databases are
relatively new fields rapidly gaining importance and popu-
larity. However, developers have not yet produced a com-
prehensive solution to VRML persistence.

The rest of the paper is organized as follows. We de-
scribe the traditional MAVE (Multi-agent Architecture for
Virtual Persistence) architecture [I] , introduce concepts
from VRML and give an application where VRML persis-
tence is useful in section 2. Section 3 gives an overview
of PSE (Persistent Storage Engine) [8] for the Objectstore
[7] ODBS, which was used in our system to provide per-
sistence. Section 4 illustrates five tests to determine how
concurrency control in Objectstore can support distributed
VRML applications. Section 5 defines the integration of
VRML with Java and introduces the EA1 (External Author-
ing Interface), which offers a generalized method of ac-
cessing VRML nodes. Conclusions are drawn in section
6 by showing how to achieve VRML persistence within the
MAVE architecture and future work.

Cone (
field SFFLOAT bottomRadius 1

field SFFLOAT side TRUE
field SFFLOAT bottom TRUE

field SFFLOAT height 2

1

Figure 1. Example Definition of a Node

2. VRML and MAVE Overview

VRML (Virtual Reality Modeling Language) [3] inte-
grates 3D graphics, 2D graphics, text and multimedia into
a coherent model. VRML allows us to use a computer gen-
erated 3D virtual environment which provides an intuitive
interface to complex information. In VRML, a scene graph

409 0-7695-1372-7101 $10.00 0 2001 IEEE

mailto:aydin,elmasri,bturgut}@cse.uta.edu

is a group of objects describing the structure of the vir-
tual world that is being (created. The primitive object types
represent boxes, cones, cylinders, and spheres. The scene
graph will be used to develop an EER (Extended Entity
Relationship) model [2] , which we will use to design the
database for storing VRML objects in Objectstore [7]. A
VRML node is analogous to a structure definition in a high-
level language. Figure 1 shows a node for “cone” which has
four fields. Our database must store the names of the nodes,
the names of the fields and their values, and must also store
information on the shape, geometry, material, and appear-
ance of the nodes.

Let us consider data from a geographic study. Suppose a
forest fire has burned part of an area that is being surveyed.
A persistence model should be able to store information on
the location and extent of the fire. When we study the re-
gion again, we should record new geographic information,
indicating which area was damaged by the fire. An alternate
application domain, which needs persistence, is a multi user
dynamic environment. Our persistent model makes it con-
venient for the user to record the current state of the world
for future processing.

The objective of M AVE (Multi-agent Architecture for
Virtual Persistence) [11 is to develop an agent-based archi-
tecture to support intelligent, reusable, distributed virtual
worlds. MAVE is a two-tier architecture. The first tier is
an object-oriented physical representation of the virtual en-
vironment that is designed to mimic the logical decompo-
sition of the virtual wclrld. The second tier is designed to
support the needs for persistence, real-time interfaces to ex-
ternal data sources, distribution, and collaboration. Many
of the virtual environment architectures employ a VRML
representation of their content and provide a forum for mul-
tiple distributed users to congregate, communicate, and ac-
cess the same type of information generally associated with
web pages [lo]. MAV!E expands these capabilities by pro-
viding an architecture that can support the use of multi-user
distributed virtual environments as advanced interfaces to
distributed heterogeneous computer systems and databases.
The object level representation is shown in Figure 2.

Component Object Component Object Component Object

Public Interface 1

Classes
Sentinel
Classes

Classes

I’ublic Interface

Classes
Sentinel
Classes

Classes

Scene Object

Classes

L
Figure 2.Olbject-level Architecture

The virtual environment provides a framework in which
distributed users can collaborate and share resources, in-
cluding a variety of multimedia types. In the object level
architecture, VRML is used as one element of the overall
virtual environment. To understand MAVE, it becomes im-
portant to discuss the hierarchical nature of a virtual envi-
ronment. A virtual environment is composed of scenes and
each scene is composed of objects. In MAVE, the VEC
(Virtual Environment Component) architecture maintains a
physical granularity that mimics the logical decomposition
of the respective elements of the virtual environment. VEC
is the lowest level element in a virtual environment that can
stand alone as a useful entity. Each VEC in the virtual en-
vironment has a corresponding VRML visualization. The
VEC architecture internalizes a programmatic representa-
tion of the VRML and then creates the visualization display.
In response to a stimulus that would change the VRML vi-
sualization, the programmatic structure is changed first and
then the visualization display is updated.

The system level architecture of MAVE .is designed
around an object-oriented database component. This com-
ponent will augment the object-oriented structure of the vir-
tual environment by providing a repository for persistent
VECs. An object-oriented database is a natural choice for
the MAVE architecture due to problems related to storing
complex objects in a standard relational database. The sys-
tem level architecture is illustrated in Figure 3.

External Data
Sources

CLIENT MIDDLEWARE SERVER

Figure 3. System-level Architecture

The client runs a traditional Web browser with a VRML
viewer. We used the Netscape Plug-in Cosmo Player to exe-
cute VRML scenes described in this paper. The VRML data
originally comes from a COTS (Commercial Off The Shelf)
Server. Shared VECs are managed and updated by the ses-
sion manager. Persistent VECs are stored in the object-
oriented database and one or more object managers allow
other programs or events to change the data. The object-
oriented database will inform the session manager when any
in-use objects are changed and the session manager can for-
ward the new objects to the client in order to update the
visualization display.

410

3. Introduction to PSE and Objectstore

Many issues arise when considering how to add persis-
tence to VRML. A VRML persistence scheme should dis-
tinguish between static VECs and dynamic VECs, and must
consider concurrency issues during multiple simultaneous
accesses. It should also make efficient use of the underly-
ing storage management system.

Previous work on VRML persistence has used traditional
file storage techniques. Traditional VR (Virtual Reality) ap-
plications have not required the power of object-oriented
databases. Instead, they store just a static VEC state in a file.
Recent VR applications needed more complicated and dy-
namic VECs to implement their environments. Limitations
of static file storage include: no decision logic, no user de-
fined nodes, and no external access. One way to allow these
complexities is to use an object-oriented database. Object-
oriented databases provide direct support for persistence of
objects. Three object-oriented databases we considered for
the MAVE project are ObjectStore [7], PSE (Persistent Stor-
age Engine) [8], and PSE Pro. PSE is originally intended for
small single user databases, and is not intended to support
high volumes of updates or queries over a large collection of
objects. PSE Pro does support large databases. Objectstore
provides object storage for both Java [4] and C++ objects,
and supports very large databases and multiple users con-
currently accessing multiple databases.

www

Clienl Ticr Dispalch Protmol Application Tier Database Tier

Figure 4. Initial Database Server Architecture

MAVE must support multiple users with concurrent ac-
cesses. The clients must always have the most recent state
of the object being used and VECs must be stored and
accessed efficiently. Figure 4 shows our initial database
server architecture. The client tier uses an ordinary web
browser with a VRML plug-in. In addition, each client
must run a copy of PSE to locally cache objects relevant to
the local visualization display. The PSE API is a subset of
the Object Store API. Thus, ObjectStore server can freely
use PSE features and functions on the client. The VECs
are downloaded from the Objectstore server to the PSE.
When the client wants to commit changes to the VECs, the

modified objects are saved from PSE to Objectstore. This
approach will reduce network traffic and increase perfor-
mance. The protocol tier is responsible for passing requests
and responses among clients and applications. The actual
protocol chosen could be CORBA, RMI, Serialization, or
Sockets. Our full architecture will use Netscape Enterprise
server as a protocol tier; for the tests in this paper, however,
we used custom socket protocols. The application tier pro-
vides a buffer between the client requests and the database.
MAVE applications often have many users accessing the
same database through the same web server. To prevent
the web server from becoming a bottleneck, we introduced
application servers. The web server can forward client re-
quests to any number of application servers. The database
tier is responsible for ensuring that all application compo-
nents share access to distributed data. The MAVE architec-
ture allows us to decouple the GUI logic and the persistence
storage logic.

4. Demonstration of Concurrency Cases

The MAVE database server architecture must support
several features: multiple concurrent access, browser (Web)
based clients, notification by the database of any changes in
data, locking and synchronization, and multi-threading sup-
port. We used five different tests to evaluate ObjectStore's
ability to meet these requirements.

4.1. Terminology Used

Before the test cases are presented, the definitions from
common ObjectStore and Java terms are described [4,7, 81.

Java VM: One feature of Java is that the compiler targets
the Java Virtual Machine (JVM) rather than a specific hard-
ware platform. Thus, the Java byte code can be executed
on any Java compatible platform without recompilation. A
user can have multiple Java processes by invoking multiple
instances of a JVM. Unfortunately, each JVM consumes 10
Mb of memory.

Session: A session is a distinct view of Objectstore. A
collection of persistent objects plus a portion of a database
form a session. Two or more independent transactions can
be placed in separate sessions to facilitate concurrency. PSE
Pro allows multiple sessions in a single JVM.

Transactions: A transaction is the atomic number of steps
needed to change the data in the database from one con-
sistent state to another. A session can have only one ac-
tive transaction. Transactions in different sessions can
run concurrently, but they must access separate parts of
the database. Databases offer different types of locking

41 1

(database level, page level, object level), which affects the
behavior of transactions. In some cases, transactions can
deadlock. which forces cae transaction to abort.

Concurrency and Mu1 ti-Version Concurrency Control
(MVCC): Multi-Version Concurrency Control allows read-
only transactions, which access the same portion of the
database to execute concurrently. In addition, an update
transaction can execute without blocking any of the read-
ers. When an application accesses a database opened in
MVCC mode, transactions from that application will never
deadlock. For MAVE, we often have many users making
concurrent transactions. MVCC is not appropriate for this
use because more than one user may be making an update.
Therefore, MAVE opens the database in update mode and
uses concurrency control for read and update accesses.

Multi-Threading: Multi-Threading offers a better alterna-
tive than multiple processes. Each process (JVM) consumes
approximately 10 Mb of memory; multi-threading allows us
to have more than one thread of execution in a single Java
process. For example, one thread could listen for external
events while other threads update the different portions of
the database. ObjectStore allows a single session to have
several Java threads; each thread can belong to a single ses-
sion at a time. All threads in the same session cooperate
with each other. It is the developer’s responsibility to pre-
vent threads in the same session from illegally concurrently
updating the same object. MAVE creates one thread per
user, which are all part of the same session. Each thread
handles the need of a single MAVE user’s needs.

Event Notification: Event Notification facilitates multiple
clients accessing the same portion of the same database. A
thread, which updates a database, also sends a notification.
Other threads that are reading the database receive the noti-
fication and thus always have a current view of the database.

4.2. Objectstore Demonstration

We conducted five tl:sts on Objectstore each of which
uses an application called persistent counter. The program
manages a “hit counter” which can be updated by multiple
users. The database is simple; there is just one persistent
object-the integer counter.

Demonstration 1: Concurrency control using Object-
Store

Two transactions which update the same object must not
run simultaneously. OhjectStore must lock out one of the
transactions while the other completes. When the first ac-
tion is committed, Objectstore should release the lock and
allow the second transaction to continue processing. For
our example, this means the counter should be implemented
twice. Figure 5 shows this situation. We executed our ex-

Concurrent
JAVA Threads

Error: U
Transcation InProgressException

Figure 5. Demonstration 1

ample in a Windows machine using Netscape’s JVM. The
execution resulted in a Transition In Progress Exception er-
ror. The error is caused by having multiple threads in a sin-
gle session, which are not allowed unless the programmer
adds explicit synchronization instructions. This is because
transactions to the same portion of the database must be in
separate processes (JVMs) in the version of the Objectstore
we used. However, multiple JVM for client requests can
degrade the performance of the application server.

.....--
Synchronized
JAVA Threads

Figure 6. Demonstration 2

Demonstration 2: Concurrency control using Java syn-
chronization

Using Java synchronization techniques, we can ensure
that only one thread at a time from a JVM can modify the
database. That is, the client rather than the database handles
synchronization. Figure 6 shows the situation. This demon-
stration correctly updates the counter twice. By adding syn-
chronization code, the developer ensures that threads in the
same session maintain consistent execution. Unfortunately,
this places the burden on the developer to manage thread
blocking, thread synchronization, and access priority.

d
Concurrent
Transactions

Active Session

Figure 7. Demonstration 3

Demonstration 3: Concurrency control for different
parts of the same database

Objectstore offers different kinds of locking mecha-
nisms. By switching from database level locking to page
level locking, we can allow concurrent updates to different
parts of the same database. We executed this demonstra-
tion and found that Java synchronization is required even
though the threads were accessing different parts of the
database. We repeated the demonstration using PSE Pro and
found that PSE Pro does support multiple transactions; two
counter values are correctly updated even in the absence of
Java synchronization instructions as seen in Figure 7.

SESSION I creaies,,,,. I /create Session SESSION 2

Join Thread 1 Join Thread + I 2

Figure 8. Demonstration 4

Demonstration 4: Concurrency control with separate
sessions

We spawned two threads, which join separate sessions.
Concurrent transactions from the sessions should be syn-
chronized by the database. This demonstration represents
our preferred organization for MAVE applications. Figure
8 shows this organization. We executed this demonstration
using PSE Pro as the database engine. PSE Pro successfully
handled concurrency control. Thus, PSE Pro supports our
preferred architecture from MAVE.

Demonstration 5: Concurrency control with multiple
clients

MAVE is designed to support multiple accesses by sepa-
rate clients. Since the version of Objectstore we used sup-
ported only a single session, we needed to add code to the
server to synchronize requests from multiple clients. We
simulated multiple clients by spawning several Java threads
that communicate with the synchronization thread. The
synchronization thread is the only thread that communicates
directly with the Objectstore database. In an actual MAVE
application, the server would have a single synchronization
thread and one thread per client to handle client requests.
The synchronization thread manages concurrency issues for
incoming requests. A series of read requests can be handled
concurrently. The synchronization thread must synchronize
a series of write requests. Writes to the same segment of
the database should execute serially one at a time. Writes to

different segments of the database could be handled concur-
rently, but the version of Objectstore we used allowed only
one transaction per session. Therefore, our current synchro-
nization thread serializes all thread requests. For a combina-
tion of read and write requests, our synchronization thread
executes update threads before executing any read threads.

5. Integrating VRML with Java

An important part of the MAVE architecture is the abil-
ity to transfer information between VRML and Java [5, 61.
To implement dynamic behavior in VRML worlds, we need
the ability to query the state of the VRML world, to make
decisions based on the state, and change the VRML world
appropriately. In this section, we consider two methods of
communication: Scripting, and External Authoring Inter-
face (EAI). In many cases, either technique can be used to
implement the desired behavior.

Script nodes can bridge the gap between VRML and
Java. The fields of a script node are user extendable and
events arriving at the script nodes are directed to an exter-
nal application. Script nodes are ideal for handling events
internal to the VRML world. The events and the fields of
the script nodes must be defined in advance.

In contrast, the EA1 offers a generalized method of al-
tering and accessing nodes and events of the VRML world.
EA1 is best suited for integrated multi-media presentations,
which include VRML as one media type. The EA1 is imple-
mented through a web browser plug-in and allows arbitrary
dynamic changes. A VRML browser window embedded in
a web page can be controlled from a Java applet on the same
page. We implemented an example using EA1 to allow the
user to change the color of a VRML sphere as depicted in
Figure 9. Our example offers a simple demonstration of us-
ing EA1 to manipulate persistent VRML data.

VRML
Scene
Graph 7 Y P Java Scripting

File

lava Apple1

ObjslSlore

Figure 9. Sphere Example

In our example, the client sends its position to the server
and the server changes the position of a scene object.
Specifically, we implement the road mirage example. This

413

example models the experience of a user driving down a
highway on a hot day. The heat waves rising from the road
ahead offers the illusion of water. We implement this illu-
sion by moving the mirage as the user approaches it. On the
server side, we have an application server that the clients
connect to. The application server talks to Objectstore and
stores the position and orientation of the client. The client
side has two programs: i.he VRML scene and the Java pro-
gram. The VRML scene has two nodes: a sphere repre-
senting a mirage and a proximity sensor. The Java client
connects to the server and wakes the proximity sensor to
send the data via script node. The client sends this data to
the server which calculates a new position for the mirage
sphere. The client updates the sphere's position based on
information from the server.

Our next example simulates a multi-user system. We im-
plement a world with presence. Presence means that each
VRML viewer is represented as a scene entity. Thus, users
are aware of each other's movements through the scene.
The VRML object which represents a user is called an ava-
tor. The MuClient scripit node holds information about ori-
entation and position of the user, and communicates the
user's position to the server. Each client also has a MuRe-
ceiver class, which provides information on the position and
orientation of the other users. The MuServer class orga-
nizes clients and creates one thread per connected user. This
thread is called MuDispatcher and it will receive position
information from its client and forward this information to
other clients. MuDispatcher is also responsible for updating
the Objectstore databasl: as shown in Figure 10.

wlll"g for ai new

/$X,
MuClient &"Receive MuClient

Figure 10. Multi-user Example

6. Conclusions and Future Work

This paper has incosporated VRML persistence into the
MAVE architecture. This offered an initial description of
the use of Objectstore for persistent storage of VRML ob-
jects. We have implemented several demonstrations of the

interactions between Java, VRML, and the object-oriented
database. Our final architecture will include a web server,
which dispatches transactions to one or more application
servers. The application servers route client request to a
synchronization thread. The synchronization thread orders
requests based on the concurrency control capabilities of
our database engine. A database stores persistent VRML
objects. Using event notification features, all clients using
a VRML object will learn of changes to that object in real-
time, in order to refresh their visualization display. Future
work includes storing an array of VRML scenes using event
notification features and optimizing consistent access to the
database.

Acknowledgements

We would like to thank Vivek Vijayaraghavan for his work
during the implementation phase of this paper.

References

13 J. Coble and K. Harbison, "MAVE: A Multi-agent Ar-
chitecture for Virtual Environments" Proceedings of
11 th International Conference on Industrial and Engi-
neering Applications of Artificial Intelligence and Ex-
pert Systems, June 1998.

21 R. Elmasri and S . Navathe, Fundamentals of Database
Systems, 3rd Ed., 2000, Benjamin-Cummings.

[3] J. Hartman and J. Wernecke, The VRML 2.0 Hand-
book, Silicon Graphics Inc, August 1996.

[4] Java Programming with Objectstore, Object Design
Inc, www.odi.com, 1998.

[5] R. Lea, K. Matsuda and K. Miyashita, Java for 3 0 and

[6] M. McCarthy and A. Carty, Building 3 0 Worlds in

[7] Objectstore User Reference, Object Design' Inc,

[8] OSJI and PSE Java discussion lists, Object Design Inc,

[9] R. Sessions, Object Persistence: Beyond Object Ori-

VRML Worlds, New Ride Publishing, 1996.

Java and VRML, lSt Ed., Prentice Hall, 1998.

www.odi.com, 1998.

www.odi .corn, majordomo @ odi .corn, 1998.

ented Databases, lSt Ed., Prentice Hall, 1996.

[101 Singhal, S. and Zyda, M. Networked Virtual Environ-
ments: Design and Implementation, Addison-Wesley,
1999.

[111 VRML, VRML-EAI, VRML-dbwork discussion lists,
maintained by VRML Group, www.vrml.org, major-
domo@vrml.org, 1998.

414

http://www.odi.com
http://www.odi.com
http://www.vrml.org
mailto:domo@vrml.org

