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The distributiveness of mobile ad hoc networks makes resource allocation strategies very chal-
lenging since there is no central node to monitor and coordinate the activities of all the nodes in the
network. Since a single node cannot be delegated to act as a centralized authority because of lim-
itations in the transmission range, several delegated nodes may coordinate the activities in certain
zones. This methodology is generally referred to as clustering and the nodes are called clusterheads.
The clusterheads employ centralized algorithms in its cluster; however, the clusterheads themselves
are distributive in nature.

In this paper, we propose a clustering scheme i.e., identify a subset of nodes among all the nodes
that are best suited to be clusterheads. Though there are several clustering algorithms previously
proposed; however, to the best of our knowledge, there is none that characterizes the different node
parameters in terms of an information theoretic metric. We use entropy as a measure of local
and mutual information available to every node. We considered three parameters in the selection
procedure, namely, mobility, energy, and degree. Extensive simulations have been conducted and
the performance of the proposed clustering scheme has been compared with the Highest Degree
and Lowest ID heuristics in terms of the average number of clusters, the average number of clus-
ter changes, and the average connectivity. The results demonstrate that the mutual information
captured through entropy is very effective in determining the most suitable clusterheads.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Deployment of infra-structured networks are time con-
suming and therefore cannot be set up at times of utmost
emergency. Therefore, mobile multi-hop radio networks,
also called ad hoc or peer-to-peer networks, play a critical
role in places where a wired (central) backbone is neither
available nor economical to build, such as law enforce-
ment operations, battle field communications, disaster
recovery situations, and so on. Such situations demand
a network where all the nodes including the base sta-
tions are potentially mobile, and communication must be
supported untethered between any two nodes. However,
maintaining such seamless connection is difficult because
of the inherent characteristic of mobile ad hoc networks
i.e., highly dynamic topology changes due to the mobil-
ity of the nodes. Also, the bandwidth is limited and the
signal quality is unpredictable.

In spite of these constraints, ad hoc networks are de-
signed such that they are able to dynamically adapt
themselves with the changing network configurations.
One of the ways to handle the topology changes and
maintain a connected network can be brought about by
entrusting certain nodes with more responsibility. These
nodes are typically called clusterheads and are respon-
sible for the formation of clusters, each consisting of a
number of ordinary nodes. A clusterhead is responsible
for resource allocation to all the nodes belonging to its
cluster. Due to the dynamic nature of the mobile nodes,
their association and dissociation to and from clusters

perturb the stability of the network and thus reconfigu-
ration of clusterheads is unavoidable. This is an impor-
tant issue since frequent clusterhead changes adversely
affect the performance of algorithms such as scheduling,
routing, and end-to-end delay. Choosing clusterheads op-
timally is an NP-hard problem. Thus, existing solutions
to this problem are based on heuristic (mostly greedy)
approaches and none attempts to retain the stability of
the network topology [12]. We believe a good clustering
scheme should preserve its structure as much as possible
when nodes are moving and/or the topology is changing.
Otherwise, re-computation of clusterheads and frequent
information exchange among the participating nodes will
result in high computation overhead.

In this paper, we propose a distributed clustering algo-
rithm which takes into consideration the local informa-
tion available to all the nodes. This local information is
measured in terms of entropy. We consider three parame-
ters for the determination of the clusterheads – mobility
of the nodes, their energy consumption, and the number
of neighbors a node is connected to. More specifically,
our contributions are the following.

• First, we demonstrate the motivation behind using
entropy as the metric for capturing relative infor-
mation. We also show how the mutual information
can be calculated when two marginal distributions
and the joint distribution are given.

• We calculate the entropy for three node parameters
– its mobility, energy, and degree. These three en-
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tropies are combined through a simple linear model.
The proposed method of calculating the mutual in-
formation is generic enough and can easily be ex-
tended to include other node and network parame-
ters.

• Through simulation experiments, we demonstrate
the performance of our proposed scheme in terms of
the average number of clusters, the average number
of cluster changes, and the average connectivity.

• We also compare the performance of our schemes
with the Lowest ID and the Highest Degree heuris-
tics.

The rest of the paper is organized as follows. In Section
II, we present a literature survey of the previous work.
In section III, we first discuss why a relative measure
is required and how entropy can be used to capture the
mutual information. We then discuss in detail our pro-
posed entropy-based clustering scheme considering mo-
bility, energy, and degree of the nodes. The simulation
model and results are presented in Section IV. Conclu-
sions are drawn in the last section.

II. RELATED WORK

Several clustering algorithms and heuristics have been
proposed for ad hoc networks [1, 10, 16, 17]. Many
existing solutions take into account various parameters
of clusterhead suitability. However the most recognized
ones are based on clusterhead selection which rely on
random events such as node ID assignment (as in the
Lowest ID algorithm) and the degree of connectivity (as
in the Highest Degree algorithm). The Lowest ID [4, 5]
heuristic assigns a unique ID to each node and chooses
the node with the minimum ID as a clusterhead. Thus,
the IDs of the neighbors of the clusterhead will be higher
than that of the clusterhead. In Highest Degree [17, 22],
each node broadcasts its ID to the nodes that are within
its transmission range. A node x is considered to be a
neighbor of another node y if x lies within the trans-
mission range of y. The node with maximum number
of neighbors (i.e., maximum degree) is chosen as a clus-
terhead. If there is a tie, it can be broken arbitrarily
by the nodes’ IDs. There are other clustering schemes
that consider node and network parameters for decid-
ing the nodes best suited to act as clusterheads. In the
node weight heuristic [6], the nodes are assigned weights
based on clusterhead suitability; neighbor with highest
weight wins. This scheme has infrequent node updates
but moderate computational overhead; however, it is not
optimized for system throughput and power control. Uni-
form leader election [19] is an easy to implement scheme
where a rotated binary tree is used. The non-uniform
leader election [20] and the oblivious leader election [21]
algorithms are similar in nature; however, based only on a
ternary tree and transmit slots respectively. Once again,

node suitability is not taken into consideration in neither
of the three schemes. The least cluster change (LCC) [11]
scheme is based on Lowest ID or highest connectivity.
Re-election is only initiated when clusterhead moves into
another cluster or when node becomes separated from a
cluster. This scheme reduces cluster re-association and
increases stability, but is potentially unfair in terms of
load distribution. The mobility-based adaptive cluster-
ing (MBAC) [16] scheme is an event driven algorithm
based on hybrid routing and nodal mobility. Two pa-
rameters control path availability and effective capacity
of path as well as cluster size. It is capable of multi-
path transmission to increase capacity; however it has
a high computational complexity. In access-based clus-
tering protocol [18], a node receiving a clusterhead dec-
laration from its neighbor prior to declaring itself as a
clusterhead becomes a member node. Access to control
channel is based on TDMA with short execution time
and incurs low control message overhead. However, clus-
terhead suitability is not considered. In linked cluster
algorithm (LCA) [5], the entire band is divided into M
sub-bands (epochs) and the algorithm is performed on
each sub-band. The nodes are assumed to have precise
synchronized clocks and the number of nodes are known
priori. The max-min D-clustering [2] scheme uses two
consecutive broadcasts that are sent in N timeslots to
each one-hop neighbor. The scheme is fault tolerant due
to availability of multiple paths from gateway nodes; pro-
duces fewer clusterheads and is more stable than LCA.
Comparative performance evaluation of various cluster-
ing protocols that help backbone formation in ad hoc
networks is achieved in [7].

There are several clustering schemes that take into ac-
count the dynamic topology of the network. The topol-
ogy adaptive spatial clustering (TASC) algorithm [25] is
distributed in nature that partitions the network into a
set of locally isotropic, non-overlapping clusters without
prior knowledge of the number of clusters, cluster size,
and node coordinates. This is achieved by deriving a set
of weights that encode distance, connectivity, and den-
sity information within the locality of each node. The
mobility-based d-hop clustering algorithm (MobDHop)
that forms variable-diameter clusters based on node mo-
bility was proposed in [14]. A new metric to measure the
variation of distance between nodes over time to estimate
the relative mobility of two nodes was introduced.

The hybrid energy-efficient distributed (HEED) clus-
tering proposed in [28] periodically selects clusterheads
according to a model that combines the the residual en-
ergy and a secondary parameter, such as node proxim-
ity to its neighbors or node degree. In [26, 27], the au-
thors propose a novel energy efficient clustering scheme
(EECS) in single-hop wireless sensor networks, partic-
ularly for periodical data gathering applications. This
approach elects clusterheads with more residual energy
in an autonomous manner through a local radio com-
munication with no iteration while achieving clusterhead
distribution. It also introduces a novel distance-based
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method to balance the load among the clusterheads. The
EECS protocol is further improved to address the prob-
lem of “hot spots” in [15]. The proposed scheme parti-
tions the nodes into clusters of unequal size, and clus-
ters closer to the base station have smaller sizes than
those farther away. Thus, clusterheads closer to the base
station can preserve energy for the inter-cluster data for-
warding. Weighted clustering algorithm (WCA) [10] uses
four parameters: battery life, mobility, total distances
from neighbors, and degree of a node. These parameters
are combined through a simple linear model; however, the
computational overhead of the algorithm can be consid-
ered high since a single node can cause the re-invocation
of the algorithm which effect the overall network rather
than the nodes local to the area of incident. The perfor-
mance of WCA has been further optimized using tech-
niques such as genetic algorithm [23] and simulated an-
nealing [24].

III. PROPOSED ALGORITHM

Different algorithms emphasize characteristics which
may or may not be important based upon the archi-
tectural features of the individual network application.
For example, a network that handles multimedia traffic,
topological instability causes changes in the data trans-
fer path threatening the timely transmission of streaming
media. Thus, heavy-duty clusterhead election techniques
may be favored if greater network stability is achieved.
In mobile ad hoc networks consisting of heterogeneous
mobility devices, more powerful devices may overburden
smaller less capable ones, placing a demand in which can-
not be met. These devices also may tend to transmit
fewer data packets with less frequency, placing very little
or no burden on the network. Clearly, an under-powered
device would not be a good candidate as a clusterhead,
regardless of its node ID; therefore, we argue that the
Lowest ID election in general is not a suitable algorithm
for heterogeneous networks. In highly mobile and dy-
namic networks, clusterhead elections are unavoidable,
and the aim must be to minimize the impact of the elec-
tion process.

Algorithms which guarantee leader election with a cer-
tain amount of deviation from the optimal solution can be
considered suitable. That would also reduce the periodic
instabilities brought on by the high rate of clusterhead
changes, while minimizing the impact of the routing over-
head associated with high levels of nodal re-affiliation.

Most algorithms work based on a pre-defined metric.
The clustering decisions are based on the absolute val-
ues obtained by these metrics. Though it might seem
to work, but at times the performance is misinterpreted.
For example, consider an ad hoc network in operation.
When the nodes are initialized, the performance of the
network is expected to be at its best since the energy
is at its maximum. However, with the lapse of time and
energy depletion, there would be a performance degrada-

tion. So, we must consider, the parameters at that point
of time. More importantly, compare the nodes’ suitabil-
ity relative to each other.

We propose to take advantage of the mutual informa-
tion; therefore, we use entropy-based measures. Entropy
has been widely used to capture the information content
within a system. A measure of statistical dependence or
correlation is usually sought between two or more para-
meters, i.e., the random variables in a time series.

If X and Y are the random variables with joint dis-
tribution p(X,Y ) and marginal distributions p(x) and
p(y), then the mutual information I(X;Y ) is the relative
entropy between the joint distribution and the product
distribution. Hence, I(X;Y ) is given by

I(X;Y ) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

By analyzing the relative entropy of the nodes, we
can derive values which help determine nodal suitabil-
ity. The proposed algorithm consists of the weighted lin-
ear sum of three entropy measurements: mobility, bat-
tery expectancy, and degree. We use these parameters to
demonstrate how the relative entropy can be calculated
and the results combined to find the most suitable nodes
to act as clusterheads. Though we use these three mea-
surements, our algorithm is generic enough and can be
extended to account for any other physical parameters.

A. Mobility entropy

Determination of mobility entropy is based upon mu-
tual information, which is an appropriate measure of
change based upon previous expectation values. Each
node collects a history of the broadcast (beacon) sig-
nals received from its neighbors during a period of time.
Every node maintains a list containing the IDs of each
node heard within the hearing range of the node. A
node whose mobility is stable relative to its virtual clus-
ter would see fewer changes in its neighborhood list.
Since the motion is relative, it is impossible to ascertain
whether the node itself or the neighbors node moved.
Comparing the change in the neighbor list and more im-
portantly the rate of change of the neighbor list, it is
possible to infer the relative mobility of the nodes with
respect to each other and to the clusterhead. We make
a few probabilistic statements.

1. Several and frequent changes in neighbor list are
more likely due to the mobility of the node in ques-
tion rather than a large number of neighbors mov-
ing at once.

2. A few changes in neighbors are more likely due to
the neighbor’s movement either away from or to-
wards the node rather than the node’s own move-
ment.



4

3. Nodes lie close to periphery of the transmission are
likely to have a ping-pong effect, i.e., in and out of
the neighborhood list.

Observing the mobility of a node with respect to an-
other, the probability that a node is moving, and the
marginal probability that the node itself is moving can
be calculated by the the mutual information.

Let us observe the behavior of the neighbor list of a
particular node i for a time interval of ∆t. Let us as-
sume that node j appeared in the list at least once. We
measure two quantities. First, the number of times node
j appeared. It can be noted that for a node to appear
multiple times, it must also disappear that many times.
Second, the total amount of time node j stayed in the
neighbor list of node i during the interval ∆t. The first
quantity gives a measure of relative mobility and the sec-
ond provides an intuition about the relative stationarity
of nodes i and j. If node i counts the number of ap-
pearances of other nodes j, then it can compute the joint
distribution for all the other nodes, i.e., p(i, j) for all j.
Also, p(i) is known to node i, and it can gather informa-
tion about p(j) from its neighboring nodes, or the nodes
that visited i. Thus, we obtain the mutual information
as was given by equation (1).

B. Energy entropy

Since clusterheads have the extra responsibility to for-
ward packets on behalf of other nodes, they are prone to
battery drainage. Therefore, a node with good residual
battery power is a better candidate for being a cluster-
head. Though, the remaining battery is easy to measure,
the rate at which it will deplete is still uncertain. This
uncertainty arises due to the fact that the energy spent
by a forwarding node is proportional to the transmission
power, i.e., the power at which a node transmits a packet
so that the packet reaches the intended receiver. It is
known that more power is required to communicate to
a larger distance. Thus, transmit power depends on the
relative distance between the transmitter and the receiver
nodes. Note, that the maximum range (Rmax) attainable
by a node is limited by the maximum allowable transmit
power, Pmax.

Let us now calculate the uncertainty in the relative
distance between a transmitter and a receiver. Since the
nodes are randomly scattered, the receiver lies anywhere
in the circle with radius Rmax with equal probability,
with the transmitter node being at the center of the cir-
cle. If we use polar co-ordinates, the radial distance is as-
sumed to be uniformly distributed between 0 and Rmax,
and the angle uniformly distributed direction between 0
and 2π.

The position of the receiver is characterized by fR(r)
and fΘ(θ), denoting respectively the distance probability
density function (pdf) and the directional pdf. The two
pdfs are defined as follows:

fR(r) =

{

2r
R2

max

, 0 ≤ r ≤ Rmax

0, elsewhere.
(2)

fΘ(θ) =

{

1

2π
, 0 ≤ θ ≤ 2π

0, elsewhere.
(3)

The joint pdf is given by

fRΘ(r, θ) =







r
πR2

max

, 0 ≤ r ≤ Rmax,

0 ≤ θ ≤ 2π
0, elsewhere.

(4)

Given this pdf of the distance of the receiver from
the transmitter, the transmission power distribution, and
hence the energy dissipation can be obtained. For the
joint pdf of distance as fRΘ(r, θ), we calculate the pdf

for the transmission power. We assume that the atten-
uation in the signal strength is inversely proportional to
the square of the distance, i.e., if Pt and Pr are the trans-
mit and receiver powers respectively,

Pr = Pt × d−α (5)

where α is the path loss exponent and usually lies be-
tween 2 and 6. Therefore, the pdf for the transmission
power, fP (pt), is given by

fP (Pt) =







fRΘ(P−α
t ), 0 ≤ r ≤ Rmax,

0 ≤ θ ≤ 2π
0, elsewhere.

(6)

Since our assumption that the transmission power is
directly proportional to the energy consumed, we use the
transmission power pdf to calculate the energy entropy.
We use Shannon’s entropy for this purpose. Shannon’s
entropy for a random variable with Y with pdf fY (y) is

HS(Y ) =

∫ +∞

−∞

fY (y) log fY (y)dy (7)

Thus, the energy entropy is given by

H(fP ) =

∫ Rmax

0

(

fRΘ(P−α
t ) log fRΘ(P−α

t )
)

dPt (8)

C. Degree entropy

A clusterhead is not only responsible for forwarding
packets on behalf of its member nodes but also for coor-
dinating their transmission. In other words, the cluster-
head acts as the scheduler in that cluster and allocates
resources. The resources could be time slices in TDMA,
frequency bands in FDMA, or codes in CDMA systems.
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Obviously, it becomes difficult for a clusterhead to man-
age the resources if there are too many member nodes
associated with it. Ideally, each clusterhead can only
handle a pre-defined number of nodes to ensure efficient
medium access control (MAC) functioning. If the clus-
terhead tries to serve more nodes than it is capable of,
the system efficiency suffers in the sense that the nodes
will incur more delays because they have to wait longer
for their turn (as in TDMA) to use their share of a re-
source. A high system throughput can be achieved by
limiting or optimizing the degree of each clusterhead.

Due to the random position and movement of the
nodes, the degree of a node is uncertain. Theoretically,
the minimum degree could be 0, in which case the node
is said to be isolated. The other extreme is that a node is
connected to all the other nodes in the network. Ideally,
the degree of a node is probabilistic; and we can always
calculate the probability of a node having a certain de-
gree. If we assume Poisson distribution of the nodes, then
the probability that a node will have a degree δ is given
by [9]

Prob(degree = δ) = Pδ =
(

πR2

max

A
N)δ

δ!
e−

πR
2
max

A N (9)

where N is the total number of nodes in the network
confined within an area A. Recall, Rmax is the maximum
range of a node. It is to be noted that equation (9) holds
true for both large N and A.

With the probabilities of nodes having all possible de-
grees known, we can calculate the entropy due to degree
uncertainty as

Hdegree =

N
∑

i=0

Pδ log(Pδ) (10)

D. Total Entropy

At all times, every node computes its instantaneous
mobility entropy (Hmobility), energy entropy (Henergy),
and degree entropy (Hdegree), and announces these values
to the current clusterhead (if it exists). The node with
the lowest entropy wins the election; receives the node
list for the virtual cluster and notifies each member of
its new role. A node whose neighbor list never changes
would have a total combined entropy of 0. A node with a
significant amount of relative motion and a small residual
energy would have significantly higher total entropy. We
use a simple linear combination to find the total entropy,
Htotal. We define the total entropy as

Htotal = w1Hmobility + w2Henergy + w3Hdegree (11)

where w1, w2, and w3 are the weighing factors and w1 +
w2+w3 = 1. The weighing factors can be adjusted as per

the desired priority for the network i.e., how important
are mobility, energy, and degree are with respect to each
other.

IV. SIMULATION MODEL AND RESULTS

To study the performance of our proposed clustering
scheme, we conducted extensive simulation experiments
where N nodes were randomly distributed over an area
of 100 × 100 units. The mobility of nodes followed the
random waypoint model [8] with the displacement vary-
ing uniformly between 0 to a maximum value per unit
time. The other parameters for simulation are shown in
Table I.

To measure the performance of our proposed entropy-
based clustering scheme, we identify three metrics: (i) the
average number of clusters, (ii) the average connectivity,
and (iii) the average number of clusterhead changes. It
can be noted that the average size of a cluster, i.e., aver-
age number of nodes in a cluster is calculated by the total
number of nodes in the network divided by the number of
clusters. We define connectivity as the number of nodes
that are reachable by a node. These three metrics are
studied for the varying number of nodes, transmission
range, and maximum displacement.

Parameter : Value
N : 20, 40, 60, 80, 100
Max. displacement : 2 - 10
Transmission range : 10 - 100
w1 : 0.4
w2 : 0.4
w3 : 0.2

TABLE I: Simulation Parameters

We studied the performance of the algorithm in two
phases. First, we observed the behavior of the proposed
algorithm as a function of the three performance metrics.
Second, we compared the performance of our scheme with
respect to the Lowest ID [4, 5] and Highest Degree [17, 22]
heuristics.

A. Performance of the proposed algorithm

Figures 1 and 2 show the average number of clusters
as a function of transmission range and maximum dis-
placement respectively. For low transmission ranges, the
number of clusters is much higher because the member
nodes are likely to wander out of the range of the clus-
terhead. As the transmission range increases, nodes are
more likely to remain within the radius of the clusterhead
regardless of the speed of the movement. As the average
node velocity increases (i.e., the maximum displacement
increases), there is a small increase in the number of clus-
ters due to the nature of the motion to disperse the nodes.
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FIG. 1: Avg. number of clusters vs. transmission range
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FIG. 2: Avg. number of clusters vs. maximum displacement
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FIG. 3: Avg. connectivity vs. transmission range

Figures 3 and 4 show the average clusterhead connec-
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FIG. 4: Avg. connectivity vs. maximum displacement

0


200


400


600


800


1000


1200


10
 20
 30
 40
 50
 60
 70
 80
 90
 100


Transmission Range


A
v
e

ra
g

e
 C

lu
s
te

rh
e

a
d

 C
h

a
n

g
e

s



N = 20

N = 40


N = 60


N = 80

N = 100


FIG. 5: Avg. clusterhead changes vs. transmission range
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FIG. 6: Avg. clusterhead changes vs. maximum displacement

tivity, or nodal degree during the course of the simula-
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tion. As transmission ranges increase, there is almost a
linear increase in the nodal degree, owing to the uniform
random motion.

Figures 5 and 6 show the rate at which the clusterheads
change. It is to be noted that a lower value of clusterhead
changes is desirable since it reflects the stability of the
topology.

B. Comparison of the proposed algorithm

To evaluate the effectiveness of the proposed entropy-
based clustering scheme, we compare the performance to
the Highest Degree and Lowest ID heuristics which are
briefly discussed below.

• Highest Degree Heuristic:

The Highest Degree, also as known as connectivity-

based clustering, was originally proposed in [17, 22]
in which the degree of a node is computed based
on its distance from others. Each node broadcasts
its ID to the nodes that are within its transmission
range. A node is considered to be a neighbor of
another node if it lies within the transmission range
of the other. The node with maximum number of
neighbors (i.e., maximum degree) is chosen as a
clusterhead.

• Lowest ID Heuristic:

The Lowest ID, also as known as identifier-based

clustering, was originally proposed by Baker and
Ephremides [4, 5, 13]. This heuristic assigns a
unique ID to each node and chooses the node with
the minimum ID as a clusterhead. Thus, the IDs
of the neighbors of the clusterhead will be higher
than that of the clusterhead. However, the clus-
terhead can delegate its responsibility to the next
node with the minimum ID in its cluster.

0


10


20


30


40


50


60


70


10
 20
 30
 40
 50
 60
 70
 80
 90
 100


Transmission Range


A
ve

ra
g

e
 N

u
m

b
e

r 
o

f 
C

lu
st

e
rs




Minimum Entropy

Higest Degree


Lowest ID


FIG. 7: Avg. number of clusters vs. transmission range
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FIG. 8: Avg. number of clusters vs. maximum displacement
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FIG. 9: Avg. connectivity vs. transmission range
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FIG. 10: Avg. connectivity vs. maximum displacement
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FIG. 11: Avg. clusterhead changes vs. transmission range
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FIG. 12: Avg. clusterhead changes vs. max displacement

Figures 7 and 8 demonstrate that the average number
of clusters is lower than the other schemes. This suggests
that unnecessary nodes are not selected as clusterheads.
The number of clusterhead required to cover the entire
area depends on how much a clusterhead is able to
cover, i.e., its transmission range. As the transmission
range increases, the number of clusterheads (or clusters)
required to cover the entire area decreases. However, the
average connectivity is compromised because of the small
number of clusterheads as can be seen from Figures 9
and 10. The novelty of the proposed entropy-based
scheme (particularly the mobility entropy) is manifested
in the form of a relatively stable network which is in
agreement with the work in [3]. This is demonstrated
through Figures 11 and 12 where we see less number of
clusterhead changes. However, the tendency of all the
schemes is the same.

V. CONCLUSIONS

In this paper, we proposed a clustering scheme for ad
hoc networks based on entropy measures. We considered
three important aspects of ad hoc networks – mobility,
energy consumption, and degree of the nodes. Through
the exchange of beacon messages, the nodes gather infor-
mation about their mutual mobility, energy, and degree.
We use a generic linear combination model to consider all
three entropies. We conducted simulations that show the
performance of the proposed clustering scheme in terms
of the average number of clusters, the average number of
cluster changes, and the average connectivity. We also
compared our results to Lowest ID and Highest Degree
clustering heuristics. The results demonstrate that the
mutual information captured through entropy is very ef-
fective in maintaining the stability of the network.
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