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Abstract—Sensor networks are distributed systems where
nodes embedded in the environment collect readings through
their sensors and transmit data to customers. The overall goal
of these systems can be stated as maximizing a metric of the
sensing quality while limiting the consumption of a set of scarce
resources.

In this paper we consider an intruder detection and tracking
system where the sensing quality is a metric of the pragmatic value
of the information provided by the network. This metric depends
not only on the quantity and accuracy of information, but also
on when and how the customers will use this information. We
design a system which adapts its information transmission to the
disruptive decisions made by the user, including a consideration
for the cost of incorrect decisions.

I. INTRODUCTION

Sensor networks are distributed systems where a number of
nodes embedded in the environment collect readings through
their sensors and transmit data to customers. The overall goal
of these systems can be stated as maximizing a metric of
the sensing quality while limiting the consumption of a set
of scarce resources. Which resources are considered scarce
depend on the application: they can include resources such as
energy, bandwidth, spectrum and stealth.

In this paper we are considering an intruder detection system
which operates over a large area with zones of different
security needs. Multiple moving targets of different types can
operate in this area, which might or might not represent a
threat. We assume that the customer can make decisions about
doing something about the specific intruders (for instance,
intercept them). However, the customer is limited by its own
resource limitations.

This paper introduces a model of sensing quality which sees
the value of the information from the point of view of the
end user. We contrast this with purely information theoretic
metrics, where the sensing quality is independent on the use
the humans put it: it takes the same number of bits/second
to track a deer or an armed intruder. There is normally a
limit of how much information theoretic information quantity
can be obtained by a sensor network with a finite resource
consumption. Within this limit, however, the pragmatic utility
of the transmitted information can vary widely.

The practical advantage of considering such a sensing
quality model is that it allows us to correctly set a low (or zero)

value to information on which the customer is unable to act1.
This way, we can obtain higher quality information supporting
the actions we have actually decided to take. For instance, if
we have two intruders, but only one patrol which we can use
to intercept an intruder, the customer needs to decide which
intruder to intercept. The value of information for the real
time tracking of the intruder selected for interception becomes
more valuable. The value, however, is limited by the practical
needs of the interception task. For example, capturing a human
intruder with a patrol unit does not require millimeter accuracy
tracking.

The pragmatic information value model introduces a number
of challenges:
• The value of information changes in time (even retroac-

tively) in function of the decisions of the customer, which
can be a human-in-the-loop or an automated decision
agent.

• The system must support the decision making process
of the human or agent decision makers, thus it must be
aware of the impact of various pieces of information on
the decisions.

• The choice of asymmetric distribution of sensing and
reporting resources can offer great benefits in the case
of correct decisions, but it can reduce the quality if the
decision have been wrong (e.g. by misidentifying the
threat posed by an intruder). The system must support
recovery from erroneous consumer decisions.

This paper is organized as follows. Section II provides
a formal treatment of the pragmatic value of information.
Section III applies this model to the practical problem of
an intruder detecting sensor network in a mixed-used area
with limited resources. We describe a simulation study in
Section IV. We discuss related work in Section V and conclude
in Section VI.

II. A PRAGMATIC MODEL OF THE VALUE OF INFORMATION

Let us assume that the sensor network delivers a chunk of
data d to a customer C. At time t, the customer will have a col-
lection of raw data D = {d1, d2, . . . dk}, which will be used
to build a model of the world M = fM(D, t). For the purpose

1An example is high accuracy real-time tracking of an intruder which we
cannot intercept, nor take any other action (e.g. contact or warn the intruder,
raise an alarm etc.)



of this paper, we will treat the model as a black box. The actual
implementation choice of the model can range from a single
scalar to lists of values, raster-based environmental models,
linear or non-linear predictors, confidence ranges and other
models of arbitrary complexity. The modeling function can be
a combination of components such as filtering, interpolating,
extrapolating, system identification and others.

The value of the model is a scalar V = fV(M) =
fV(fM(D, t)) ∈ R which scores the detail, accuracy and
timeliness of the model, weighted by the interests of the
customer. The value function fV might change in time. For
instance, once the customer classifies a target as high priority,
both the quantity and timeliness of the data concerning the
target becomes more valuable.

Let us now consider the perspective of a sensor node which
has a chunk of data d. If the node sends the chunk to the
customer, it will be added to the set of raw data: D′ = D ∪
d, yielding an updated model M ′ = fM(D′, t). We define
the value of the data chunk to the customer d as V (d, t) =
fV(M

′)− fV(M) ≥ 0.
If V (d, t) = 0, the data was worthless for the customer.

This can happen if the data was already received from other
sources2 or it is of no interest to the node.
V (d, t) depends on the time t when the customer re-

ceives the data. This is not the time when the data was
acquired, nor the time where the information it contains
refers to. For instance, the data chunk d might contain
the locations of the intruder over a number of timepoints
{(x1, y1, t1) . . . (xj , yj , tj)}. Naturally, all these timepoints
will be earlier than t.

Usually, the value of data is decreasing in time: t1 ≤ t2 ⇒
V (d, t1) ≤ V (d, t2). The rate of the depreciation depends on
the modeling function, the value function and the other raw
data received by the customer between t1 and t2.

Some aspects of the information value functions are com-
monsensical: more accurate models are better, if an infor-
mation chunk does not change the model, its value is zero.
But beyond this, however, many different functions can serve
as a value function. In this paper we shall use a systematic
approach for defining the value of the information in terms of
pragmatics, that is, the decision making of the agents which
use the information.

Let us denote with fV(M,A) the pragmatic value of a model
of the world M for an agent A. We define this value to be the
cummulative value of the actions which had been taken while
using the model as source of information.

This definition appears to simply push the problem of
defining the value of information one step further. However, in
practice, value judgements are much easier in the application
domain, especially in terminal states. It is much easier to
assign a certain value to catching an intruder than assigning a
value to the transmission of a certain measurement at certain
time.

2In some circumstances a second, independent confirmation of a data chunk
can have some value.

From the point of view of the information needs, we
distinguish two types of decisions:
• Disruptive decisions change the algorithm for calculating

the pragmatic value of information. One can usually think
about them as a commitment to a new plan, such as the
decision to intercept the intruder.

• Incremental decisions do not change the algorithm for
calculating the pragmatic value of information. Examples
of a class of incremental decisions are the path corrections
necessary to intercept an intruder. Incremental decisions
have predictable information needs. These predictions do
not extend past the disruptive decisions.

We assume that making a disruptive decision is a free
privilege of the customer - although we can make proba-
bilistic calculations about what the decision will be. For an
intruder tracking sensor network the most important disruptive
decisions are (a) the classification of the intruder and (b) the
manner of tracking the intruder (will a physical interception
be attempted?).

In practice, most intruders turn out to be non-threatening.
In consequence, the impact of the disruptive decisions is
almost always a decrease in the value of information. Targets
classified as no threat or low threat would have a lower value
of the information, thus less information will be collected.
Note however, that disruptive decisions can act in the other
direction as well: it is possible to upgrade the threat level of
a target, and thus increase the value of information.

Nevertheless, the effect of any errors made in “downgrade”
type disruptive decisions will be amplified: if we have misclas-
sified an intruder (e.g. by mistaking an armed intruder for a
known friendly human), this will reduce the amount of future
received data, thus lowering the ability to later reconsider
the classification. The possible cost of being wrong must be
considered by the system, and information which would make
the system reconsider a disruptive decision must be assigned
a high value.

III. A PRACTICAL SCENARIO

For a practical scenario we consider a section of the UCF
research park (see Figure 1) containing a mix of zones with
various security needs:
• Buildings and areas with high security requirements (US

Naval Air Warfare Center)
• Buildings and areas with moderate security requirements

(Institute for Simulation and Training)
• Areas with no specific security requirements (university

buildings, businesses such as Universal Window Cover-
ings, and wildlife preservation areas).

The objective is to cover the area with an intruder moni-
toring and tracking system. We assume a heterogeneous mix
of sensors (vision, proximity, metal detectors and weight
sensors) deployed in an engineered manner (which means
that the location of each sensor is known). The sensor are
communicating with a unique command center. The total flow
of information to the command center is bitrate-limited.



Fig. 1. A portion of the Central Florida Research Park.

A. Classifying the intruders

Classifying the intruders is a disruptive decision which
allows us to assign value to the passive tracking of the given
intruder. We classify the detected intruders into the following
classes:

A Small animals (rabbits, racoons): have a small weight, no
metallic components, do not perform purposeful move-
ment and do not stick to roads.

F Friendly persons: have a weight and shape appropriate for
a human, no metallic components, perform purposeful
movement and restrict themselves to traveling on the
road. They can be visually identified by operator.

I Armed intruders: have a weight and shape appropriate
for a human, have metallic components (weapons), they
might be identified by an operator.

V Vehicles: large weight, metallic, traveling on the road.
U Unmanned ground vehicles (assumed to be intruders):

small weight, metallic, perform purposeful movement.
When first sighting an intruder, the system starts with no

concrete information (except prior probabilities). As a single
observation rarely leads to a conclusive classification, the
system must have a technique to integrate the various, occa-
sionally contradictory evidence arriving from the observation.

Our approach will be to use the Dempster-Shafer theory
of evidence to model the knowledge we gather about the
classification of the intruders. Any observation about the
intruder is considered as an evidence with a specific mass
function, defined on the powerset of possible classifications.
For instance a strong signal from a metal detector lends
evidence towards the intruder being a vehicle, a UGV or an
armed person, while providing evidence against it being an
animal or an unarmed person.

The calculation of the evidence in the Dempster-Shafer
model yields two values, the belief and the plausibility. This
needs to be contrasted to the single value, of probability, which
we would obtain if we would use, for instance, a Bayesian
network. The system uses both the belief and the plausibility
values:
• The belief is used as an input to the operator in order

TABLE I
THE DEMPSTER-SHAFER MASS EVIDENCE FUNCTIONS FOR SENSOR

SIGNALS

Sensor and signal Evidence mass function
weight sensor high mass {V,F,I}=0.5 + s, {A,U} = 0.5 - s
weight sensor low mass {A,U} = 0.5 + s, {V,F,I} = 0.5 - s
metal detector low reading {A,F} = 0.5 + s, {V,U,I} = 0.5 - s
metal detector high reading {V,U,I} = 0.5 + s, {A,F} = 0.5 - s
sticking to road {F,V} = 0.5 + s, {F,V,A,I,U} = 0.5 - s
visual identification as friendly {F} = 0.90, {F,I} = 0.10

to support a disruptive decision. The operator is not
obliged to make a decision in a predictable way based
on the belief value. A human operator, for instance, can
act on a hunch, it can delay the decision, and so on.
Operators implemented as software agents are more likely
to act in a predictable way. For our experiments we will
assume that the operator will make a disruptive decision
of classification as soon as the belief in the classification
exceeds 0.5.

• The plausibility value is always larger than or equal to
the belief value. The plausibility value is used to assess
the cost of being wrong. For instance, if we identified
a human as most likely friendly, but with still a high
plausibility for the case of being an armed intruder, the
system must prepare for the possibility of the customer
changing his mind about the classification.

Table I describes the evidence mass functions for the
classification of the intruder types.

B. Tracking decisions and information value

The second class of decisions the operator must take are
the tracking decisions, which decide how the system will
track the intruder. This can include active actions, such as
physical interception. The tracking decision is not tied to the
classification, although there is a strong probabilistic relation.
The operator is more likely to decide to intercept an armed
intruder than a small animal. The tracking decisions are limited
by the available resources: we assume that the system has
resources for at most one physical interception at a time, while
bandwidth constraints prevent the simultaneous high resolution
tracking of an arbitrary number of intruders. We consider that
the operator has the choice of three tracking decisions:

• Tracking metric for interception (TM-I): the utility
is the high accuracy real-time location of the intruder
(inside the interest area). This is a model suitable for the
interception of an intruder.

• Tracking metric for following (TM-F): the utility is
the location of the intruder, with any accuracy within the
tolerance range of dt = 5m having the same value. This
is a model suitable for the following of an intruder judged
to be of low threat.

• Tracking metric for historical path reconstruction
TM-HPR: the utility of the location is the error of the
path reconstruction done at time tolerance tt after the real
time.



In the following subsections we describe the calculation of
information value for the different tracking models.

C. Information value of real-time tracking

Intuitively, the tracking error is the distance from the real
location of the intruder to the location where the customer
believes it to be. To treat accuracy as an information value
metric, however, we need to consider the interests of the cus-
tomer and treat the boundary conditions with care. Assuming
that the customer is interested in the geometric area described
by the rectangle R, let us consider an intruder node T , for
which the customer has a model M(T ). If the customer does
not have a model of the intruder (for instance, if it didn’t
yet receive a report about it), we will assume that it believes
it to be outside the interest rectangle. The calculation of the
tracking error ε(T,M(T )) considers the following cases:
• T ∈ R ∧M(T ) ∈ R ⇒ ε(T,M(T )) = dist(T,M(T )):

if both the intruder and the model are inside the interest
rectangle, the tracking error is the distance from the
model to the intruder.

• T ∈ R∧M(T ) /∈ R⇒ ε(T,M(T )) = dist(T,R): if the
customer believes the intruder to be outside the interest
rectangle but T is inside rectangle R, the tracking error
is the distance from T to the closest edge of rectangle R.

• T /∈ R ∧M(T ) ∈ R ⇒ ε(T,M(T )) = dist(R,M(T )):
if the intruder is not in the interest rectangle, but the
customer believes it is, the tracking error is the distance
from the model to the closest edge of the rectangle R.

• T /∈ R ∧M(T ) /∈ R ⇒ ε(T,M(T )) = 0: if the intruder
is not in the interest rectangle and the customer does not
believe it to be in the interest rectangle, the tracking error
is zero.

Thus, the tracking error is continuous as the intruder moves
in and out of the interest rectangle. In addition, it respects our
intuition that the customer does not care about the intruders
outside the area, but penalizes the customer for believing that
the intruder is in the interest area while it is not and vice versa.

This definition allows us to define an information value
function. If the information chunk d allows the customer to
build a better model M ′(T ), then V (d, t) = ε(T,M(T )) −
ε(T,M ′(T )).

D. Information value of historical path recognition

Another aspect of intruder tracking is the reconstruction of
the path taken by the intruder in the interest area. Understand-
ing which points the intruder visited is of a special interest
in many applications. The reconstituted path can, for instance,
allow the customer to classify the intruder or recognize the
activity performed by the intruder. In this case, historical
information can be useful, and the depreciation rate is slower.

The reports sent for real time data tracking can be used to
outline a crude approximation of the path of the node. We
can estimate the path of the intruder between two successive
location reports with a straight line. It is possible, however, that
the intruder made a detour between the two reported points.

Let us assume that we receive two reports about the intruder.
The first report states that the intruder is at location P1(x1, y1)
at time t1, while the second one, that the intruder is at location
P2(x2, y2) at time t2. We denote with d the distance between
these points. We can be confident that the path of the intruder
between these two points is a straight line only if the maximum
velocity of the intruder is exactly d/(t2−t1). If the intruder has
a higher maximum velocity vmax which allows it to traverse
a path of length dmax = vmax(t2− t1) > d the intruder could
have visited many other points in the meanwhile.

Simple geometric place considerations show that the points
which the intruder could have visited are the interior of an
ellipse with the focus points P1 and P2, with the semimajor
axis a = dmax/2 and the semiminor axis b =

√
d2max − d2/2

(Figure 2-a).
An intuitive metric of our uncertainty about the points which

were traversed by the intruder can be expressed by the area
of the ellipse A = πab = 0.25 · π · dmax

√
d2max − d2.

The uncertainty can be reduced either by having information
about the maximum speed of the node between the two nodes,
i.e. reducing dmax (Figure 2-b), or by having an additional data
point P3 at time t3 ∈ [t1, t2] (Figure 2-c). We can associate
the value of a new piece of information with the reduction
in the size of the uncertainty area. The value of information
can be equivalated with the reduction of the uncertainty about
the locations traversed by the intruder, that is, the difference
between the area of the original ellipse, and the new smaller
ellipses.

In many cases, our concern is less about the absolute value
of the uncertainty, rather the conclusive answer to the question
whether the node had traversed an area of high interest (such
as a high security area). In the three examples in Figure 2, the
rectangular region shows such a high interest area. For (a) and
(b) the uncertainty area intersects with the high interest area.
This does not mean that the intruder had entered the area, only
that it could have entered it. The additional observation in (c)
had reduced the uncertainty sufficiently that we can exclude
the possibility that the intruder had entered the high interest
area.

IV. SIMULATION STUDY

We will consider the area described in Figure 1, of size
1000 x 1000 meters. We assume a relatively large number of
400 presence sensors, with smaller numbers of metal detectors,
weight detectors, and cameras (25 each). For each sensor we
assume a range of 50 meters. All observations are made with
a Gaussian noise which increases with the distance from the
sensor. The bottleneck of the wireless transmissions and the
finite processing speed of the command center enforces that
only a limited number of observations (in these experiments set
to 300 observations / minute) can be used to update the model
of the customer. We will consider four systems representing
different attitudes towards the value of the information. All
systems will select the messages to forward that, in the local
perception of the network nodes, contribute the most to the
value of the customer’s model.
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Fig. 2. The possible positions of the target (a) initial (b) after more information about the maximum velocity and (c) after an additional datapoint. The
intruder could have possibly traversed any point in the shaded area. The shaded rectangle is a high interest area (e.g. a high security zone). Only the case (c)
can guarantee that the target did not enter the high interest area.

TABLE II
THE WEIGHT FACTORS OF THE VALUE OF INFORMATION. THE DOUBLE
VALUES REFER TO VALUE WHEN DECIDED FOR INTERCEPTION / VALUE

WHEN NOT DECIDED FOR INTERCEPTION.

.

TM-INT TM-NA TM-HPR
A 0 0.1 0.1
F 0 0.1 0.1
I 3.0 / 0 0 / 1.0 0 / 0.2
V 0.1 0.5 0 / 0.2
U 3.0 / 0 0 / 1.0 0 / 0.2

UNIFORM: assumes that each intruder is equally important.
This largely corresponds to the current state of the art in
sensor networks.

PRAGMATIC: assumes the value of the information to be
given by the classification decision and the action deci-
sion of the customer.

CAUTIOUS: augments the decision of the PRAGMATIC
model with the plausibility value calculated by the
Dempster-Shafer reasoner, raising the value of targets
which are classified as low value but can plausibly be
of high value.

UNLIMITED: a system which has an infinite amount of
resources and can process the theoretical limit of the
reporting capacities.

The utility metric will use the weight factors described in
Table II. Different weight factors apply to the nodes chosen
for interception, versus those which have been not.

We model a scenario which unfolds as follows: over a
course of 10 minutes (600 seconds), 8 small animals are
present in the area and perform random waypoint movement.
At time t=100, a weapon carrying human target enters the
area. The evolution of the classification decisions and action
decisions was modeled as follows. To create a scenario which
triggers the differences between PRAGMATIC and CAU-
TIOUS, we have enforced a noise level in the first encountered
camera which causes the control center to mistakenly identify
the target as friendly. With this setting, the UNIFORM,
CAUTIOUS and UNLIMITED model recovered from the
mistake around t=200. The PRAGMATIC model made a more
aggressive downgrade of the value of information received
about the intruder and thus received less future notifications.

As a result of this it did not change its classification until about
t=300. For all four systems, the customer took a decision to
intercept the intruder at t=480.

Figure 3 shows the evolution of the value of received
information for the four systems. The UNLIMITED model
shows the upper limit of information value which can be
obtained with the set of sensors for the current set of intruders.
If no high value targets are present, the value of information is
naturally low, while in the cases when an intruder is selected
for interception (in the time interval 480-600) the value of
information is higher.

The lowest performance is obtained by the UNIFORM
model, due to the fact that the system is wasting time on
reporting on the low value targets (the small animals).

The PRAGMATIC model achieves the highest value of
information among the resource limited models in cases when
it correctly identifies the intruder. When it misidentifies the
intruder (in our case in the time interval 100-300), however,
it achieves a significantly lower utility than the CAUTIOUS
model.

Finally, the CAUTIOUS model, avoids the low performance
of the PRAGMATIC model when the customer misidentifies
the system. In addition, the CAUTIOUS model recovers earlier
from the misidentification than the PRAGMATIC model (at
around t=200). On the other hand, the CAUTIOUS model can
not quite match the performance of the PRAGMATIC model
for the case when the identification is correct (as it will allocate
part of the resources to plausible high-value targets).

V. RELATED WORK

A. Intruder tracking sensor networks

Intruder tracking sensor networks have been extensively
studied, and the field covers a wide variety of technologies
with their specific challenges. For sensor nodes with plentiful
energy resources and guaranteed network connectivity, the
scarcest resource is the attention of the sensing device. One
example is the case when we have a retargetable sensor, such
as a directional radar (Horling et al. [7]). In other papers the
assumption is that only a subset of the sensors can be activated
simultaneously (eg. Krishnamurty [8]).
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An alternative scenario is the case when the sensor nodes
have limited energy resources. The challenge is to assign
the active times in such a way that the tracking quality is
maintained. Gui and Mohapatra [5] consider a target tracking
sensor network and study the tradeoffs between the power
conservation and the quality of surveillance. Yan et al. [14]
discuss an approach in which nodes self-schedule their active
time such that areas with different security requirements are
provided differentiated services. Olariu et al. [10] employs
a clustering approach that uses wedges and coronas to cre-
ate a coordinate system and partition the area around each
Aggregation and Forwarding Node (AFN). Wang et al. [12]
considers the problem of detecting intruders in a network
which covers the interest area incompletely and sensors can
be heterogeneous in terms of transmission and sensing range.
Zou and Chakrabarty [17] consider a target tracking sensor
network with mobile units.

B. The value of information in sensor networks

Early sensor network research focused mainly on the net-
working / communication aspects. Soon, however, it became
evident that significant benefits can be obtained by building a
superstructure which provides an information centric view to
the customer. Sensor databases provide a view of the wireless
sensor network as a streaming database. The initial vision
was outlined in Govindan et al. [4], with influential early
implementations being TinyDB [9] and Cougar [15].

One further step is to consider the needs of the customer not
in terms of the raw data flow, but at a higher semantic level,
as answers to questions such as “why, when, where, what,
who, how” (Bisdikian et al. [1]). The quality of information
provided by the sensors can be defined as the ability to provide
answers to these questions. Such aspects have been considered
implicitly in several papers dealing with sensor networks,
such as He et al. [6] and Yeow et al. [16]. In the last three

years these topics have become the focus of targeted research,
among others in Bisdikian et al.[2], Gillies et al. [3], Tan et
al. [11] and Wei et al.[13].

VI. CONCLUSION

In this paper we described an architecture which guides the
data collection in an intruder-tracking sensor network while
taking into consideration the pragmatic value of the collected
information for the customer. Experimental results show that
the architecture allows us to increase the quality of information
reaching the customer about the targets judged to be high
value. At the same time, the experimental results also show
that the system must consider the possibility that the customer
was mistaken in their classification of the intruder, and prepare
for possible revisions of beliefs.
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