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Abstract—This paper introduces Confidence Guided Path-
planning (CGP), an algorithm for planning the path of mobile
sensor nodes with the goal to increase confidence in the accuracy
of the estimated model at any time point in the data collection
process. The approach employs a local estimator based on a
Gaussian process regressor and takes advantage of the uncertainty
estimation to guide the sensor to areas of lower confidence. In an
experimental study comparing CGP with systematic lawnmower-
type exploration and random waypoint movement, we found
that CGP achieves better scores than both during most of the
exploration process, being outperformed only by a fully completed
systematic exploration. We also found that, as an emergent prop-
erty of pursuing higher confidence, CGP achieves good coverage of
the area of interest. The proposed algorithm has wide applications
in precision agriculture, wildlife tracking, and road monitoring,
where exhaustive coverage is not feasible.

Index Terms—mobile sensor, path planning, algorithm, Gaussian
Process

I. INTRODUCTION

Recent advancements in mobile sensing technology, includ-
ing the use of drones, have enabled the acquisition of more
extensive and precise data for various applications, such as
precision agriculture, road monitoring, and wildlife tracking [1],
[2]. However, covering the entire area of interest is often infea-
sible. Instead, selective sampling of observations and the use of
estimation techniques are required to model the environment.
Traditional approaches to path planning for mobile sensors have
focused either on systematic techniques that optimize coverage
of a geographic area or random waypoint-based techniques that
approximate the random sampling of the system generating the
observations.

The ultimate aim of mobile sensing is to comprehensively un-
derstand the environment by creating a model that characterizes
it accurately. The model we seek can often be implemented as
a scalar field that provides a numerical value for every point in
the geographical area. This model must be constructed from the
observations provided by the sensors. Both the path planner and
the estimator contribute to the quality of the model. The path
planner dictates which observations are made and when during
the exploration process. The estimator can enhance its accuracy
by deploying sophisticated probabilistic modeling techniques
that consider the dynamics of the underlying phenomena. A
frequently used, high-quality, albeit computationally expensive
algorithm is based on Gaussian process regression.

Path-planning techniques, often designed independently of
the estimator, are frequently based on a surrogate objective that
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doesn’t rely on the estimator or the collected data. For numerous
algorithms, this surrogate metric is coverage [3]. Algorithms
systematically covering the area of interest, such as those fol-
lowing a lawnmower pattern, benefit from predictability. Once
the trajectory is complete, a high-quality result can be expected.
However, a disadvantage of such systematic exploration is
that certain areas may remain completely unexplored until the
exploration process concludes. In many applications, it is ad-
vantageous to initially acquire a rough model of the entire area
of interest and iteratively, refine it. Therefore, comparatively
simple algorithms like random waypoints can often outperform
more systematic strategies in the early stages of exploration.
However, these techniques do not interact with the state esti-
mator, nor do they take into consideration the observations that
have been made to date by the sensor. One advantage of this
approach is that, for both methods, it’s possible to pre-calculate
the path of the mobile sensor.

The work in this paper starts with the conjecture that a
better accuracy can be obtained by a path policy that takes
into consideration, in real-time, the observations that have been
made to date, as well as an understanding of the needs of the
estimator used.

To achieve this, we propose an algorithm called Confidence
Guided Path-planning (CGP). CGP uses a local model of the
environment and constantly reevaluates the model based on up-
to-date observations collected by the robot sensor. The local
model uses a Gaussian process-based estimator, which provides
not only an estimate of the measured values at each point in
the environment but also the associated confidence value. Based
on these confidence values, the mobile sensor chooses its next
destination such that it will investigate areas where it has the
least confidence. CGP employs several additional techniques to
enhance the efficiency of the sensing process. We demonstrate
that compared to traditional techniques such as systematic or
random waypoint-based exploration, CGP achieves a signif-
icantly better score earlier in the exploration process, while
leaving fewer “blind spots” than random waypoint.

The main contributions of this paper can be summarized as
follows:

e We propose and describe Confidence Guided Path-planning
(CGP), an online, real-time algorithm for path planning
that uses a local estimator to find paths that improve the
confidence of the model.

« We investigate the emerging properties of the algorithm,
such as the shape of the emergent path, its ability to cover



the area, and its avoidance of self-intersecting paths.

o We compare CGP with two important baseline algorithms
in mobile sensor path planning (systematic exploration and
random waypoint), and show that it outperforms both of
them in achieving a better accuracy score earlier in the
process.

II. RELATED WORK

The use of mobile sensors to explore an environment has
been extensively investigated in multiple fields, with a variety
of instances of mobile sensors, such as UAVs [4], UGVs, other
terrestrial robots, drone ships [1], and autonomous underwater
vehicles [5], [6], [7]. We want to emphasize that sensing is not
the only task a robot might execute in a sensor network [8] -
other alternatives might include data mulling, recharging nodes,
and tasks that the robots might perform in addition to or instead
of the sensing task.

In cases where the goal of the mobile sensor is to gather
information about the environment, the natural optimization
criteria are the accuracy of the model or the model’s suitability
for certain tasks. In practice, however, many systems use some
type of surrogate optimization criteria, such as the coverage of
observations or the amount of non-duplicated data collected.
The coverage problem [9], sometimes referred to as the orien-
teering problem [10], is closely related to the traveling salesman
problem and, as such, is NP-complete. In certain applications,
coverage is reformulated as a graph traversal problem. In
other circumstances, the path is designed to account for the
various shapes and topologies of the geographical area under
consideration, providing variations of the basic lawnmower
pattern [3].

Chen et al. [11] propose an approximation algorithm inspired
by density-based clustering methods for the coverage path
planning of a bounded number of regions. This algorithm is then
compared to the optimal solution obtained by formulating an
integer linear programming problem. Special consideration must
be given to the case of multiple explorer robots. Hu et al.[2]
suggest an approach in which multiple UAVs use a Voronoi
partition of the area to divide the regions to be covered, with
strategies for covering individual areas then learned using deep
reinforcement learning.

Other researchers, similarly to our approach, have considered
the fact that observations made by the sensor will be processed
by an estimator. The use of a Gaussian process as an estimator
was proposed by Guestrin, Krause, and Singh [12]. With this
model, the selection of observation points can be considered as
the problem to maximize mutual information (a problem that
is NP-complete by itself, even without considering the search
for an efficient path through these points). A recursive greedy
algorithm for a graph theoretical formulation was proposed by
Chekuri and Pal [13].

III. CONFIDENCE GUIDED PATH PLANNING
A. Design principles

The algorithm that we are proposing is based on three prin-
ciples: a) online decision-making, b) observation dependence,
and c) computation budgeting.

First, online decision making means that the mobile sensor
makes decisions during run-time, as opposed to offline algo-
rithms that pre-plan the trajectory at the beginning of the sce-
nario. Generally, coverage-optimization algorithms for a known
environment can be executed offline. Interestingly, algorithms
such as random waypoints are often described as though, upon
reaching a waypoint, the sensor randomly generates the next
one. This mode of description obscures the fact that the path
can be generated ahead of time, as it does not depend at all on
the state of the mobile sensor. Thus, the random waypoint path
can be conveniently pre-generated ahead of time and followed
during the execution time. In the case of true online algorithms,
the decision process depends on real-time information that is not
available offline.

Second, observation dependence means that the path of the
mobile sensor depends on the observations received. Thus, the
sensor node adapts the next waypoint based on the information
it has sensed up to the current point. Informally, the sensor
node aims to maximize the value of the information to be
sensed in the future based on the information collected in the
past. In general, such an optimization can only be performed
probabilistically, as the sensor does not have access to its future
observations. The particular type of observation dependence we
propose for this algorithm is based on the calculation of a confi-
dence map. This map calculates the uncertainty in the predicted
environment values given the current set of observations and
schedules the future movement of the sensor aiming to reduce
this uncertainty.

Third, the algorithm utilizes computational budgeting. We
design the proposed algorithm to be a practically deployable
system, capable of working on a large scale. As we define the
objectives of the algorithm as abstract optimization problems,
we need to be aware that the decisions depend on computation-
ally expensive sub-problems and naive solutions are unfeasible.
For instance, a naive solution could involve calculating the
confidence at each step on a specific grid g X g and finding the
path that optimally visits the points with the lowest confidence.
However, such an algorithm would be impractical. Just the
calculation of the confidence values using a Gaussian Process
has a computational complexity of O(0® + g?), with o being
the number of observations that increases at every timestep.
Meanwhile, the path visiting the low confidence points is NP-
complete with regard to the number of points planned to be
visited. Even if we could somehow execute these computations,
we would need to recalculate them when the next observation
comes in. This implies a significant amount of wasted computa-
tion, which, depending on the setting, might need to be executed
onboard a mobile sensor with limited computational and energy
resources. In conclusion, the proposed algorithm must carefully



budget what computation it performs and at what moment in
time, to achieve reasonable performance.

B. Gaussian process regression for a scalar field

A Gaussian process (GP) is a statistical model of a series
of random variables, with the assumption that any subset of
them follows a multivariate normal distribution. A common
application of a GP is for Gaussian process regression in a
scenario in which the random variables are correlated by their
spatial distribution in a 2D space. Some of the values (termed
observations) are known, while the other values need to be
estimated using the inference process of the GP (points we
will refer to as queries). This technique is closely related to
the technique called kriging in geostatistics, where it has been
used to identify the location of mineral resources from samples.

In scenarios where a mobile sensor collects information in
an environment, this approach is typically applied as follows:
the points where the sensor collected data are the observations,
while all the other points on the observation grid are queries. In
such scenarios, we can usually assume that there is a correlation
between nearby observations. This observation is captured by
the use of a kernel function K (x,x’) that captures the covari-
ance between two arbitrary points in the scalar field. The results
of the query are expressed in the form of a normally distributed
random variable, whose mean represents the predicted value,
while the standard deviation is associated with the degree of
uncertainty in the estimate, or conversely, with the confidence
of the prediction.

C. Evaluating the confidence

We are considering an area A that includes a collection of
points of interest p; = (x;,y;). For ease of exposition, we will
assume for the rest of this paper that this area is a rectangular
region of size h x w with the points of interest laid out as a
grid. However, the algorithm does not require such a regular
layout.

At the time ¢, the mobile sensor makes an observation at its
current location p = (z,y), which we will assume is a real
number o = E(x,y,t) € R. This notation assumes that the
observation reads a value from an environment represented by
the tensor E. Over the course of its trajectory, the mobile sensor
will collect a series of observations at various locations and
times. In most practical circumstances, the sensor will not be
able to collect data from all points of interest. The observations
are used by an estimator §(O) — I to create an information
model I that has the same structure as the environment E.
Let’s consider that we are at the time point ¢,,,, With the
set of observations O = 01,..., 0y, . The calculation of the
information model I = I(O) allows us to read out an estimated,
probabilistic value for any metric and any location of interest
at the current time I(2;, i, tnow, M) = E(Zi, Ui, tnow, M).

One question this paper addresses is: how confident are we
in the estimate for a given point of interest? If we have a
recent measurement at exactly that point, our confidence is
limited only by the quality of the instruments. However, if we

are inferring this value at a location where we don’t have a
measurement, our confidence depends on how far away these
measurements are, how well they agree with each other, and
prior knowledge about the variance of the scalar field. Gaussian
process regression provides a rigorous way to simultaneously
provide such an estimate along with a confidence value, based
on a reasonable assumption that the underlying model follows a
normal distribution with dependencies between nearby models
modeled by a kernel function.

For the implementation of the CGP algorithm, we need to
differentiate between the system estimator, which creates an
estimate for the beneficiary of the sensor network, and the
local, online estimator that is run by the node during execution
and is used for path planning. Generally, we assume that the
system estimator has adequate computing resources and time to
complete complex calculations. The online estimator, however,
needs to operate under assumptions of scarcity. Furthermore,
the system estimator is only invoked when the beneficiary
intends to query the estimate, which typically happens once
at the end of the data collection session. In contrast, the online
estimator is invoked every time the mobile sensor needs to make
a movement decision.

D. Movement decisions in CGP

To reduce the computational cost of the CGP path planner to
an acceptable level, CGP makes two design decisions:

o Commit to a waypoint. At the first invocation, CGP
chooses and commits to a waypoint. Until that waypoint
is reached, the path planner reverts to a simple waypoint-
following algorithm, without recalculating the confidence
estimate at every moment. This approach not only reduces
the cost of computation but also improves the stability of
the algorithm and the smoothness of the trajectories.

o Neighborhood model. When a decision about the next
waypoint needs to be made, CGP calculates an online
model using the local estimator. The model is only sampled
for a set of candidate waypoints that are generated from
a specific neighborhood span of the current position. The
next waypoint is chosen as the point with the lowest un-
certainty (highest confidence), with ties broken randomly.

The overall structure of the CGP path planner is described
in Algorithm 1. A distinguishing feature of this algorithm
is that, as opposed to coverage planning algorithms that are
explicitly taking into consideration the geometry of the area of
interest, this algorithm proceeds in an essentially greedy fashion
toward the areas with maximum uncertainty in the immediate
neighborhood weighted by the importance of the area. Yet,
as we shall see in the experimental results, such as Figure 2,
coverage is an emergent property of the presented algorithm.

IV. EXPERIMENTS
A. Experimental framework

To investigate the properties of the CGP algorithm, we
compared it in a series of experiments using the Waterberry



Algorithm 1: Confidence Guided Path Planning

Input :t, X, y, o, span

Output: action

O+ 0o

if x, y /= next_waypoint then
| return move towards next waypoint

end

I < calculate online model I(O)

feasible_wps < generate_waypoints(X,y,span)

min_confidence < lowest I[wp)] value from
feasible_wps times importance value of location

min_confidence_wps <— feasible_wps with
min_confidence values

next_waypoint <— randomly select a waypoint from
min_confidence_wps

return move towards next_waypoint

Farms (WBF) benchmark framework [14]. This framework
provides a way to compare the performance of mobile nodes
sensing an area modeled on a precision agriculture scenario
with a geographically complex area, partially planted with
tomatoes and partially with strawberries. For the purposes
of this paper, we used the MiniBerry-30 benchmark, which
considers a rectangular area of 30 x 30m, half of it planted
with strawberries and the other half with tomatoes, with a
time budget of 400s. We assumed that the mobile node starts
at the location (0,0), and moves at a velocity of 1 m/s. We
only considered the observations concerning outbreaks of the
tomato yellow leaf curl virus (TYLCV), which only affects
tomato plants. The WBF framework provides observations to
the mobile robot, simulates the commands provided by the path
planner, and provides a collection of sample estimators.

As the scores measured by WBF are calculated based on the
accuracy of the created model, the benchmark always compares
pairs of path planners and estimators. For the purposes of this
paper, we used the same estimator for all the path planners
compared, thus any difference in performance is due to the path
planner.

B. Baseline path planners

To evaluate the performance of the CGP algorithm, we
compare it to two baselines that represent important classes of
mobile sensor movement algorithms.

The fixed budget lawnmower (FBLM) plans a uniform,
lawnmower coverage of the area choosing the densest possible
pattern that will still fit in the time budget. Note that for
this simple shape of the area of interest, this is an optimal
coverage path. FBLM is an offline path planning technique,
which requires initial knowledge of the shape of the area and
the time budget.

The random waypoint algorithm (RW) plans a path where
the mobile sensor moves to successive waypoints, chosen in
a uniform random manner from the area of interest. In this

TYLCV Uncertainty TYLCV Uncertainty

TYLCV Uncertainty

Fig. 1. The emergent behavior of the GCP path planner with span = 5 plotted
at t = 12, t = 20 and ¢ = 32. The background shows the uncertainty level in
the observation, as returned by the local GP estimator. The white path shows
the trajectory of the robot, while the green line the planned future trajectory.

implementation, this is also an offline algorithm, as the choice of
the waypoints can be done ahead of time, leading to a random,
but pre-calculated path. The planning needs information about
the shape of the area, but not about the time budget.

Against these two baselines, we compared two parametriza-
tions of CGP, with span = 5 and span = 10 respectively,
denoted as GCP-5 and CGP-10.

C. Experimental results

In the first experiment, we investigated the shape of the trajec-
tory generated by CGP. This shape is not intuitively obvious.
For FBLM, the lawnmower pattern is explicitly programmed
into the algorithm, similarly, RW creates straight-line traversals
between random points. However, for CGP the shape of the
path is emergent as the algorithm itself does not make any
geometry-based decisions. Figure 1 shows the behavior of CGP-
5 starting from a completely unknown environment for the first
32 timesteps, plotted at t = 12, t = 20, and t = 32. We
notice that the emergent behavior of the algorithm leads to a
zig-zagging coverage shape. It is easy to see that the confidence
guidance pushes the robot to explore new areas. Another
observation is that while there is nothing in the algorithm that
explicitly prevents the robot from crossing its own path, this
will rarely happen, as in general, the robot will aim towards
areas that had not been visited before. Another observation is
that with span = 5, the farthest the algorithm plans ahead is
5 steps, which is also the length of the longest straight line
sequences in the trajectory.

Figure 2 shows the results of the experiments comparing the
models built by four path-planning algorithms: FBLM, RW, and
two variations of CGP parameterized differently, with a span
variable set to 5 and 10 meters respectively. The diagrams in
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Fig. 2. The exploration behavior of the four algorithms (FBLM, RW, CGP-5 and CGP-10). Top row: the path of the robot over the 400 timestep exploration.
Middle row: the ground truth of the experiment (a TYLCV outbreak in the area planted with tomatoes), and the final estimates of the system GP estimator for
each of the path planners. Bottom row: the uncertainty values at the end of the experiment for the different path planners.

the figures show the path taken by the mobile sensor, and for
each of the three metrics, the ground truth, the model estimate,
and the uncertainty map. Figure 3 compares the evolution of
the score achieved by the mobile robots over time.

There are several interesting observations that can be made
based on these results. First, the path of the mobile sensor
under the FBLM, as expected, performs a uniform coverage.
A disadvantage of this path planner is that the systematic
lawnmower pattern creates a highly unbalanced coverage during
the exploration - for instance, halfway through the exploration,
the model covered all the strawberries, but none of the tomato
planted area.

The RW model has the advantage that by randomly sampling
from the entire area, the waypoints are uniformly distributed
across any location, which means that the neighborhood of any
given area has a strong likelihood to be visited early in the ex-
ploration. Unfortunately, the RW model also has disadvantages.
Despite the waypoints being sampled uniformly from the area
of interest, the mobile sensor spends more time in the interior of
the area of interest, a well know problem of random waypoint
algorithms [15]. With the budget of 400 timesteps, relatively
large spans in the corner of the area of interest are not covered.
Furthermore, due to the random sampling, the path of the mobile
sensor self-intersects a significant number of times, leading to
unproductive revisits of the same location.

Interestingly, the CGP model performs a relatively consistent,
almost uniform coverage of the area, without being explicitly
programmed for it. The density of the coverage is somewhat
more uniform in the case of the span = 10 variant, which is
considering a larger vicinity for the optimization. While the path
occasionally intersects, it does so much more rarely compared
to RW. At the same time, the path taken by the CGP model also
has a significant random component of it, due to the random
breaking of ties in Algorithm 1.

Figure 3 compares the four algorithms with respect to the
score obtained as the exploration progresses. To obtain this
graph, we run the system estimator (GP-based) at every timestep
to obtain a score, which measures the average mean error of the
system estimator compared to the ground truth of the TYLCV
outbreak. To achieve a “higher the better” score metric, we are
taking the negative of this mean error. Note that in an actual
deployment, the system estimator would be only invoked once,
at the end of the data collection.

The first observation we can make based on Figure 3 is that,
as a matter of long-term trend, the score improves for all path
planners as the exploration proceeds, and new observations are
added to the pool. The improvement of the score, however,
is not necessarily monotonic. For instance, the discovery of a
patch of infected tomatoes might make the estimator assume
the existence of an infected area that might be much larger than
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Fig. 3. The evolution of L1-score (negative mean absolute error) for the four
algorithm (FBLM, RW, CGP-5 and CGP-10) over the course of the experiments.

the real one. Thus, even a correct observation might lower the
quality of the estimate. Overall, however, adding observations
improves the estimates.

Of particular interest is that score at the end of the allocated
exploration budget. Interestingly, all four techniques obtain an
essentially indistinguishable score at the end of the exploration.
One would have expected that the RW model with its in-
consistent coverage and wasted exploration time by revisiting
previously explored areas to be significantly lower than the
FBLM model with its highly regular and thorough coverage
pattern. However, the difference is minimal.

A second consideration applies to the manner in which the
score evolves over time. The concept of an exploration budget,
expressed in the form of a static time value, is often an opti-
mistic assumption. In many scenarios, it frequently happens that
the full exploration cannot be completed due to environmental
hazards, or the model needs to be queried before the exploration
budget has been fully spent. For these reasons, we prefer to have
anytime systems, which not only reach a good score at the end
of the exploration but also provide a good estimate if queried
earlier.

If we examine the evolution of the score over time, the
behavior of the path-planning models is significantly different.
The FBLM model improves very slowly because, for instance,
halfway through the time budget, it only has information from
one-half of the area. In contrast, the RW model exhibits an
initially strong value, as the waypoints are randomly spread
across the entire area. However, this initial high performance
slows down as the random exploration might not fill in some
under-explored areas. Conversely, the two variations of the CGP
model both perform significantly better than all the other models
in the early part of the exploration and retain their advantage
until almost the very end of the exploration.

V. CONCLUSIONS

In this paper, we described an algorithm for mobile sensors
that adapts its path depending on the information captured by
the sensors. The system builds a local model of the environment
using a Gaussian Process regression-based estimator and uses
the level of confidence of the estimator to guide the movement
of the mobile sensor, moving toward the areas where it has
the least confidence values while breaking ties randomly. We
show that this, a comparatively simple approach, leads to
an efficient coverage of the area without explicit geometric
reasoning. Compared to the standard coverage and random
waypoint models, we show that the proposed approach yields
significantly higher accuracy in the early part of the exploration,
providing a better anytime performance.
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