Integration of Object-Oriented Databases with
VRML in Virtual Environments

Damla Turgut, Nevin Aydin, Ramez Elmasri and Begumhan Turgut

Department of Computer Science and Engineering
The University of Texas at Arlington
P.O. Box 19015
Arlington, TX 76019-0015
E-mail: {turgut,aydin,elmasri,bturgut}@cse.uta.edu

Abstract. Virtual Reality Modeling Language (VRML) is widely used
to represent, create, and display virtual reality objects and their en-
vironment. Some VRML applications require concurrent interaction by
multiple users in a real-time distributed fashion. Such applications need
a method for users to share and update the VRML objects in real-time.
To allow concurrent shared real-time access, our approach is to store
the VRML objects in an object-oriented database system (ObjectStore).
In this paper, we present an architecture that allows multiple users to
interact in a non-trivial way in such a shared VRML environment. We
outline how the VRML world can be saved in ObjectStore.

Keywords: Object-Oriented Databases, Virtual Environment, VRML.

1 Introduction

Complex virtual reality applications are increasingly using VRML (Virtual Real-
ity Modeling Language) to model the objects and their interactions [9, 4]. When
dealing with VRML worlds and objects we often find the need to retrieve, ma-
nipulate and store the states of a VRML object as it changes over time. This is
called VRML persistence and is gaining importance among VRML applications.
As VRML applications become more complicated and process real-time data, the
need for adequate persistence capabilities increases. VRML and object-oriented
databases are relatively new fields rapidly gaining importance and popularity.
However, developers have not yet produced a comprehensive solution to VRML
persistence.

The rest of the paper is organized as follows. We describe the traditional
MAVE (Multi-agent Architecture for Virtual Persistence) architecture [1], intro-
duce concepts from VRML and give an application where VRML persistence is
useful in section 2. Storing VRML objects in an ODBS (Object Database Sys-
tem) has the advantages of sharing the VRML model among multiple real-time
applications. In addition, other ODBS functionality, such as query languages
and views, may be utilized. Section 3 gives an overview of PSE (Persistent Stor-
age Engine) [7] for the ObjectStore [6, 8] ODBS, which was used in our system



to provide persistence. Conclusions are drawn in section 4 by showing how to
achieve VRML persistence within the MAVE architecture and future work.

2 VRML and MAVE

VRML (Virtual Reality Modeling Language) [4] integrates 3D graphics, 2D
graphics, text and multimedia into a coherent model. VRML allows us to use
a computer generated 3-dimensional virtual environment which provides an in-
tuitive interface to complex information. In VRML, a scene graph is a group of
objects describing the structure of the virtual world that is being created. The
primitive object types represent boxes, cones, cylinders, and spheres. The scene
graph will be used to develop an EER (Extended Entity Relationship) model [3],
which we will use to design the database for storing VRML objects in Object-
Store [6, 8]. A VRML node is analogous to a structure definition in a high-level
language.

The objective of MAVE (Multi-agent Architecture for Virtual Persistence)
[1] is to develop an agent-based architecture to support intelligent, reusable,
distributed virtual worlds. MAVE is a two-tier architecture. The first tier is
an object-oriented physical representation of the virtual environment that is
designed to mimic the logical decomposition of the virtual world. The second tier
is designed to support the needs for persistence, real-time interfaces to external
data sources, distribution, and collaboration. The object level representation for
MAVE is shown in Figure 1.

Component Object - Component Object Component Object
Public Interface Public Interface Public Interface
VRML VRML VRML
Classes Classes Classes
Sentinel Sentinel e Sentinel
Classes Classes Classes
ul ul ul
Classes Classes Classes
Scene Object

Fig. 1. Object-level Architecture

The virtual environment provides a framework in which distributed users can
collaborate and share resources, including a variety of multimedia types. In the
object level architecture, VRML is used as one element of the overall virtual



environment. To understand MAVE, it becomes important to discuss the hier-
archical nature of a virtual environment. A virtual environment is composed of
scenes and each scene is composed of objects. In MAVE, the VEC (Virtual Envi-
ronment Component) architecture maintains a physical granularity that mimics
the logical decomposition of the respective elements of the virtual environment.
VEC is the lowest level element in a virtual environment that can stand alone
as a useful entity. Each VEC in the virtual environment has a corresponding
VRML visualization. The system level architecture of MAVE is shown in Figure
2.

COTS
RMI/CORBA/COM

oI Iaborau 0 Ob] ect
Manager

External Data
Sources

CLIENT MIDDLEWARE SERVER

Fig. 2. System-level Architecture

The client runs a traditional Web browser with a VRML viewer. We used
the Netscape Plug-in Cosmo Player to execute VRML scenes described in this
paper. The VRML data originally comes from a COTS (Commercial Off The
Shelf) server. Shared VECs are managed and updated by the session manager.
Persistent VECs are stored in the object-oriented database and one or more
object managers allow other programs or events to change the data.

3 PSE and ObjectStore

Many issues arise when considering how to add persistence to VRML. A VRML
persistence scheme should distinguish between static VECs and dynamic VECs.
Previous work on VRML persistence has used traditional file storage techniques.
Our prototype uses an object-oriented databases to provide direct support for
persistence of objects. Three object-oriented databases we considered for the
MAVE project are ObjectStore [6, 8], PSE (Persistent Storage Engine) [7], and
PSE Pro. PSE is originally intended for small single user databases, and is not
intended to support high volumes of updates or queries over a large collection



of objects. PSE Pro does support large databases. ObjectStore provides object
storage for both Java [5] and C++ [2] objects, and supports very large databases
and multiple users concurrently accessing multiple databases.

Netscape

Internet
Explorer

Client Tier Dispatch Protocol Application Tier Database Tier

Fig. 3. Initial Database Server Architecture

MAVE must support multiple users with concurrent accesses. The clients
must always have the most recent state of the object being used and VECs must
be stored and accessed efficiently. Figure 3 shows our initial database server
architecture. The client tier uses an ordinary web browser with a VRML plug-in.
In addition, each client must run a copy of PSE to locally cache objects relevant
to the local visualization display. The PSE API is a subset of the Object Store
API. Thus, ObjectStore server can freely use PSE features and functions on the
client. The VECs are downloaded from the ObjectStore server to the PSE. When
the client wants to commit changes to the VECs, the modified objects are saved
from PSE to ObjectStore. This approach will reduce network traffic and increase
performance. The protocol tier is responsible for passing requests and responses
among clients and applications. The actual protocol chosen could be CORBA,
RMI, Serialization, or Sockets. The application tier provides a buffer between
the client requests and the database. MAVE applications often have many users
accessing the same database through the same web server. To prevent the web
server from becoming a bottleneck, we introduced application servers. The web
server can forward client requests to any number of application servers. The
database tier is responsible for ensuring that all application components share
access to distributed data.

The MAVE architecture thus allows us to decouple the GUI logic and the
persistence storage logic. The VECs can contain arbitrarily complex GUI code.
Application logic is closely linked to the database and can be easily tuned to
manage large system loads.



4 Conclusions And Future Work

This paper has incorporated VRML persistence into the MAVE architecture.
This offered an initial description of the use of ObjectStore for persistent stor-
age of VRML objects. The MAVE database server architecture must support
several features: multiple concurrent access, browser (Web) based clients, notifi-
cation by the database of any changes in data, locking and synchronization, and
multi-threading support. Future work will include complete implementation of
several test cases to evaluate ObjectStore’s ability to meet these requirements.
The test cases will demonstrate the interaction between Java, VRML, and the
object-oriented database. Our final architecture will include a web server, which
dispatches transactions to one or more application servers.

References

1. Coble, J. and Harbison, K. “MAVE: A Multi-agent Architecture for Virtual En-
vironments” Proceedings of 11th International Conference on Industrial and En-
gineering Applications of Artificial Intelligence and Expert Systems, June 1998.

2. H.M. Deitel, P.J. Deitel, C++ How to Program, 3"¢ Ed., Prentice Hall, 2001.

3. Elmasri, R. and Navathe, S. Fundamentals of Database Systems, 3"¢ Ed., 2000,
Benjamin-Cummings.

4. Hartman, J. and Wernecke, J. The VRML 2.0 Handbook, Silicon Graphics Inc,
August 1996.

5. Lea, R., Matsuda, K., and Miyashita, K. Java for 8D and VRML Worlds, New
Ride Publishing, 1996.

6. ObjectStore User Reference, Object Design Inc, www.odi.com, 1998.

7. OSJI and PSE Java discussion lists, Object Design Inc, www.odi.com, major-
domo@odi.com, 1998.

8. Rogers, P. Off the Record Research: Object Database Management Systems, Ob-
ject Design Inc, www.odi.com, 1997.

9. VRML, VRML-EAI, VRML-dbwork discussion lists, maintained by VRML
Group, www.vrml.org, majordomo@vrml.org, 1998.

This article was processed using the I*TEX macro package with LLNCS style



