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Abstract—This paper proposes a reporting decision protocol
called IVE (for Information Value - Energy tradeoff), where
individual nodes of an intruder tracking sensor network make
decisions about the transmission of information chunks. Instead
of trying to achieve raw data metrics (such as total transmitted
data) the protocol aims to optimize the value of information
(VoI) maintained by the customer. To achieve this, the nodes
will need to perform inferences about the behavior of other
nodes and the customer, such that the nodes do not need to
send information which the customer already received from other
sources or information which it can guess based on previous data.

A simulation study compares the performance of the IVE
protocol with the current state of the art of on-demand periodic
reporting.

I. INTRODUCTION

Sensor networks are distributed systems where sensing

nodes embedded in the environment collect data and transmit

it to the customers. The objective of the sensor network is to

minimize the consumption of a set of scarce resources while

maximizing a metric of sensing quality.

Scarce resources come in a variety of forms including en-

ergy, electromagnetic spectrum, access to retargetable sensors,

the stealthiness of the sensor and even the limited attention

span of the human operator. In this paper we consider the

energy (and, implicitly, the expected lifetime) of the sensor

network to be the critical scarce resource.

The metric of the sensing quality depends on the practical

application scenario and the preferences of the customer.

While sensing quality had been traditionally expressed in low-

level networking terms, we argue that defining it in terms of

high-level, user-pragmatic categories provides both more value

to the user and a larger design space for the system builder [1].

Let us start by outlining three approaches to the definition

of sensing quality. One choice is to equate sensing quality with

the quantity of information: we can seek to maximize the bytes

of information arriving to the customer together with metrics

such as latency and jitter. The next step is to define the sensing

quality in terms of the accuracy of information. This requires

us to relate the transmitted data to the observed physical reality

- thus the quality will need to become application dependent.

In this paper, we take a further step, and define the sensing

quality in terms of the value of information (VoI) to the

customer. For instance, if the customer receives a certain

observation from two different sensors, the value of the second

report will be zero - even if the report is accurate. This makes

the value of a report dependent not only on the observed

phenomena, but also on the previous knowledge (the world
model) of the customer. We consider an intruder tracking
sensor network [2] and introduce the Information Value -

Energy tradeoff (IVE) protocol which allows the customer to

explicitly set a tradeoff between the VoI it requires from the

network and the energy cost it is willing to pay for it. The

goal of the protocol is to allow an IVE-running system to

provide higher VoI for similar energy usage compared to the

current state of the art (or, alternatively, a lower energy usage

for equivalent VoI).

IVE is a reporting decision protocol - its purpose is to

decide what information will be transmitted and forwarded.

In most current systems, sensors are configured to transmit

on a periodic basis, sometimes coupled with a transmission
condition to avoid transmitting empty messages. For intruder

tracking sensor networks, the transmission condition is nor-

mally the presence of an intruder. We will call this policy

on-demand periodic reporting (ODPR) and we will use it as

a baseline to compare IVE against.

For a complete system, the reporting decision protocol must

be combined with a routing protocol which decides the path

the information takes to the destination.

II. VALUE OF INFORMATION FOR INTRUDER TRACKING

A. Value of information as avoided damage

We define the value of information provided by an intruder

tracking system in pragmatic terms, from the point of view

of a customer. Let us consider a customer C, interested in an

interest region R with area area(R). An intruder I entering

the area can cause damage, which we will assume to be

additively accumulating during the presence of the intruder

in the area. We define the damage per unit of time as a time-

variant function kI(t).

We say that an intruder is untracked if the customer doesn’t

know about its existence or it is completely uncertain whether

the intruder is inside or outside the interest area. For these sit-

uations, the damage reaches an intruder dependent maximum

value kI(t) = kmax
I .



We say that an intruder is tracked if its location is known

with an accuracy sufficient for the customer to take action to

avoid damage. For example, this might specify the acceptable

error e < eacc for a security guard to intercept the intruder. For

indoor environments, the acceptable accuracy might require

the system to identify the room in which the intruder is

currently present. Without loss of generality, we will assume

that for a tracked intruder, the damage per unit of time is zero1.

What remains is to define the damage for intermediate

values of tracking knowledge. We will define the area of un-
certainty as the circle with the radius e from which we subtract

a circle with the radius eacc, with area Aunc = (e2 − e2acc)π.

This is the area where the intruder can possibly be. We will

assume the damage per unit of time to scale with a power of

the ratio of the area of uncertainty and the area of the interest

region.

kI(t) = kmax
I min

(
1,max

(
0,

(
(e2 − e2acc)π

area(R)

)c))
(1)

The exponent c needs to be determined empirically to match

the intuition about the loss of VoI in function of decreasing

accuracy. In our paper, the value used is c = 12.

Definition 1: The value of information (VoI) provided by

an intruder tracking system is the avoided damage compared

to an environment without an intruder tracking system.

Thus we can define the VoI per unit of time and intruder I
as:

vI(t) = (kmax
I − kI(t)) · pI(t) (2)

where the presence function pI(t) has a value of 1 if the

intruder is inside the interest region R and 0 otherwise. In

a system, the VoI evolves in time, and we can have more than

one intruder operating in the region of interest. To find the

total VoI provided by the system we need to sum over the

intruders and integrate over time:

V =
∑
I

∫ tend

tstart

vI(t) (3)

We can made several observations with regards to this

definition. First, the VoI is defined in terms of high level,

pragmatic user concepts and measured in real world currency

(dollars). Another observation is that the VoI depends on the

intruders and the damage they can do: if there are no intruders

or they can do no damage, the VoI is zero. This matches well

with our practical intuition about intruder tracking systems:

such systems should be deployed in places where intruders

are likely and the potential damage is high.

1Naturally, even a tracked intruder can do damage. However, we are
interested in the value of the intruder tracking system to the customer, thus
we can define the value at the margin, subtracting the unavoidable damage
from the value considered.

B. Location estimation at the customer side

Let us now investigate the way in which the customer

acquires and maintains knowledge about the intruder. The

customer receives a series of reports from the sensor nodes

in the form2 R = {I, (x, y), t} signifying that intruder I had

been sighted at location �r = (x, y) at time t.
Over time, the customer will receive a series of reports

{R1, . . . , Rn}, which it will maintain in the form of a list

sorted by increasing values of t (which might not necessarily

be the order of the arrival of the reports to the node).

Let us now consider the perspective of the customer at a

time t > tn. The customer wants an up-to-date estimate of

the location and presence of the intruders, a world model. The

simplest estimation method it can use is Last Known: assume

that the intruder is at the last reported location, that is the

location �pn = (xn, yn) from the last report Rn.

Alternatively, the customer can deploy predictive estimation
methods which can take as input the full set of reports

{R1, . . . , Rn}, additional knowledge about the intruder I and

a priori knowledge about the environment. The best choice of

predictive estimation method depends on the application, the

environment, the accuracy and trustworthiness of the sensor

and the available computing power. In open areas with no

obstacles, an Inertial Estimation model can be used which

assumes that the intruder maintains a constant speed vector. If

the intruder is confined to paths as roads, we can use a Path

Following model, which assumes that the intruder follows the

current path with a constant speed. Finally, in areas with many

obstacles, such as indoor environments, Particle Filter based

models are appropriate, which can track the possible locations

of the intruder while integrating location reports and a priori
information [3] about the environment.

Let us now consider the VoI from the perspective of the

sensor node. The VoI had been defined from the point of view

of the knowledge of the customer. To judge the value of a

potential report Rk the sensor must estimate the contribution

to the world model of the user.

If the customer uses a Last Known estimation, with the last

report being Rn, the sensor node needs to compare it to the

report’s timestamp tk. If tk ≤ tn, the report is obsolete and

provides no new value. On the other hand, if tk > tn, the new

report, if transmitted, would provide the new estimate. Still, if

dist ((xn, yn), (xk, yk)) < eacc, the VoI contribution will be

zero as the intruder is currently sufficiently tracked. Even if

the value is larger, the VoI gain will need to be traded against

the cost of transmission (in our case, in the form of energy

consumption). In IVE, the sensor node will transmit only when

the expected VoI is larger than a user specified threshold.

If the customer uses Inertial Estimation, the sensor must

try to predict the customer’s estimate and compare it with

2The reports might include additional information, for instance, additional
sensed features of the intruder. From the point of view of this paper, an
important consideration would be if the sensor is able to directly measure the
speed vector of the intruder �v. Unfortunately, such sensors, such as Doppler
radars or LIDARs are rarely used in intruder detection systems



(xk, yk). Even if the intruder had performed a significant

movement from the last reported location, it will still be no

need for transmission, as long as the movement was inertial.

As soon as the intruder changes its movement pattern (for

instance, by stopping or by making a sharp turn), the estimates

will diverge and the value of the report will increase, making

its transmission justifiable.

All these techniques require that the sensor node to estimate

the customer’s estimate - in effect to build a model of the

customer’s world model. A sensor node will normally under-

estimate the accuracy of the customer’s world model, because

(a) it might not be able to fully reproduce the customer’s

estimation due to limited resources3 and (b) the customer

might have information from other sources. There are a

number of situations when the sensor node might overestimate

the customer’s world model: for instance, if the reports have

been lost, or if the customer received (and believed) misleading

information from the other sensor nodes.

The underestimation of the customer’s accuracy is a helpful

simplifying factor, as it avoids a situation where a sensor node

would mistakenly withhold information in the belief that the

customer does not need it.

III. INFERENCE AND ESTIMATION IN THE IVE PROTOCOL

The IVE protocol is based on the general idea of reasoning
about reports. The sensor nodes can maintain a local knowl-

edgebase of reports and a local estimate of the customer world

model. Some reports will be forwarded to the customer. The

customer uses the reports to create a world model which can

estimate the current location of the intruders in the system.

The reasoning process of the nodes involves:

• maintaining their own knowledgebase of intruders

• making decisions about forwarding reports to the cus-

tomer

• making decisions about the forwarding path

The maintenance of the local knowledgebase is based on a

number of inferences.

• Direct observation of the intruder creates a report.

• A received transmission will create a report (the node

will assume that it is responsible for the transmissions).

• An overheard transmission creates a report, but not an

obligation.

• A report older than a specific time frame will be expired

from the knowledgebase.

• New reports about the same intruder lead to the expiration

of the reports. The number of reports maintained depends

on the estimation technique. For Last Known, only the

most recent report is kept. For Inertial Estimation, the

nodes keep a sufficient number of reports to be able to

estimate the speed vector �v with a sufficient lead-in time.

The maintenance of the local estimate of the customer’s

world model (LECWM) involves the following inferences:

• A report sighted by the local node is added to the

LECWM at the moment when it is transmitted.

3This is not an issue for inertial estimation, but it is a major concern for
particle filter based estimation

• A report received for forwarding is added to the LECWM

when it had been successfully forwarded.

• A report overhead is added to the LECWM at the moment

of overhearing.

• When the transmission decision module asks the

LECWM for an estimate of the customer’s model, it will

perform an estimate based on the reports in the LECWM

and a local estimation technique.

• Expire reports from the LECWM based on a policy

appropriate to the local estimation technique.

A. Considerations about the Inertial Estimation technique

Inertial Estimation assumes that the intruder is moving with

a constant speed on a straight trajectory. We need to estimate

the speed vector �v of the intruder at the last confirmed location

�rn = (xn, yn) and and time tn. The future location at time t
will be estimated by:

�r = �rn + �v · (t− tn) (4)

The challenge here is that most sensors are not able to

directly estimate �v. Instead we need to estimate �v based on

the location estimates. A naı̈ve approach would be to estimate

based on the last two receiver values:

�v =
�rn − �rn−1

tn − tn−1
(5)

The problem, unfortunately is that the tn and tn−1 values

can be close together or even identical. If tn = tn−1, which is

possible if the reports came from different sensors, the value of

the expression is undefined. But, even if we enforce tn > tn−1,

for small values of tn − tn−1, the Equation 5 amplifies the

localization errors. For instance, it can lead to a speed vector

which is the exact opposite of the real one. In order to avoid

such errors, we want the time points used in the Equation 5

to be separated by a sufficient lead-in time tmin. To achieve

this, the previous point might not necessarily be �rn, but the

latest report which maintains the minimum lead-in compared

with the most recent one.

IV. SIMULATION STUDY

In the following, we describe a series of simulation studies,

designed to investigate the relative benefits of the IVE re-

porting decision protocol in contrast to on-demand periodic

reporting (ODPR), for different estimation techniques and

parametrization choices.

A. Simulation environment

We have simulated an area Rsim = 1500m× 1000m, with

the sensors deployed in a “grid with noise” model in a region

Rdepl = 1000m × 500m, with the interest area being R =
800m×300m. Notice that the sensor nodes have been deployed

in an area somewhat larger than the interest area - this allows

the system to estimate the presence function p (that is, whether

the intruder is actually in the area or not). This is an important

consideration, because the sensors outside the intruder area can



actually provide negative signals for p, which has a significant

contribution to the VoI calculation.

We assume that a number of 2..40 intruder nodes are active

in the area Rsim over the course of the 2 hours simulated

time. However, only a subset of these nodes will be present

inside the interest area R. We have modeled the movement of

the intruder nodes using a random waypoint model.

The customer behavior will be described with the spec-

ification C-pe where pe is a parameter which describes

the estimation technique deployed by the customer, with the

possible values LK - Last Known and IE - Inertial Estimation.

For the sensor node behavior, we have the following

choices:

S-ODPR-pi - the sensor node performs on-demand periodic

reporting. When the sensor node first sights an intruder,

it sends a report immediately. Future reports will be

transmitted at a fixed time interval pi as long as the

intruder is in sight.

IVE-pe-pc - the sensor node performs the IVE protocols

with the choices described in the parametrization. The

parameter pe describes the estimation protocol used by

the sensor node to predict the reasoning of the node,

which can take the values LK (Last Known) and IE

(Inertial Estimation). The parameter pc specifies the

information value trigger level, the level of sufficient

information value increase at which the node decides to

transmit.

B. Energy and VoI in function of number of intruders

In the first experiment, we measure the sum of the network-

wide transmission energy (used for the transmission of re-

ports), and the total VoI achieved by the system, while varying

the number of intruders operating in the area. Note that the

number of intruders ranges between 2-40. Naturally, this is a

very large number for actual human intruders, however, it is

a typical value for outdoor environments, where the majority

of moving targets are small animals.

• C-LK+S-ODPR-10 - Customer uses Last Known es-

timate, sensor nodes use ODPR with time interval 10

seconds

• C-LK+S-IVE-LK-1 - Customer uses Last Known es-

timate, sensor nodes use IVE with Last Known estimate

and VoI transmission threshold 1.0

• C-IE+S-IVE-IE-5 - Customer uses Inertial Estima-

tion, sensor nodes use IVE with Inertial Estimation and

VoI transmission threshold 5.0

Figure 1-lower shows the evolution of the VoI for these

three configurations. As expected, the total VoI increases

approximately linearly with the number of intruders present

for all three configurations. The deviations from the linearity

are due to the random movement of the intruders which might

spend more or less time on average in the interest area.

However, the VoI achieved by the three configurations are

near-identical.

Figure 1-upper shows the evolution of the total transmission

energy for these three configurations. Again, as expected, the

Fig. 1. Transmission energy (upper) and VoI (lower) function of the number
of intruders.

transmission energy is increasing with time. However, the

expended energy is very different for the three configurations:

the ODPR approach consumes about twice the energy of the

IVE approach with Last Known estimation, and about four

times the energy of IVE with Inertial Estimation.

In conclusion, we find that with appropriate parametrization,

all the methods can be configured to achieve equivalent VoI

- however, the energy consumption of the IVE methods are

going to be significantly lower. Furthermore, between various

IVE configurations, the more sophisticated the estimation

method, the lower the energy consumption.

As a note, with a different parametrization we can achieve

near identical energy consumption among ODPR and various

IVE variants - however, in this case the VoI of the IVE variants

will be higher.

C. The evolution of VoI in time

In this simulation study, we investigated the evolu-

tion in time of the VoI for two protocol combinations

(C-LK+S-ODPR-200 and C-IE+S-IVE-IE-0). We have



Fig. 2. Time series of the gain in VoI.

traced the evolution of the acquired VoI in time. The resulting

time series graphs are shown Figure 2.

The first observation is that the graph shows a characteristic

step-like structure. The height of the individual steps being

an integer multiple of the maximum damage (in our case,

10), with the integer multiplier being the number of intruders

currently in the interest area. When there is no intruder in

the area, neither protocols achieve any VoI. In this particular

case, the C-IE+S-IVE-IE-0 configuration almost always

achieves the maximum VoI (as this configuration will transmit

at any opportunity when the estimate diverges more than eacc).

On the other hand, C-LK+S-ODPR-200, while still shows

the same step structure, it can significantly fall behind the

maximum possible VoI.

V. RELATED WORK

A. Energy constrained intruder tracking sensor networks

A number of recent papers are considering the interrelation

between intruder tracking and the energy constraints of sensor

nodes. One approach to reduce energy usage is to activate only

a subset of the sensors. The challenge is to assign the active

times in such a way that the tracking quality is maintained. Gui

and Mohapatra [4] consider a target tracking sensor network

and study the tradeoffs between the power conservation and

the quality of surveillance. Yan et al. [5] discuss an approach

in which nodes self-schedule their active time such that areas

with different security requirements are provided differentiated

services. Turgut et al. [2] quantify the stealthiness of a

sensor node and show that try and bounce (TAB) protocol

achieves significantly higher stealth for equivalent tracking

accuracy, or, alternatively, lower tracking error for equivalent

stealth expenditure. Wang et al. [6] considers the problem of

detecting intruders in a network which covers the interest area

incompletely and sensors can be heterogeneous in terms of

transmission and sensing range.

B. The value of information in sensor networks

A relatively new research approach in sensor networks

moves from the consideration of quantitative metrics of data

transmission to higher level, qualitative metrics, which are

often called quality or value of information. Turgut et al. [1]

consider an intruder detection and tracking system where the

sensing quality is a metric of the pragmatic value of the
information provided by the network. This metric depends not

only on the quantity and accuracy of information, but also

on when and how the customers will use this information.

Bisdikian et al. [7] define quality of information as the ability

of a network to answer questions such as “why, when, where,

what, who, how”. In recent years, these topics have become

the focus of targeted research, among others in Gillies et al.

[8], Tan et al. [9], Wei et al.[10], and Liu et al. [11].

VI. CONCLUSION

In this paper we described IVE, a reporting decision pro-

tocol for intruder tracking sensor networks. By requiring the

individual sensor nodes to reason about the VoI of the reports

they are about to transmit, and implicitly, by requiring them

to estimate the customer knowledge about the intruders, the

IVE protocol allows us to significantly improve the trade-

off between VoI and energy consumption. Our experimental

results show that IVE approaches require significantly less

energy to achieve equivalent VoI compared to state of the art

on-demand periodic reporting systems. Furthermore, the more

sophisticated estimation techniques are used by IVE, the lower

the energy consumption.
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