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A b s t r a b l n  this paper, we show how genetic algorithms can 
be useful in enhancing the performance of clustering algorithms 
in mobile ad hoc networks. In particular, we optimize our re- 
cently proposed weightcd clustering algorithm (WCA). The prob- 
lem formulation along with the parameters are mapped to indi- 
vidual chromosomes as input to the genetic algorithmic technique. 
Encoding the individual chromosomes is an essential part of the 
mapping process; each chromosome contains information about 
the clusterheads and the members thereof, as obtained from the 
original WCA. The genetic algorithm then uses this information to 
obtain the best solution (chromosome) defined by the fitness func- 
tion. The proposed technique is such that each clusterhead hau- 
dles the maximum possible number of mobile nodes in its cluster 
in order to facilitate the optimal operation of the medium access 
control WAC) protocol. Consequently, it results in the minimum 
number ofclusters and hence clusterheads. Simulation results ex- 
hibit improved performance of the optimized WCA than the orig- 
inal WCA. Moreover, the loads among clusters are more evenly 
balanced by a factor of ten. 

Index Termsad  hoc networks, clustering. genetic algorithms, 
performance optimization 

I. INTRODUCTION 

Mobile multi-hop radio networks, also called ad hoc orpeer- 
to-peer networks, play a critical role in places where a wired 
(central) backbone is neither available nor economical to build, 
such as law enforcement operations, battle field communica- 
tions, or disaster recovely situations. This multi-cluster,mu Iti- 
hop packet radio network architecture for wireless systems 
should be able to dynamically adapt itself with the changing 
network configurations. Certain nodes, known as clusterheads, 
are responsible for the formation of clusters, each consisting of 
a number of nodes (analogous to cells in a cellular network), 
and also for the maintenance of the network topology. The set 
of clusterheads is known as a dominant set. A clusterhead does 
the resource allocation to all the nodes belonging to its cluster. 
Due to the dynamic nature of the mobile nodes, their associa- 
tion and dissociation to and from clusters perturb the stability 
of the network and thus reconfiguration of clusterheads is un- 
avoidable. Thus, it is desirable to have a minimum number of 
clusterheads that can serve the network nodes scattered evenly 
in the area. An optimal selectio? of the clusterheads is an NP- 
hard problem [I], [2]. Therefore, various heuristics have been 
designed for this problem (e.g. [ I ] ,  [ 5 ] ) .  

In this paper, we apply genetic algorithms (GA) as an opti- 
mization technique to improve the performance of clusterhead 
election procedure. In particular, we optimize our recently pro- 
posed weighted clustering algorithm [4], [ 5 ] .  GAS are defined 
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as search algorithms that use the mechanics of natural selection 
and genetics such as reproduction, gene crossover, mutation as 
their problem-solving method. The goal is to he able to find 
out a better solution in the form of new generations that have 
received advantages and survival-enbancing traits from the pre- 
vious generations [3], 171, [9]. An artificial-life simulation is 
created where survival of the fittest logic is applied for the string 
structures that are the living organism equivalent in real world. 
Even though the representation is structured, there is a random- 
ization in data exchange to simulate the evaluation of real life 
forms. As each generation brings up a new set of strings by dif- 
ferent combination of bits of pieces of the previous generation, 
the results are not guaranteed to come up with a generation that 
has a betterfitness value hut by performing different genetic 
operations, the probability of achieving the desired results is 
increased. As Characteristics of an organism in encoded in a 
strand of DNA, genetic algorithms hy to do the same in elec- 
tronic genotypes that are basically just strings of hits. This hit 
representation can be in the form of 1’s and 0’s or some other 
form depending on the application it represents. It could so 
happen that binary numbers could not he sufficient enough to 
represent rather more complex information, behavior or char- 
acteristic. In such cases, other encoding methods are used to a 
string to fully and uniquely represent the data. 

One of the essential factors of evolution is mutation. There 
is no guarantee that the results of  a reproduction will carry 
traits that are fitter to survive. There could be several either 
predictable or unpredictable characteristics found in the new 
generation. In genetic algorithms, mutation is achieved by ran- 
dom alteration of a hit in the genotype. Given a certain rate, 
frequency of this alteration can he different for various applica- 
tions. Another important factor in genetic algorithms is the ro- 
bustness, which is defined to he the balance between efficiency 
and efficacy needed to survive in various environments [7]. For 
instance, this concept could be in the form of improving the cost 
efficiency of a company’s product line in the same environment. 
These concepts are also especially of  importance where one can 
test the efficacy of a suggested solution as many times as pos- 
sible, often in the figure of hundreds of thousands of times [3]. 
This is why genetic algorithms are not used for testing of how 
well life-dependent proceses work. For example, one would 
not use this application to make suggestions to a surgeon be- 
cause the fact that in case of a bad suggestion the patient could 
suffer the consequences and the algorithm would leam from the 
training. The objective function (or the desired outcome) for a 
given application would be to achieve improvements to an ex- 
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istiilg solution already in hand or simply finding a solution to a 
conrplex problem. 

The rest of the paper will show how GA based techniques 
can be applied to clustering algorithms that would further en- 
hance the performance of such algorithms. In particular, we 
will apply the GA technique to Weighted Clustering Algorithm 
(WCA) [4], [ S ]  and demonstrate its performance improvement 
with respect to the number of clusters, reaffiliations, and domi- 
nant set updates. The optimized version of WCA also balances 
the loads among clusters which is as much as ten times better 
than the original WCA. 

11. OPTIMIZING A CLUSTERING ALGORITHM 

Let us briefly summarize the Weighted Clustering Algorithm 
(WCA)which selects the clusterheads based on the weight W, 
of each node U. As detailed in [5], W, is defined as 

W, = W I  A, + W Z D ,  + w3Mu + WWI P, 
where A. is the degree-dijference, D, is sum of the distances 
of the members of the clusterhead, M ,  is the average speed of 
the nodes, and P, is the accumulative time of a node being a 
clusterhead. The corresponding weighing factors are such that 

10; = 1. That node U with the minimum W, is chosen to 
be the clusterhead. Once a node becomes a clusterhead, neither 
that node nor its members can participate further in the cluster 
election algorithm. The algorithm terminates once all the nodes 
either become a clusterhead or a member of a clusterhead. All 
the clusterheads are aware of their one-hop neighbors as well as 
the ordinary (non-clusterhead) nodes know their clusterheads. 
Please refer to [ 5 ]  for complete details of WCA. 

A .  Problem Statement 
We propose to optimize WCA such that the clusterheads 

(dominant set) is minimized while load in the network is evenly 
balanced among the clusters. In order to have a smaller num- 
her of clusterheads, each clusterhead must serve the maximum 
possible number of nodes within their clusters. By balancing 
the nodes among the clusters, we also assure that the lifetime of 
individual nodes will be increased accordingly as none of the 
nodes will use their processing andlor battery power more than 
necessary. The goal of GA is to choose the one with the low- 
est fitness value to be the best chromosome in that population 
for that generation. As Elitist model of GA is used, the index 
of the chromosome in the population will be saved to pass on 
the next generation as the genetic algorithm performs crossover, 
mutation and replacement. 

B. CA Operations 
We show how the following genetic operations are used in 

our approach. For more details on these operations and related 
concepts, refer to [7], [9]. 
Encoding of the data: This is also called a string represen- 
tation of the given data which would b e  the nodes in the net- 
work under consideration. All the nodes in the search space 
should be present and have a unique representation. If there 
is a one-to-one correspondence between the search space and 
string representation, the design of the genetic operator would 
be considerably less complex. As the number of nodes can be 

randomly generated, it can be any number N for the given in- 
stance. These unique IDS are used to encode the chromosome 
using integer permutation as illustrated in Figure 2. Each chro- 
mosome will be represented as a string of integers form where 
each node ID is present and appears only once in the list as 
shown in Figure 1. 

Initial Population: Since genetic algorithms can perform cer- 
tain tasks in parallel, the initial population should be generated 
randomly. The population size is equal to what is called the 
pool size in genetics which is generally problem dependent, but 
it can also he found experimentally. 

Selection: After the formation of the initial population, the fit- 
ness value for each chromosome is computed. Since the weight 
W, of each node was calculated from WCA's selection proce- 
dure, GA uses those values to sum up for all the clusterheads 
for each chromosome. Since each chromosome has a differ- 
ent set of clusterheads, the total fitness value for each chromo- 
some will be different. According to the fitness values, Roulette 
Wheel method is used for selection. Essentially in this method, 
every chromosome is assigned a percentage value that is linear 
to its fitness value. 

Crossover: This is an essential operation despite the fact that it 
may eliminate the optimal solution in rare cases. The purpose 
is to have more diverse population. It is random in nature and 
dependent on the rate specified which is best suited for a given 
application and can be found experimental1y.h this implemen- 
tation, the X-Order1 method is used [IO] and the crossover rate 
is chosen to be 0.8. In the X-Order1 method, the offspring in- 
herits the elements between the two crossover points, inclusive, 
from the selected parent in the same order and position as they 
appeared in that parent. The remaining elements are inherited 
from the alternate parent in the same order as they appear in that 
parent, beginning with the first position following the second 
crossover point and skipping over all elements already present 
in the offspring [6]. 
Mutation: This operation is performed to avoid premature con- 
vergence by occasional random altemation of randomly deter- 
mined bit in the given string with a specified rate. For the muta- 
tion operator, we use a swap method with mutation rate of 0.1. 
In this method, from the parent, we randomly select two genes 
at position j and i, swap them to create the new child. 

Replacement: Its purpose of using an append method is to save 
the best strings into the next generation as it is possible to loose 
the best solution while the reproduction process produce a new 
set of solutions that replace the old (parent) solutions. 

Elitism: The idea of using elitism is to update the current so- 
lution (parent string) with the new solution (child string) if and 
only if the new solution is better than the previous one. 

Fitness value for chromosome: Compute the fitness value for 
child I and child 2 (objecthnc). This.function is explained in 
Cfit Value Algorithm which computes the objective function for 
the fitness value. 

C. Applying Genetic Algorithms 

This section provides how the genetic algorithms are applied 
to WCA to optimize the total number of clusterheads. As can be 
seen in Figure I ,  we have all the nodes along with their neighbor 
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list as well as the W, values which are already calculated from 
the execution of WCA algorithm. This is stored separately in 
a list where each node is pointing to its neighhor(s) list as it is 
next position that is used to compute the object function. 

w , r s 1 v a  
N r l g h b a n  L l . l  4 :;:ii:oL - \ 

5 1 - 7 - 2 2 -  

3 2 -c 10 ... 

7 1 - 2 5 - , 2 -  

. .  . .  

4 w - 5 -  

8 100- 63 -- 8 - ... 
Fig. I .  WCAintemediaIe results 

Let us propose the following genetic algorithm steps that are 
applied to the intermediate results of WCA. 

Genetic Algorithms Steps 
1) Initial Population: Randomly generate the initial popula- 

tion with the pool size being equal to the number of nodes 
in the given network. This will produce the same number 
of chromosomes in the form of integer strings. 

2) Repeat until requirements met: While newqoolsize < 
old-poolsize, repeat steps 3 to 7. Repeat step 2 until the 
number of generation or the convergence is met. 

3) Selection: Apply Roulette Wheel method with fitness 
values. 

4) Crossover: Use X-Order1 method. 
5) Mutation: Use swap method. 
6) Compute objective function: Compute the fitness value 

7) Replacement: Use append method. 
8) Elitism. Check if the new children are better than the 

Since there are certain randomly generated predefined num- 
ber,say N, of mobile nodes in the network, each of which has 
a unique node ID in the range from I to N; these node IDS 
are used in the integer permutation to form string of integers as 
encoding of a single chromosome. The initial population is per- 
formed by generating the population randomly according to the 
pool size. It is important to note that each of these strings con- 
taining all the node IDS should not have any duplicate number; 
achieving completeness and uniqueness characteristics. The or- 
der in which the IDS are placed in the string should also he ran- 
dom and not follow a certain pattern. This is shown in Figure 2 .  
Starting from the beginning, the algorithm goes through all the 
nodes from the string in the order they appear and refers back to 
the previous list obtained from WCA to find out the W, values 
for the selection of the clusterheads. 

The algorithm goes through each node in this list and checks 
three conditions in order to select the current node as a clus- 
terhead. If the node under consideration is not already a clus- 
terhead, and not a member of any of the clusterheads, and the 
actual number of neighbors is less than the predefined threshold 
value for 6 (maximum allowed number of neighbors a node can 
have), that node is chosen to be a clusterhead and inserted into 
the set of clusterheads for that particular chromosome. This is 

of each chromosome in the population. 

current best. If so, replace the best by the child. 

25 35 22 12 I I 3 7 .‘. 

2 3 7 5 ‘’_ 34 64 45 25 

50 6 8 3 ... 55 44 34 56 

Fig. 2. Data encoded into chromosomes 

shown in Figure 3. Since every node can he either a clusterhead 
or a member of only a single clusterhead, the selected node and 
its members are marked as deleted such that they would not be 
part of the selection procedure anymore. After going through 
the list once, a second run is performed for the purpose of find- 
ing out whether any node is left unassigned since every node has 
to be a member of a single clusterhead or a clusterhead itself. 
After the clusterheads are chosen, the already calculated W ,  
values for each node is used to find out the fitness value of the 
chromosome by taking the summation of W, values of all clus- 
terheads in this particular chromosome. It is important to note 
that since the order of appearance of node IDS in the encoding 
ofthe chromosomes are different, each chromosome will have a 
different set of clusterheads which in retum will have different 
fitness values as computed by the following algorithm. 

w ““.I”C. 4 Node ID of a ~lustcrhead 
1 

Fig. 3. Clusterhead set for a single chromosome 

:fit Value Algorithm 
1) The fitness value is equal to 0 at the beginning. 
2 )  For each gene in chromosome repeat steps 3 and 4. 
3) Assign node to be equal to gene [3]. If a node is not 

already a clusterhead and is not already a member of an- 
other clusterhead and its node degree is less than or equal 
to MAXDEGREE (constant), assign this node to be a 
clusterhead. Find out its W, value (already computed 
from WCA). Insert its node ID to the clusterhead set. Add 
its W, value to the fitness value of the chromosome it he- 
longs to. 

4) For the nodes that are leftover without any assignment, 
loop through the entire chromosome one more time. If 
a node is found that is not already a clusterhead and is 
not already a member o f  another clusterhead and its node 
degree is less than or equal to MAXDEGREE; assign 
this node to be a clusterhead. Insert its node ID to the 
clusterhead set. Add its W, value to the fitness value of 
the chromosome it belongs to. 

We choose the append method that the new children will be 

64 



appended into the new pool. If the new children are better than 
the hest, replace the hest by the child. This method is used to 
prevent the solution from getting stuck at a local optima. The 
solution is defined to he the solution ofthe hest chromosome of 
the last generation. 

111. SIMULATION STUDY 
We simulate a system of N nodes on a 100 x 100 grid. The 

nodes could move in all possible directions with displacement 
varying uniformly between 0 to a maximum value (maxdisp), 
per unit time. In our simulation experiments, N was varied 
between 20 and 60, and the transmission range was varied he- 
tween 0 and 70. The nodes moved randomly in all possible 
directions with a maximum displacement of I O  along each of 
the coordinates. Every time unit, the nodes move a distance 
that is uniformly distributed between 0 and maxdisp. In the 
original WCA, we assumed that each clusterhead can at most 
handle 6 = 10 nodes (ideal degree) in its cluster in terms of 
resource allocation. Due to the importance of keeping the node 
degree as close to the ideal as possible, the weight w~ associ- 
ated with AV was chosen high. The weights used for simula- 
tion were wI = 0.7, w2 = 0.2, w3 = 0.05 and wq = 0.05. 
Note that these values are arbitrary at this time and should he 
adjusted according to the system requirements. These are the 
same values for all weighing factors used in the original WCA. 
We have used LibGA [8] which is a library of routines written 
in C for developing genetic algorithms. The GA parameters are 
setlmodified using a configuration file with no need to compile. 

A .  PerJormance Mefrics 
Wecomp are the performance of WCA with three perfor- 

mance metrics: (i) the number of clusterheads, (ii) the num- 
ber of reaffiliations, and (iii) load balancing factor (LBF). The 
number of clusterheads in the network defines the dominanisei. 
The reaflliaiion count is incremented when a node gets disso- 
ciated from its clusterhead and becomes a member of another 
cluster within the current dominant set. The dominant set up- 
date takes place when a node can no longer be a neighbor of 
any of the existing clusterheads. These parameters are studied 
for varying number of nodes (N)in the system, transmission 
range and maximum displacement. 

To quantitatively measure how well balanced the cluster- 
heads are, we use a parameter called load balancing factor 
(LBF) as defined in [4], [5]. The load handled by a cluster- 
head is essentially the number of nodes supported by it. A 
clusterhead, apart from supporting its members with the radio 
resources, has also to route messages for other nodes belong- 
ing to different clusters. It is difficult to maintain a perfectly 
load balanced system at all times due to frequent detachment 
and attachment of the nodes from and to the clusterheads. As 
the load of a clusterhead can be represented by the cardinality 
of its cluster size, the variance of the cardinalities will signify 
the load distribution. We define the LBF as the inverse of the 
variance of the cardinality of the clusters. Thus, 

L B F =  @ 
where n, is the number of clusterheads, zi is the cardinality 
of cluster i, and p = 9 is the average number of neigh- 
hors of a clusterhead (N being the total number of nodes in 

, ,  

the system). Clearly, a higher value of LBF signifies a better 
load distribution and it tends to infinity for a perfectly balanced 
system. 

Fig. 5 .  Optimized WCA - Reaffiliations per unit time, mmdisp = 5 

I 

B. Experimenial Results 
Figures 4 and 5 show the reaffiliations per unit time with the 

varying %_range for original WCA and optimized WCA, re- 
spectively. For low transmission ranges, the nodes in a clus- 
ter are relatively close to the clusterhead, and a detachment 
is unlikely. There is an optimal transmission range for which 
the reaffiliations are maximum. Further increase in transmis- 
sion range decreases the reaffiliations since the nodes tend to 
stay inside the large area covered by the clusterhead irregard- 
less of movement of the nodes. For fewer nvmber of nodes, 
the reaffiliation count is lower for optimized WCA. Figures 6 
and 7 show the average number of clusterheads with the vary- 
ing maxdisp for original WCA and optimized WCA respec- 
tively. We observe that the average number of clusterheads is 
almost the same for different values of maximum displacement 
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Fig. 7 .  Optimized WCA - Average number of clusten, u m n g ~ 3 0  

Fig. 8. Reaffiliations per unit time, Urmge-30 

since it simply results in a different configuration but the clus- 
ter size remains the same. We observe that the optimized WCA 
yields fewer number of clusters. Figures 8 and 9 show the reaf- 
filiations per unit time with the varying maxdisp for original 
WCA and optimized WCA respectively. As the displacement 
becomes larger, the nodes tend to move farther from their clus- 
terhead, detaching themselves from the clusterhead and caus- 
ing more reaffiliations per unit time. The reaffiliation count has 
considerably reduced for N = 20 and 30 as depicted in Figure 
9. Figures I0 and 11 show bow the load balancing factor (LBF) 
varies with time for original WCA and optimized WCA respec- 
tively. We observe that after every dominant set update, there 
is a gradual increase in the LBF. This is due to the diffusion of 
the nodes among clusters. While the values of LBF has varied 
between 0 and 0.06 in Figure 10, it went up to 0.6 in Figure 11 
indicating that the GA based optimized WCA is ten times more 
balanced. 

IV. CONCLUSIONS 

In this paper, we showed how genetic algorithms can be 
applied to clustering techniques in mobile ad hoc networks. 

Time 

Fig. IO. Loaddistribution 

I I .- .= 
Time 

Fig. I I. Optimized WCA - Load distribution 

Weighted Clustering Algorithm (WCA) is one such algorithm 
which can dynamically adapt itself with the ever changing 
topology of ad hoc networks. We have mapped the possible so- 
lutions given by original WCA to genetic algorithm technique 
in order to find the bener solution from a pool of solutions. Data 
contained in the solutions are encoded into individual cbromo- 
somes to be used in the selection process. We applied GA 
techniques to optimize the performance of WCA such that each 
clusterhead handles the maximum possible number of nodes in 
its cluster. The simulation results show that fewer clusterheads 
are obtained by applying GA to WCA than the original WCA. 
Also, the loads are more evenly balanced as can be seen from 
the improvement in the load balancing factor. 

REFERENCES 
[I] S .  Basagni, 1. Chlamtac, and A. Farago, "A Generalized Clustering Algo- 

rithm for Peer-to-Peer NeworW,  Proceedings ofworkshop on Algarith- 
mic Aspects of Communication (satellite workshop of ICALP), Bologna, 
Italy, July 1997. 

121 B. Bollohas, Random Graphs, Academic Press, 1985. 
131 L. Chamhen (Ed.). Practical Handbook ofGenetic Algorithms, Applica- 

tion Volume I, CRC Press, 1995. 
141 M. Chatterjee, S.K. Das and D. Turguf, ''An On-Demand Weighted Clus- 

tering Algorithm (WCA) for Ad hoc Networks", Proceedings of IEEE 
GLOBECOM 2000, San Francisco, November 2000, pp. 1697-1701. 

[SI M. chanerjee, S.K. Das and D. Turgur, "WCA: A Weighted Clustering 
Algorithm for Mobile Ad hoc Neworks", Joumal of Clustering Comput- 
ing, (Special Issue on Mobile Ad hoc Networks), Vol. 5 ,  No. 2, April 
2002, pp. 193-204 

[6]  L. Davis, "Applying Adaptive Algorithms to Epistatic Damains". Pro- 
cecdines of lntemafional Joint Conference on Artificial Inlelli~ence. - 
1985. I 171 D.E. Goldberg, Genetic Algorithms in Search, Oplimiiorion. and Machine 

191 K.F.Ma n, K.S. Tang. and S. Kwong, Golelic Algorithms: Concepts and 
Desigm,Sp ringer, 1999. 

[ IO]  lnrernorianol Con/exnce on Genetic Algorithms. Proceedings of the 
Fourth Inlemolionol Conlerence on Generic Algorithm$, San Diego, July 
13-16, 1991. 

. ~ - - ~  
Maximum Displacement 

Fig. 9.  Optimized WCA - Reaffiliations per unit time, Ixrange=30 

66 


