Balancing Loads in Mobile Ad hoc Networks *

Damla Turgut
School of Electrical Engineering and Computer Science
The University of Central Florida
Orlando, FL 32816-2450

E-mail: turgut@cs.ucf.edu

Begumhan Turgut

Sajal K. Das

Ramez Elmasri

Department of Computer Science and Engineering

The University of Texas at Arlington
Arlington, TX 76019-0015

E-mail: {bturgut, das, elmasri}Qcse.uta.edu

ABSTRACT

Mobile ad hoc network consists of freely moving
nodes communicating with each other through wire-
less links. In this paper, we propose a load balanc-
ing algorithm for these networks with nodes having
different processing powers and thus can perform ex-
tensive computations apart from forwarding packets
for other nodes. These nodes will also have various
degrees of battery powers as well. Due to the het-
erogeneity of the systems in terms of processing and
battery powers, naturally, there will be load imbal-
ance. If the workload is distributed among the nodes
in the system based on the resources of individual
nodes, the average execution time can be minimized
and the lifetime of the nodes can be maximized. Our
proposed load balancing algorithm takes into consid-
eration several realistic parameters such as process-
ing and batter powers of each node, and communica-
tion cost for the loads being transfered between the
overloaded and underloaded nodes. Simulation ex-
periments demonstrate that our proposed algorithm
achieves performance improvements in terms of pro-
cessor utilization, execution time, and balance fac-
tor.

Keywords: ad hoc networks, load balancing, en-
ergy conservation

1 Introduction

Mobile multi-hop radio networks, also called ad
hoc or peer-to-peer networks have gained prominence
in the recent years. These networks plays a criti-
cal role in places where a wired backbone is neither

*0-7803-7661-7/03/$17.00(©2003 IEEE.

available nor economical to build, such as law en-
forcement operations, battle field communications,
disaster recovery situations, and so on. These sce-
narios demand a network where all the nodes in-
cluding the base stations are potentially mobile, and
communication must be supported untethered be-
tween any two nodes. Even though ad hoc networks
were initially designed and developed to respond to
emergency type situations, it is possible to see more
civilian applications which are currently being de-
veloped such as conferencing, home networking, au-
tomotivePC interaction, personal area networks and
bluetooth, embedded computing applications, and
so on [4, 6].

Load balancing has been one of the major research
interests in both wired and wireless networks. There
are various characteristics of nodes that needs to be
taken into consideration on the underlying network
[1, 5]. As these parameters change in terms of in-
creasing number of nodes, being wireless, node mo-
bility, heterogeneity of nodes, and so on, the process
of finding a balanced network becomes more com-
plex. Load balancing is certainly an essential part of
an optimal network. For example, if nodes with less
processing capabilities have been given large amount
of loads and do not have any means to share the
load, the process of completing the job will suffer.
This could reflect on the network performance just as
much as other drawbacks such as congestion would
do on the traffic.

It has been generally assumed that the nodes are
identical in all respect, that is, they have the same
processing speed, memory capacity and transmission
power. This assumption on uniformity of devices
does not hold, due to the nodes that will constitute

the network are being developed with varying capa-
bilities. For example, the devices which form the
network could be wireless phones, palm-tops, lap-
tops, and so on. It is expected that loads in ad hoc
network will not only be used for communication
but also for extensive computation since these nodes
will have high processing powers. Thus, the nodes
are responsible for forwarding packets from/to the
other nodes and their processing power can be used
for computation intensive purposes [3].

Due to the heterogeneity of the systems in terms
of computing/processing power, it is likely that there
will be load imbalance. This means that some nodes
might be idle while some might be overloaded. A
powerful node, that is in terms of processing power,
is expected to have less or no load at all most of
the time simply because it will finish its own work
load quickly. Therefore, it is not desirable to have
any overloaded nodes while there are underloaded
nodes. The processing capability of such powerful
nodes can be harnessed by other overloaded nodes if
a fraction of their load is distributed to other nodes.
If the work load is shared efficiently, not only the
average execution time can be minimized but also
the battery power of the nodes can be better uti-
lized. As a result, the lifetime of the nodes can be
maximized. In addition, long-lived nodes also con-
tribute to the stability of the network topology which
is crucial in these types of networks [7]. Achieving
stable network topology in ad hoc networks in turn
will provide solutions to several problems related to
areas such as clustering and routing [1, 2, 3, 8].

Finding a node to which a load can be trans-
fered is non-trivial. The problem would be less com-
plicated if we consider a centralized system where
the current load of every node is known to all the
nodes. Also, the hop distance between every node
pair would be known to the central station/server.
A node that needs to distribute its load could easily
find the target node to share its load. However, it
may not be a good idea for a node to share its load
with another node that is several hops away due to
the time it may take to obtain the information about
the load of that node. Moreover, the information
about the load might change by the time this infor-
mation is assimilated.

It can be safely assumed that a node knows the
status of its immediate neighbors, that is, the nodes
which are within its transmission range. This is
made possible by the continuous transmission of bea-
con signals and all nodes in the vicinity can re-
ceive/hear them. For a node to find the status of
other nodes, it sends out query messages, which are
heard by its immediate neighbors. These neighbors

can in turn relay the query messages and gather the
information about nodes that are far away (in terms
of number of hops) from the node that started the
query process. It can be noted that these kind of
query broadcast is expensive and thus should be min-
imized as much as possible. The problem becomes
even more difficult if the nodes are constantly mov-
ing and the load of the nodes are changing frequently.
A node wishing to distribute its load would require
to identify the nodes with which it can share its load.
The lightly loaded nodes are identified on a hop-by-
hop basis, that is, query messages would first reach
to the immediate neighbors (or the 1-hop neighbors),
then the 2-hop neighbors, and so on. It is not de-
sirable to share a small chunk of load with a node
that is several hops away. This is due to the high
communication cost association. Therefore, the goal
is to find the nodes, at the right distance, which are
capable of sharing the extra load so that there is no
or minimum load imbalance in the system.

In this paper, we present a load balancing algo-
rithm that takes into consideration the communica-
tion cost for finding the best suited node for load
sharing. The load balancing algorithm is invoked
only when there is an imbalance with respect to a
certain threshold and the performance is evaluated
in terms of execution time, battery power and bal-
ance factor. The rest of the paper is organized as
follows. Section 2 describes our algorithm in detail.
A simulation study and experimental results are pre-
sented in section 3, followed by the conclusions in
section 4.

2 Proposed Load Balancing Algo-
rithm

In this section, we present a load balancing al-
gorithm [7] that is aimed to balance the loads on a
given network by calculating the loads and exchang-
ing messages among the nodes to find a way of either
receiving or sending loads. We give the preliminar-
ies, balance factor, system activation and algorithm
steps.

2.1 Preliminaries

We model the nodes in the network by an undi-
rected graph G = (V, E), where V represents the
set of nodes v and E represents the set of links e.
Note that the cardinality of V' remains the same
but the cardinality of E changes with the creation
and deletion of links. Associated with every node v,
is a value p,, which represents its processor power
and b, which represents the battery power. Due to
heterogenous network, a node (i.e., a laptop) can
have very high processing power than another (i.e.,

a palm-top). It is also assumed that the p, values
do not change whereas the b, values decrease as the
execution of the jobs continues. We defined [2, 7] the
neighborhood set of a node v as

N[’U] = Uv'eV, o' #v {v'|dist(v, 'UI) < tmrange}

where tZ,qnge is the transmission range of node v.
The neighborhood of a clusterhead is the set of nodes
which lie within its transmission range. The nota-
tions used are shown in table 1.

2.2 Balance Factor

Load balancing has been dealt with in great depth
in distributed systems, where nodes with different
computing power are connected among themselves
through a known topology that does not change. A
node apart from executing its own work load, also
has to route (forward) messages for other nodes.
Thus, the load handled by a node depends on its own
load assignment and the average system load. It is
not desirable to share the load with a node whose
load is already in close proximity with the average
system load.

To quantitatively measure how well balanced the
nodes are, we introduce a parameter called balance
factor (BF). We define the BF as the inverse of the
variance of the load of the nodes. Thus,

_ N
BF = '

where N is the total number of nodes in the system,
I, is the load of node v, and p is the average system
load, which is computed as

b= %EvEVlU

Clearly, a higher value of BF signifies a better load
distribution and it tends to infinity for a perfectly
balanced system.

It is difficult to maintain a perfectly load balanced
system at all times because of the high cost associ-
ated with triggering of the load balancing algorithm
frequently. The frequency at which the load balanc-
ing algorithm is invoked is an important issue. If
it is invoked periodically at a high frequency, then
the latest topology of the system can be used to find
the node that would be suitable to share the load.
However, this will lead to high computational cost
resulting in the loss of battery power or energy. If
the frequency of update is low, there are chances
that current topological information will be lost, re-
sulting in selection of unsuitable nodes to distribute
the load. It is not necessary that the load balancing
algorithm will be triggered whenever there is a new
load into the system. It will only be invoked when

Table 1: Load Balancing Algorithm Notations

Notation Meaning
N : Total number of nodes
tTrange Transmission range
My : Total number of jobs of node v
ly : Load of node v
Do : Processing power of node v
by : Battery power of node v
¢ :ith job of node v
I Average System Load
ty : Threshold value of node v

the load falls below a certain threshold. Another
measure that we have taken towards reducing the
computation cost is to allow only overloaded nodes
to distribute loads to other nodes. The underloaded
nodes will not request load to execute from others;
rather they wait until the request(s) to execute jobs
arrive from the overloaded node(s).

2.3 Algorithmic Execution

We generate the number of nodes with random
positions. These nodes are given maximum displace-
ment (maz_disp) and they can move in all directions.
The range of (min, max) processing and battery
powers (min, max) are assigned to these nodes. It is
assumed that nodes with high processing power also
have high battery power — that is, a laptop would
have a higher battery power than a PDA. A num-
ber of jobs are created in each node. The job size is
measured in terms of million instructions. Each node
then calculates its current load by summing all the
jobs assigned to it. The construction of multi-hop
neighbors starts in every node until all the nodes are
processed. The average system load is calculated and
every node is made aware of it. The overhead param-
eter is defined and used for returning one job per hop
in every node. Since our load balancing algorithm is
distributed, each node collects the information about
the current load of the other nodes by a repetitive
query messaging. After gathering the loads of all the
nodes (I,Vv) each node computes the average system
load p as defined earlier. If the load of a node is
above a defined threshold value, it tries to distribute
the extra load to its 1-hop neighbors. If its 1-hop
neighbors are also overloaded, the node requests its
2-hop neighbors to receive the load and so on. In
our algorithm, an overloaded node means that its
load value is higher than a range, set by a threshold
value. The range is set to be between (1—t,) X 4 and
(1+1ty) x p, where t, is the threshold value for node

v. The value of ¢, is a tunable system parameter. If
a node is below a threshold value, it waits for over-
loaded nodes to distribute the jobs. This algorithm
always tries to move the load from overloaded nodes
to underloaded neighbors (from 1-hop to multi-hop).
If the load is distributed to a multi-hop neighbor, the
overhead, which includes job instructions, is added
to every return hop to the original node.

2.4 Load Balancing Steps
The procedure consists of 5 steps as described below.

Step 1: Find the immediate (1-hop) neighbors of
each node v (i.e., nodes within its transmission
range) and let this denoted by Nj[v]. Thus,

Ni[v] = Z {dist(v, vl) < tmmnge}

v EV, v'#v

Similarly, find the 2-hop neighbors, Na[v]. This
process is continued for all the nodes in the net-
work. Note that N;[v] is the same as N[v],
which was defined in section 2.1.

Step 2: For every node, calculate the total load by
summing the each job sizes, ¢} as

My
ly = z c
=1
where
Cy =Py X by

and p, and b, are the processing and battery
powers of node v.

Step 3: Calculate the average load of the system as

B =]-Nzlv

veV
Step 4: A node is underloaded if
Ly <(Q—ty) xpu

In this case, the node waits to process the job(s)
distributed from overloaded nodes.

A node is overloaded if
Ly > (1+1t,) x p

In this case, the node starts screening its imme-
diate (1-hop) neighbors to distribute the load.
If an underloaded node is not found in its 1-hop
neighbors, the node searches its 2-hops neigh-
bors, and so on.

Step 5: Repeat Step 4 until there are no overloaded
or underloaded nodes. If the nodes lie within the
range [(1 —ty) X p, < (1 +t,) x p)], the loads
are considered already balanced.

The execution of this algorithm finds the target
nodes capable of sharing the extra load based on
the processing and battery powers of those nodes.
It tries to distribute the load to the node’s imme-
diate neighbors. If none of the 1-hop neighbors are
available to share the load, then the 2-hop neigh-
bors are queried, and so on. Since the load of the
nodes changes dynamically, the average system load
changes accordingly. The algorithm always uses the
up-to-date average system load by querying the loads
of all the nodes in the network.

3 Simulation Study

The simulation model consists of N nodes that
are randomly scattered on a square (100 x 100)
grid. The nodes can move in all possible directions
with displacement varying uniformly between 0 to a
maximum displacement value (maz_disp), per unit
time. Also, the node of nodes N or the node density
(nodes per unit area) is varied. Each node gener-
ates loads with a certain rate, the average of which
is A loads per node. A fraction of the newly gener-
ated load by a node will get distributed among other
nodes depending on the current load of the node and
the average load of all the nodes in the system. The
nodes are assigned varying processing and battery
powers. Since a node with a high processing power
naturally posses a high battery power, the relation-
ship between these two has been maintained during
the random generation of the values. To measure the
performance of our system, we identify three metrics:
(1) execution time improvement, (2) standard devia-
tion, and (3) balance factor. These three parameters
are studied for varying number of nodes (V) in the
system with respect to the average job size.

In our simulation experiments, N was varied be-
tween 100 and 300 with an increment of 50. The
average job size was within the range of 100 to 1000
millions of instructions. The nodes moved randomly
in all possible directions. Each node knows, not only
its own current load, but also the loads of its multi-
hop neighbors as well as the average system load,
since our algorithm is distributed in nature. Before
distributing jobs to other nodes, a node checks if its
current load is outside the specified threshold. The
threshold value used in these experiments is set to
20% which can be set to any other value appropri-
ately. The overhead propagated for the jobs coming
back from neighbors (1- or multiple-hops away) is
0.01% per hop traveled. The overhead simply adds

the extra number of instructions per hop. Note that
these values are arbitrary at this time and can be ad-
justed according to a specific system requirements.

24

N
N

N
S

=
&

=
)

N
IS

Execution Time Improvement

100
12

T4 ot

300

.
100 200 300 400 500 600 700 800 900 1000
Average Job Size

Figure 1: Execution Time Improvement After Load
Balancing

15

Before Load Balancing

=

S
T
L

Standard Deviation

a
T
L

100 200 300 400 500 600 700 800 900 1000
Average Job Size

Figure 2: Standard Deviation Before Load Balancing

3.1 Experimental Results

Figure 1 shows the execution time improvement
with respect to the average job size. It is noted that
execution time gives better results for both large job
sizes and a large number of nodes. It is expected to
improve in the execution time when more nodes are
present in the system, since more nodes ultimately
means more allocation of jobs to other nodes. Fig-
ures 2 and 3 respectively present standard deviation
with respect to the average job size before and after
the load balancing algorithm is used. The standard
deviation represents how well the excess loads of dif-
ferent nodes have been distributed. A small number

15

After Load Balancing

e
1)
T

L

Standard Deviation

@ = H ! L L L
100 200 300 400 500 600 700 800 900 1000
Average Job Size

Figure 3: Standard Deviation After Load Balancing

14

100
Before Load Balancing

NN
a0 a
S50

12

P44 4]

300

10

Balance Factor

i
100 200 300 400 500 600 700 800 900 1000
Average Job Size

Figure 4: Balance Factor Before Load Balancing

means that the nodes have used similar percentage of
their processing and battery powers. In this sense,
the nodes exist in the system in longer periods of
time. As it can be seen from figure 3, the stan-
dard deviation has shown significant improvement
(as much as three fold) after the load balancing. Fig-
ures 4 and 5 show balance factor with respect to the
average job size. Higher numbers in the balance fac-
tor signifies the improvement as it can be seen from
figure 5. The balance factor gives better results for
resource-poor networks.

4 Conclusions

In this paper, we described our load balancing al-
gorithm for mobile ad hoc networks where each of
the nodes has varying degree of processing and bat-
tery powers. It is desirable for nodes with higher
processing power to handle loads that require more

T T T
After Load Balancing

ey
@
]

T894

Balance Factor

o =80 o %
100 200 300 400 500 600 700 800 900 1000
Average Job Size

Figure 5: Balance Factor After Load Balancing

computational power such that the execution time
of the loads is minimized. Basically, the goal is to
obtain a balanced ad hoc network to achieve better
performance in terms of execution time of jobs and
throughput. Simulation results have shown signifi-
cant improvements in the execution time, standard
deviation (that is, utilization), and balance factor.
Our load balancing algorithm tries to distribute the
load in such a way that the system remains in a equi-
librium resulting in uniform consumption of battery.

References

[1] A. Amis and R. Prakash, “Load-Balancing
Clusters in Wireless Ad Hoc Networks,” Pro-
ceedings of ASSET 2000, Richardson, Texas,
March 2000, pp. 25-32.

[2] M. Chatterjee, S.K. Das and D. Turgut, “WCA:
A Weighted Clustering Algorithm for Mobile
Ad hoc Networks”, Journal of Clustering Com-
puting, (Special Issue on Mobile Ad hoc Net-
works), Vol. 5, No. 2, April 2002, pp. 193-204.

[3] H. Hassanein and A. Zhou, “Routing with Load
Balancing in Wireless Ad hoc Networks,” Pro-
ceedings of the 4th ACM International Work-
shop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, Rome, Italy, July
15-20, 2001, pp. 89-96.

[4] C.E. Perkins, Ed, Ad Hoc Networking, Addison
Wesley, 2001.

[5] M. Singhal and N.G. Shivaratri, Advanced Con-
cepts in Operating Systems, McGraw Hill, 1994.

[6] C-K Toh, Ad Hoc Mobile Wireless Networks
Protocols and Systems, Prentice Hall, 2002.

[7] D. Turgut, Efficient Algorithms and Proto-
cols for Stability Management in Mobile Ad
Hoc Networks, PhD Dissertation, University of
Texas at Arlington, May 2002.

[8] D. Turgut, S.K. Das and M. Chatterjee,
Longevity of Routes in Mobile Ad hoc Networks,
VTC Spring 2001.

