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Abstract In this paper, we study time-parallel simulation

of wireless networks based upon the concept of the per-

turbation induced by a networking event and present a

layer-by-layer analysis of the impact of perturbations on

the wireless network. This analysis allows us to propose

several methods to improve the accuracy of time-parallel

simulation. We describe an implementation based on the

widely used ns-2 simulator and on the iterative extension of

the warmup period. We introduce a method for initial state

approximation which can improve the accuracy of the

simulation for table-driven ad hoc routing protocols. A

series of experiments show that on typical scenarios time-

parallel simulation leads to a significant speedup while

maintaining a high level of accuracy.

1 Introduction

The development of communication systems requires rig-

orous performance studies. Analytical performance studies

can only be carried for simple models of complex systems;

such studies tend to provide a basic understanding of the

system behavior and qualitative results. Simulation, on the

other hand, is often used for quantitative performance study

of more realistic models of complex systems. Wireless

ad hoc networks are rarely amenable to analytical perfor-

mance analysis due to the complexity of the models

involved. Simulation has emerged as an important tool for

the study of wireless ad hoc networks, but it is commonly

used to study networks with a few hundred nodes for a

relatively short period of time.

Nowadays systems consisting of a few thousand nodes

are rather common. Indeed, let us consider a simple sce-

nario: there are 120 students in a classroom; each student

has a cell phone (GSM source), a PDA, and laptop (two

802.11b WiFi sources). There are five Bluetooth sources:

PDA, laptop, cell phone, headset, and mouse. Some of the

students might have WiFi enabled cameras, Bluetooth

enabled audio players, and matching head phones. All in

all, it does not seem out of the ordinary to have three WiFi

and seven Bluetooth sources per person. Thus, even with-

out considering that many of the WiFi nodes have a

transmission range long enough to cover neighboring

classrooms as well, in order to study the networking

environment of one classroom we have to simulate a sys-

tem with 1,200 wireless sources operating in the same

frequency band.

A wireless network with 1,200 nodes pushes the limits

of serial simulators such as ns-2. Even when feasible, such

simulations require a significant amount of computing

power and can take a very long time. An alternative is to

resort to space-parallel or time-parallel simulation. In many

instances, e.g., in the classroom environment, every

transmission can be received by, or at least interfere with

the transmissions of many if not all the other nodes; the

fully connected dependency defeats the purpose of spatial

partitioning.

G. Wang � D. Turgut (&) � L. Bölöni � D. C. Marinescu
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In this paper, we present an approach for time-parallel

simulation of wireless ad hoc networks. Time-parallel

simulation has been used for some time; its applicability is

strongly dependent on the simulated phenomena and can

yield exact results only for systems whose behavior is

modeled by regenerative stochastic processes. However, as

we will show, good approximations can be obtained

quickly, and the quality of the approximation can be

improved through iteration.

Our time-parallel simulation of wireless ad hoc net-

works uses a traditional simulation package coupled with

new techniques for the practical implementation of the

simulation. We develop a methodology to analyze the

accuracy of the simulation and introduce the notion of

perturbation of measurements; then we present a layer-by-

layer analysis of the impact of the perturbations on the

performance of the network. This approach allows us to

predict the accuracy of the simulation results through an

analysis of the protocols involved at each layer.

This paper is organized as follows. We survey related

work in Sect. 2, then we present the basic concepts for

time-parallel simulation of wireless networks in Sect. 3.

We also introduce a model of the propagation of pertur-

bations in wireless networks and the impact of the protocols

at the various layers of the networking stack. We apply these

considerations to propose several methods for improving

the speed and accuracy of time-parallel simulation. Section

4 presents the implementation of the theoretical models

developed in the previous section with the widely used ns-2

simulator. We find that some of the theoretical concepts

can be immediately incorporated in simulation studies

conducted with existing simulators such as ns-2 while

others are very difficult due to the particularities of the

implementation. A series of experiments investigating the

speedup and precision of the proposed method for typical

wireless network simulation scenarios are presented in

Sect. 5. We summarize our results in Sect. 6.

2 Related work

Parallel discrete event simulation (PDES) reduces the

overall execution time by parallel execution of the simu-

lation on multiple processors. There are two main avenues

for parallel simulation: space-parallel simulation (distrib-

uted simulation), and time-parallel simulation. In the

space-parallel simulation approach [17, 27], the simulation

model is decomposed into a number of components on a

spatial basis. Each component is modeled by a logical

processor. Logical processors establish a communication

mechanism among each other to avoid or fix possible

causality errors. There are two general mechanisms to

avoid/correct causality errors: optimistic mechanisms and

conservative mechanisms. With optimistic mechanisms

[22], a processor can execute an event e without the

knowledge of its prior events, and state recovery methods

[34, 35, 37] are required to restore the state of the simu-

lation once causality errors are detected. Instances of

optimistic space-parallel simulations include [9, 11, 12, 16,

35, 43]. In conservative simulations, a processor does not

execute an event e until all events that may affect event e

are executed. Instances of conservative space-parallel

simulations include [19, 25, 28, 45].

Load balancing in PDES refers to distributing the

workload over different processors evenly. An efficient

load balancing scheme can greatly improve the speedup of

PDES, due to the fact that the overall progress of the

simulation is decided by the progress of the slowest pro-

cessor. Various load balancing approaches for space-

parallel simulations can be found in [2, 4, 8, 13–15, 18, 36,

38, 44].

The parallel/distributed network simulator (PDNS) [45]

project uses a space-parallel simulation approach based on

the ns-2 network simulator[39]. However, the applicability

of PDNS is limited to wired networks, and the traffic

simulated at different spatial partitions cannot affect each

other.

The SWiMNet parallel simulator [5–7], is used for the

simulation of personal communication services (PCS)

networks with fixed channel assignment by specifying fine

grained mobility, variable call process, and arbitrary cov-

erage area. It is based on a combination of optimistic and

conservative paradigms and makes use of the event pre-

computation by the model independence within the PCS

model.

WiPPET [31], an optimistic parallel simulator for

evaluating the performance of wireless protocols, exploits

the parallelism of multi-channel radio networks either by

geographic locations of the resources or by different radio

channels.

Table 1 presents a comparison of PDNS, SWiMNet,

WiPPET and the time parallel simulation approach pro-

posed in this paper.

In the time-parallel simulation approach [1, 20, 21, 26,

40, 41], the long simulation interval is partitioned into

smaller adjacent simulation intervals, and each simulation

interval is assigned to a processor with a guessed initial

state. The simulation terminates when the final state of

each interval matches the initial state of its successive

interval. Thus, state matching is one of the key problems of

time-parallel simulation. In [26], the authors propose a

time-parallel simulation algorithm based on state matching.

A simulation is defined as partial regenerative if there

exists a subset of the system state variables such that the

subsystem represented by the subset can repeat its state

infinitely many times. The system is then partitioned at the
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regeneration points which mark a regenerative sub-state.

In some cases the regeneration points of a regenerative

simulation can be found without performing a detailed

simulation; the state matching problem can be solved by

performing a pre-computation [29, 30]. Wang and Abrams

propose a pre-simulation to identify regenerative points

based upon Markovian modeling [41].

Kiesling [24] mentioned that the widespread use of time

parallel simulation is restricted by the state-match problem,

due to the difficulty in identifying regeneration points,

especially for models with complex states. Unfortunately,

time-parallel simulation of wireless networks belongs to

this category. Kiesling pointed out that the use of

approximate solutions can facilitate the temporal decom-

position of simulation models. Since errors are introduced,

an error control method must be provided for approximate

time-parallel simulation. The simulation starts with gues-

sed incorrect initial states, and fix-up computations are

re-executed to reduce the error. Although time-parallel

simulation rarely allows us to obtain accurate results,

approximate results [21, 23, 24, 40] can be produced effi-

ciently. The initial version of the time-parallel simulation

of wireless ad hoc networks are presented in [3].

3 Time-parallel simulation of ad hoc networks

3.1 The one-step time-parallel model

A simulation S of an ad hoc network is specified by a

quadruple ðE;A; s; IÞ where E ¼ fe1; e2; . . .g is a set of

planned events, A is the geographic area, s = [ss, se) is a

time interval and I is the initial state of the network at time

ss. The output of the simulation is the simulation trace

T ¼ ft1; t2; . . .g and the final state F at time se. The

simulation trace is a series of events which includes the

planned events (E � T ) as well as events which are con-

sequences of the planned events.

The idea behind time-parallel simulation is to replace

the simulation S with a number of smaller simulation

segments, which operate on the full area A, but on subsets

of the time interval s. First, we describe the most

straightforward way for implementing time-parallel

simulation through disjoint time intervals of equal length.

In the following sections, we consider modifications to this

basic model in order to achieve higher accuracy and/or

speedup. In this basic model, we partition the time interval

into m disjoint intervals of length sd ¼ se�ss

m :

si ¼ ½ss
i ; s

e
i Þ ¼ ½ði� 1Þ � sd; i � sdÞ; i 2 f1; . . .;mg ð1Þ

This also implies the partitioning of the planned event set:

Ei ¼ feijei 2 E; ss
i � timeðeiÞ\se

i g ð2Þ

The segments of the time-parallel simulation are specified

by the quadruples ðEi;A; si; I iÞ. As the segments are m

times shorter than in the original simulation, their execu-

tion will take roughly m times shorter time, and they can be

executed in parallel on m independent processors. The

simulation trace of the full simulation will be the union of

the simulation traces T ¼ T 1

S
. . .
S
T m, while the final

state of the network will be F ¼ Fm .

The main difficulty pertains the calculation of the initial

state I i. For the first segment, we have I 1 ¼ I . For the

other segments, the correct initial state is the final state of

the previous segment I i ¼ F i�1. However, using the final

state of the previous simulation segment would require the

in-order simulation of the segments, preventing any

parallelism.

One crude approximation would be to assume that every

simulation segment starts with the original state of the

network I . In this one-step time-parallel simulation the

simulation segments are specified by ðEi;A; si; IÞ .

Experiments show that the accuracy of the one-step

time-parallel simulation is not sufficient for the practical

purposes of wireless ad hoc network simulation. In the

following, we analyze the source of errors in the time-

parallel simulation of wireless ad hoc networks, estimate

the magnitude of these errors, and propose methods to

improve the accuracy of the simulation.

3.2 Measurements on the simulation trace

A simulation trace includes planned events, (E � T ), as

well as new events triggered by the planned events and

Table 1 A comparison of PDNS, SWiMNet, WiPPET and the time-parallel simulation approach (TPS) proposed in this paper

PDNS SWiMNet WiPPET TPS

Application domain Wired networks PCS networks Multi-channel radio networks Wireless ad hoc networks

Parallelism Space-parallel Space-parallel Space-parallel Time-parallel

Error control scheme Conservative Conservative/optimistic Optimistic State matching

Main issues The interference between different logic processors must be limited.

The optimistic approach requires a large amount of memory

Efficient estimation of the initial

state of the simulation segments
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calculated by the simulation process. For example the

event corresponding to sending a packet may trigger a new

event indication a collision with another transmission.

Every event ei has a set of properties, e.g., the time of the

event time(ei), the type of the event, the packet size, etc.

Such information allows us to determine important mea-

sures of performance such as packet delay, packet loss

ratio, throughput, and so on.

The purpose of running a simulation is to collect the

information associated with the events in the trace. How-

ever, we are rarely interested in individual events, we are

concerned with observations, or measurements, spanning

longer time intervals, or the entire trace.

Measurements can be:

(a) instantaneous Mi(tc), reflecting the situation at the

current time tc.

(b) cumulative Mc(tc), reflecting the evolution of the

measurement from the beginning of the simulation to the

current time tc. For every instantaneous measurement Mi,

there is an associated cumulative measurement Mc:

McðtcÞ ¼
Z tc

0

MiðtÞ dt ð3Þ

(c) average Ma(tc). For every instantaneous

measurement Mi, there is an associated average

measurement Ma defined by:

MaðtcÞ ¼
R tc

0
MiðtÞ dt

tc
ð4Þ

An example of instantaneous measurement is the

current transmission rate, with the associated cumulative

measurement total transmitted data, and the associated

average measurement average transmission rate.

Many average measurements are expressed as ratios of

measured quantities. For some of these measurements, we

find it useful to define the complementary measure

C(Ma) = 1 � Ma. For instance, the average packet loss

ratio has as complement the average packet delivery

ratio.

3.3 Perturbations on a measurement

In the following, we investigate how an event perturbs the

measurements of a simulation of wireless ad hoc networks.

Our model accurately captures the underlying phenomena

and provides a framework in which observations can be

analyzed and predictions can be made.

We call an approximate simulation for the measurement

M, related to simulation S, a simulation S0 which generates

a trace T 0 such that MðT 0Þ � MðT Þ .

The absolute error of simulation for measurement M is

dM ¼ jMðT Þ �MðT 0Þj ð5Þ

The relative error of simulation for measurement M is

�M ¼
jMðT Þ �MðT 0Þj
jMðT Þj ð6Þ

We define the relative accuracy for measurement M as

1 � eM. In most cases, the relative accuracy, expressed in

percentages, is the most intuitive measure of the quality of

an approximate simulation. For instance, a statement such

as ‘‘the simulation has an accuracy of 98%’’ can

conveniently express the fact that the relative error is

smaller than 2%. The relative accuracy is a non-

dimensional quantity, allowing us to compare the

accuracy of different measurements.

However, the relative error suffers from the phenomena

of error amplification for measurements which represent

the average ratios for rare events. Let us consider a simu-

lation scenario where out of 1,000 packets sent two are

lost; then we say that the packet loss ratio is MPLR = 0.002.

If we have an approximate simulation which finds only one

lost packet, the relative error will be:

�PLR ¼
jM0PLR �MPLRj
jMPLRj

¼ j0:002� 0:001j
j0:002j ¼ 50% ð7Þ

However, repeating the same calculation for the

complementary measure packet delivery ratio

MPDR = C(MPLR) = 1 � MPLR:

�PDR ¼
jM0PDR �MPDRj
jMPDRj

¼ j0:998� 0:999j
j0:998j � 0:1% ð8Þ

Thus, the simulation appears very inaccurate for one

measurement and very accurate for the complementary

measurement. The physical phenomena behind this

phenomenon is that the appearance of a rare event, for

instance of a packet loss in a lightly loaded network is

dependent on the coincidence of a number of factors. An

approximate simulation might approximate well the

probability of occurrence of those factors, but not the

exact location and time where the event will take place.

Therefore, the absolute error might be a better indicator of

the accuracy of simulation for the measurements on rare

events. The absolute error has the additional advantage that

the absolute error of the measurement and the

complementary measurement is identical

dM ¼ jMðT Þ �MðT 0Þj ¼ jð1�MðT ÞÞ � ð1�MðT 0ÞÞj
¼ dCðMÞ

ð9Þ
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Now we introduce the notion of a perturbing event ep.

We consider a simulation with the planned events

E ¼ fe1. . .eng and a perturbed set E0 ¼ E
S

ep. The per-

turbed set of planned events will lead to a simulation trace

T 0 and, obviously, to perturbed measurements M0(t). We

are interested in the size and the temporal extent of the

perturbations DM(t) = M0(t) � M(t). We say that

– The perturbation has no effect on measurement M if

DM(t) = 0, Vt.

– The event ep creates a time limited perturbation in the

measurement M which lasts until the extinction time te if

DM(t) = 0, Vt > te.

– The event ep has a shift effect perturbation on the

measurement M if limt!1ðDMðtÞÞ ¼ c, with c being the

shift constant. If there is a time point ts with the property

that DM(t) = c, Vt > ts, we call ts the stabilization

point.

Property 1 If an event ep causes a time-limited pertur-

bation on the instantaneous measurement Mi with

extinguishing time te, it creates a shift effect perturbation

on the corresponding cumulative measurement Mc, with the

stabilization point ts = te. The shift constant can be

expressed as:

c ¼
Z te

tp

DMiðtÞ dt ð10Þ

– We say that an event causes a destabilizing perturba-

tion of measurement M if 9= ts [ tp such that DM = c,

Vt > ts.

3.4 Propagation of perturbations in wireless ad hoc

networks

As a first approximation, the events in a wireless ad hoc

networks are caused by individual transmissions of packets.

We consider the perturbing event to be the insertion of a new

packet in the network. The removal of the packet is not

considered separately, because it is equivalent to simply

reversing the perturbed and the original system. As we are

concerned about the absolute values of the difference between

the measurements of these systems, the reversed system will

yield the same conclusions. An additional type of perturba-

tion we consider is the perturbation of the initial state, i.e., the

simulation starts with a different initial state than expected.

We discuss this type of perturbation separately.

For events representing the addition or removal of a

single packet, the immediate affect of the perturbations is

usually minimal. However, the networking protocols

deployed at various levels of the networking stack can

amplify or (in some cases) reduce the impact of the per-

turbations. In the following, we investigate the impact of

the protocols deployed at the various layers of the net-

working stack on the perturbation produced by the

insertion of a single packet.

3.4.1 Physical layer

An inserted packet will perturb the physical layer mea-

surements only for the duration of the packet transmission.

The time it takes to transmit a packet can be calculated as

follows. Assume that we send a packet of 1,536 bit, the

maximum length supported by the 802.11b protocol. The

transmission rate of 802.11b is 1.375 Mbps. The time

required to send this packet is composed of:

– Distributed inter-frame space (DIFS), set to 50 ls

– Data packet transmission: 192 ls for the preamble +

1,536/1.375 Mbps = 192 ls + 1,118 ls

– Small inter-frame space (SIFS), set to 10 ls

– 802.11 ACK packet: 192 ls + 14/1.375 Mbps =

203 ls

Thus, the total time becomes 2084 ls, or approximately,

2 ms. This might change slightly for different protocols,

but the order of magnitude remains the same. We conclude

that the perturbation in the physical layer due to a new

packet is time-limited, with a very short (2 ms) extinction

time.

3.4.2 MAC layer

The perturbation caused by an inserted packet in the MAC

layer depends on the influence of the load, and the type of

the packet. The influence of a control packet such as ACK,

RTS, or CTS, its influence extends beyond the time frame

covered. For instance, receiving an RTS packet in a carrier

sense multiple access with collision detection (CSMA-CA)

network forces the node to refrain from transmitting for the

duration specified in the packet. The size of this interval

can be as long as the maximum packet transmission time,

on the order of magnitude of 2 ls.

Delaying the sending of a packet can in its turn delay the

sending of the response or follow-up packets, creating a

ripple effect. Normally, this will appear as a time-limited

perturbation. For a time division multiple access (TDMA)

type protocol, for a channel with the capacity of n bps, with

a load of m � 1, and a packet size of l, the extinction time

can be estimated as:
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te ¼
l

n � ð1� mÞ

Note that for a full channel, m = 1, the perturbation

becomes a shift effect perturbation.

For CSMA-CD protocols, the perturbation will extend to

the length of the contention window. 802.11b uses an

exponential back-off algorithm where the contention win-

dow can vary between CVmin and CVmax. Typical values

of CVmin are between 7–15 and of CVmax are between

7–255 with the numbers being multiples of a slot time

which is 20 ls in 802.11b. Thus, the influence of initial

collision can extend to 5,000 ls. However, if the channel is

very busy, the initial collision can lead to further collisions

down the line. Furthermore, any collision is extending the

collision window through exponential back-off, which will

be only gradually reduced.

In conclusion, on highly loaded networks, the insertion

of a packet creating a collision can cause perturbations of

up to several seconds in the worst case.

3.4.3 Routing layer

Perturbations triggered by packet insertion at the routing

layer are heavily dependent on the nature of the protocol

and the inserted packet. The critical question is whether the

packet will change the routing of future packets or not. If

the packet is part of an established flow of application layer

data, it will most likely not affect the routing of the other

packets. If the packet is the first packet of a new flow, and

the routing protocol is a reactive one, the packet will

establish a new route. This frequently requires broadcast of

routing information, which in its turn triggers the trans-

mission of additional packets. Although this appears to be a

destabilizing perturbation, the extent of this flooding is

carefully constrained by the routing protocol and it will last

at most several seconds.

Proactive routing algorithms deploy a routing table

periodically updated by routing packets. The insertion of

a routing packet triggers a perturbation in the network by

changing the routing table of a node, and this will affect

the routing of future packets. This is a major perturba-

tion, affecting a large number of packets and a time

interval on the order of minutes. A routing table per-

turbation is extinct when the routing tables of the

original and the perturbed system re-converge. This sit-

uation occurs when:

– The modified routes are superseded by new, indepen-

dently discovered routes, in both the original and the

perturbed system (for instance, as a result of node

mobility).

– The original system acquires the same routes as the

perturbed one.

– The modified routes expire through a timeout and the

routing table returns to the unperturbed version.

– An external command or a predetermined timeout

flushes partially or completely the routing tables, forcing

the recomputing of all routes.

Although it is technically possible to imagine a routing

protocol where the loss or addition of a single routing

packet would change the routes indefinitely, virtually all

protocol designers, in their quest to make the protocols

more reliable, have adapted features which make the

routing tables converge; this has the indirect effect of

limiting the perturbations and improving the accuracy of

time-parallel simulations.

3.4.4 Transport layer and application layer

Finally, we investigate how a perturbing event affects the

transport layer and the application layer protocols. The

major difference here is between reliable and non-reliable

protocols. Let us consider the case of the most frequently

used reliable transport protocol, TCP. The loss of a single

TCP packet can significantly perturb the subsequent TCP

flow: the packet will be retransmitted, the transmission

window reset to its minimal value, which will then extend

through the slow start algorithm. Thus, the loss of a single

packet can exert an influence over the network for several

tens of seconds.

In the case of the UDP protocol, which does not

implement reliable transmission, the perturbation is mini-

mal or nonexistent at the transport layer. However,

applications which deploy UDP at the transport layer fre-

quently use application layer protocols to control the flow

of data. For instance, the multimedia streaming application

RealPlayer is using an application level byte stream pro-

tocol (real-time transport protocol (RTP), specified in RFC

1889) for the transfer of multimedia information, with UDP

being the transport protocol. Packet losses are handled by a

complex logic and actions involving the real time stream-

ing protocol (RTSP), real time control protocol (RTCP),

session description protocol (SDP) and, of course RTP.

We conclude that perturbations have effects up to the

application layer. However, at the application layer, the

behavior of the system becomes very complex, and in some

cases, small perturbations can have major effects on the

state of the system. This problem is not specific to time-

parallel simulation. Most simulation studies of wireless

ad hoc networks consider scenarios with constant or vari-

able bit rate generic UDP sources, without application level

protocols deployed in the simulator. When application
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level flow is simulated, it is done by an artificially gener-

ated stream which replicates the properties of a packet

stream generated by the application level protocol, without

actually deploying the application in the simulator [42]. In

these types of models perturbations propagate only over

very short time frames, thus creating an environment

favorable for time-parallel simulation.

Until now, we have considered only perturbations

caused by a single event. In the following, we discuss the

perturbations caused by the interaction among two or more

independent events:

Dual events. Dual events cancel each other; their suc-

cessive occurrence does not change the state of the system.

For instance, a reboot sequence is represented by two

events: a node failure, followed after a short time by the

node recovery. Individually, each event causes a pertur-

bation, however their effects cancel each other. The state of

the system will be the same as if none of the events

occurred. This favorable case rarely occurs in practice.

Idempotent events. Idempotent events lead to the same

state regardless if only one, a subset, or all of them occur.

For instance, two consecutive missed routing table updates

have the same effect, an incorrect routing table entry,

which requires the need to run a path discovery process.

Idempotent events appear whenever some component of

the system has a special ‘‘correct’’ state, while the other,

‘‘incorrect’’ states are functionally identical. Such system

components are relatively frequent; examples are routing

table entries or established end-to-end connections.

Independent events. Independent events lead to the same

state of the system regardless of the order in which they

occur; the overall perturbation of state caused by the events

is additive. Their compound effect can be studied consid-

ering the perturbations caused by the individual events

independently.

Mutually amplifying events. Such events lead to drastic

alteration of state; the perturbation caused by a sequence of

such events is significantly larger than the perturbations

caused by the individual events occurring independently.

For example, an event causes a routing table to be over-

written with incorrect values and the second event

propagates the incorrect routing table to all the nodes in the

network, causing the network failure.

Naturally, mutually amplifying events are the worst case

scenario from the point of view of the accuracy of the time

parallel simulation. We need to carefully consider whether

they can occur in the considered scenarios. Note that in our

hypothetical example, the mutually amplifying events

caused a total interruption of the communication in the

simulation. Practically deployed networking stacks contain

build-in guards against such types of unstable behavior.

Mutually amplifying events are clearly possible during the

experimental testing of new routing or MAC protocols. The

observation of such an unstable behavior is an important

feedback to the developers; at the same time, they need to

be aware that the errors in the time-parallel simulation of

such unstable systems are significantly higher.

We conclude that inter-event interactions yield pertur-

bations which are identical or smaller than the

perturbations considered individually, for most practically

deployed, stable protocols. Mutually amplifying events,

however, are possible if the deployed protocol stack shows

unstable behavior (most frequently, as a result of experi-

mental code). In these cases the accuracy of the simulation

will be much lower.

3.5 Techniques for improving the accuracy

of time-parallel simulations

Let us now return to the one-step time-parallel simulation

described in Sect. 3.1, and consider the sources of errors in

the approximation. For instance, in Fig. 1(a) we see a

partitioning of the simulation interval [0, t] into three equal

time intervals: [0, t1 = t/3], [t1 = t/3, t2 = 2t/3] and [t2 = 2t/

3, t]. The event e1, in the first segment is creating a per-

turbation which is not extinguished until the middle of the

second segment. As the two segments are simulated inde-

pendently, the processor simulating the second segment

does not know about the perturbation which leads to an

inaccurate simulation. Let us now review several tech-

niques through which this inaccuracy can be reduced or

eliminated.

3.5.1 Time interval shift

One way to increase the accuracy of the simulation is to

select the boundaries of the simulation intervals such that

the perturbations are completely contained in the segments,

as shown in Fig. 1(b). These points are the equivalent of

the regenerative states of stochastic processes. If we can

not find states where all the perturbations are extinguished,

we can search for points where there are a comparatively

smaller number of ongoing perturbations (partial regener-

ative states).

There are several problems with this approach. First,

there might not be any regenerative states in the simulation,

or their distribution might be such that it does not lead to

segments of size appropriate for parallelization. The most

difficult problem, however, is finding regenerative or par-

tially regenerative states in a simulation without first

running the simulation itself. There are certain circum-

stances when the identification of such points is possible. If

a routing protocol periodically flushes the complete set of

routing information, that instance corresponds to a

Wireless Netw

123



regenerative state. Similarly, long periods of silence can be

used as regenerative states, and they can be identified with

an initial analysis of the scenario.

3.5.2 Warmup interval

This technique relies on separating the timespan of the

simulation segment into the warmup interval followed by

the measurement interval. During the warmup interval, we

perform the simulation but do not record any measure-

ments. Thus, the simulation performed during the

measurement interval will be more accurate, because it will

consider not only the events occurring during the mea-

surement interval, but also the perturbations caused by

events which occurred during the warmup.

The ideal size of the warmup interval is the shortest

period which contains all the perturbing events which

generate perturbations extending into the measurement

interval (see Fig. 1(c)). The size of the required warmup

can vary between various segments, the first segment does

not require a warmup. Unfortunately, for practical cases we

can not accurately compute the ideal length of the warmup

interval without first running the simulation.

3.5.3 Warmup with compressed history

In a practical run of time-parallel simulation with warmup,

the size of the warmup period can be significantly longer

than the measured interval; thus most of the computation

time is spent into the simulation of the warmup interval,

which does not contribute to the measurements. Tradi-

tionally, the warmup interval is the exact copy of the

simulation scenario for a period before the measured

interval. We can replace the warmup interval with a shorter

and/or simpler simulation interval which, however, would

yield the same results. For instance, we can remove all the

events from the warmup period which do not produce

perturbations at the measured point. For the events which

produce perturbations, we might be able to replace them

with events easier and faster to simulate. We call this

modified warmup interval a compressed history (see

Fig. 1(d)).

3.5.4 Initial state approximation (ISA)

In this technique, we are computing an approximation of

the initial state of the segments without previous execution

of the simulation. We had seen that for a typical simulation

of a wireless ad hoc network the perturbation with the

largest impact on the measurements relates to changes in

the routing table. As most simulations start with an empty

routing table which will be filled in during the initial phase

of the simulation, this is a major source of errors.

Approximating the routing table at the beginning of each

simulated segment can thus significantly increase the

accuracy of the simulation.

3.5.5 Composite methods

The methods of improving the precision of the time-par-

allel simulation can be used in conjunction with each other.

The warmup can be composed of two periods: one of

compressed history (for instance, covering the complete

timeframe from the start of the simulation), followed by a

warmup period operating on the unmodified planned event

list. The initial state approximation method can be used to

(a) (b)

(c) (d)

te1
e2 t2t1

warmup
interval

measured
interval

te1
e2 t2t1

measured
interval

te1
e2 t2t1

measured
interval

te2 t2

measured
interval

compressed
history

e1

Fig. 1 An illustration of several

techniques for improving the

accuracy of time-parallel

simulations. (a) One-step time-

parallel simulation with

segments of equal length.

(b) Time interval shift.

(c) Warmup intervals.

(d) Warmup with history

compression
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approximate the state at the beginning of the warmup

period. Time period shift can be deployed in conjecture

with any of the methods.

4 Implementation of time-parallel simulation

for ad hoc networks

In the following, we present our implementation of the

time-parallel simulation using the ns-2 simulator [39]. The

first method, based on the iteratively extended warmup of

the simulation segments, can be deployed without changes

to the ns-2 implementation of the protocols. An alternative

method combines iteratively extended warmup and initial

state approximation and produces better results; this

method requires some knowledge of the implementation of

the routing protocol and additional code to allow the ini-

tialization of the routing tables.

Let us now highlight the relevant features of the ns-2

simulator. We defined a simulation as the transformation the

quadruplet ðE;A; s; IÞ into the output consisting of the final

stateF and the simulation trace T . While ns-2 is compatible

to this definition, there are differences in our ability to

extract, interpret and modify the different components.

The ns-2 trace files, E and F are very easy to create,

parse and filter, they consist of lines of text, one line per

event. Once the simulation passes a given timeline, the

output is immediately available, thus data can be extracted

while the simulation is in progress.

In contrast, it is relatively difficult to generate and

extract the initial and final state of the simulation. The data

associated with the state is distributed across the protocol

implementations; there is no standard format and no stan-

dard API through which this information can be accessed.

While in principle there is no obstacle to access this

information, this task needs to be handled from case to

case, and it requires extensive knowledge of the imple-

mentation details of the protocols involved.

4.1 Time-parallel simulation with iteratively extended

warmup

Our first method for implementing time-parallel simulation

relies on iterative extension of the warmup interval. The

approach allows us to obtain simulation results with

increasingly higher accuracy during the runtime of the

simulation. The simulation can be stopped when the

desired accuracy is reached. This approach does not require

the manipulation of the initial or the final state of the

simulation, thus it is independent of the simulated proto-

cols. Nevertheless, different protocols might converge at a

different speed to the correct solution.

To implement the approach, we first decide on the

number of simulation threads, m and choose m equally

spaced starting points (i � 1)s/m, where i [{1,…,m}. The

m threads of the simulation are started independently and

they are defined by the quadruplets ðEi;A; ½is=m; sÞ; IÞ;
respectively. The planned event set Ei of simulation thread

i is defined as:

Ei ¼ feje 2 E; timeðeÞ� is
m
g ð11Þ

Note that each simulation thread starts with the same,

normally empty, initial state I . The first thread, started at

s1=0 is performing a traditional, linear simulation. An

example of this process, for the case of m = 10, s=200 s is

illustrated in Fig. 2.

We can obtain the first approximate solution starting

from the moment when all the simulation threads have

progressed at least s/m in their simulation process. As the

simulation progresses further, most time intervals were

simulated by more than one thread, but as the threads

started at different time points, the length of the warmup

period with which the simulations were performed varies.

The best approximation is obtained by stitching together

the segments from the various simulation runs, taking every

segment from the simulation run where it was executed

with the largest amount of warmup.

For instance, the shaded rectangles in Fig. 2 show the

results obtained after each thread progressed over at

least 3s/m simulation time. The time interval [60, 80)

is simulated by threads 2, 3, and 4, the best approxi-

mation is provided by thread 2 with the longest warmup

period.

P1,0 P1,1 P1,2P1

P2,0 P2,1 P2,2

P3,0 P3,1 P3,2

P4,0 P4,1 P4,2

P5,0 P5,1 P5,2

P6,0 P6,1 P6,2

P7,0 P7,1 P7,2

P8,0 P8,1 P8,2

P9,0 P9,1

P10,0

P2

P3

P4

P5

P6

P7

P8

P9

P10

20 40 60 80 0 100 120 140 160 180 200 
Time

Fig. 2 Time-parallel simulation with iteratively extended warmup

interval. The simulation progressed 3 · 200/10 = 60 s in each thread.

The shaded rectangles show the current best approximations for the

corresponding time segments
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4.2 Time-parallel algorithm with initial state

approximation

In the previous section, we have seen how our implemen-

tation of iteratively extended warmup involves the threads

of simulation specified by the quadruplets ðEi;A;

½is=m; sÞ; IÞ; that is, the simulation threads start with the

same, usually empty, initial state I . This is one of the

major source of errors. To obtain an accurate simulation,

we would need to start the simulation with an initial state

I i; which describes the state of the simulation as would

appear at the corresponding moment in a linear simulation

run.

The initial state approximation method relies on running

the simulation threads specified by ðEi;A; ½is=m; sÞ; I0iÞ
where I0i � I i is an approximation of the initial state. The

whole point of the method is that I0i is computable without

the need to run a serial simulation to the corresponding

timepoint.

The analysis of Sect. 3.4 shows that the perturbations

with the largest effect on the behavior of the network are

the changes in the routing tables. Therefore, in our

implementation of the initial state approximation, we will

concentrate on the estimation of the state of the routing

table at the simulated time point. Naturally, this method

can be applied only to the routing protocols which use a

routing table. The method can not be applied to purely

reactive routing protocols such as AODV. On the other

hand, reactive routing protocols have less state informa-

tion, and approximating their initial state with an empty

state yields less error. This conjecture is supported by our

experiments in Sect. 5.2.

The approximation of the routing table needs to be

implemented separately for every routing protocol, as both

the routing table and its representation in the simulation

code can vary between the different protocols. In the fol-

lowing, we describe our implementation for the DSDV

routing protocol.

The implementation requires the understanding of the

procedure used by the protocol to build its routing table. In

DSDV, every node maintains a routing table which con-

tains all available destinations, the next node to reach a

given destination and the number of nodes necessary to

reach that destination. In essence, this is a shortest path

problem, complicated by the fact that (a) no global view of

the network is available and (b) the mobility of the nodes

can change the network connectivity and make the routing

table obsolete. DSDV solves the first problem by deploying

a distributed version of the Bellman-Ford algorithm. This

algorithm relies on the iterative improvement of the routing

tables through periodic or event-triggered broadcast of the

routes to the immediate neighbors of the node. Even in a

static network, it needs several send/receive cycles until the

correct distance information is distributed all over the

network. In a mobile network, the routing tables contain

only an approximation of the correct shortest path

information.

Let us now consider how we approximate the initial

state of the routing table at time t. When running a simu-

lation, the researcher is in the position of an omniscient

external observer. Knowing the mobility models deployed

in the simulation, one can obtain the correct location

information of the nodes at any time point ti. Using this

information, an ‘‘ideal’’ routing table can be obtained by

simply running Dijkstra’s shortest path algorithm for each

node. Note, that having a global view of the network, there

is no point in running a distributed algorithm. The resulting

routing table is the one the DSDV algorithm would con-

verge to if the nodes would be immobile for a sufficiently

long time; this table will be used as the approximate initial

state I i in the time-parallel simulation. In practice, the

actual routing tables will be somewhat out of date due to

node mobility.

This approach can be readily adapted to routing proto-

cols which use a distance vector based routing table;

routing protocols which use tables constructed based on

different principles (e.g., geographic routing algorithms,

directed diffusion, and so on) need different approximation

methods.

5 Simulation study

We present the results of an investigation of the perfor-

mance, accuracy, and benefits of our methodology for

time-parallel simulation. We first performed the simulation

using the serial ns-2 simulator, obtaining a baseline result.

Next, we repeated the simulation using the iteratively

extended warmup model of time-parallel simulation as

described in Sect. 4.1, with data concerning the throughput

and packet loss ratio collected after every iteration. We

repeated the simulations for the widely used ad-hoc on-

demand distance vector routing (AODV) and destination

sequenced distance vector routing (DSDV) protocols; for

the table-driven DSDV protocol we run the simulation both

with and without initial state approximation.

We are concerned only the relative error of the results;

the absolute values of the measured quantities are not rel-

evant for our study, they are dependent on the scenario and

the deployed protocols, rather than the parallelization

model. However, the considerations in Sect. 3.4 show that

certain parameters of the scenario, such as the mobility of

the nodes and the network load, affect the number and

nature of perturbations. To quantify this influence we

investigate the accuracy of the time-parallel simulation

function of these scenario parameters.
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In all our experiments, we found that the first iterations

lead to a major decrease in the relative approximation

error, followed by a smaller improvement in subsequent

iterations. Thus, we find it useful to use a logarithmic scale

for the presentation of the results.

5.1 Simulation setup

To run our simulations in a realistic setting, we chose a

setting representative for practical scenarios. We consider a

set of mobile nodes moving in a rectangular area, with a set

of pre-determined communication patterns. The transmis-

sion range of the nodes is significantly smaller than the

simulation area. The node-to-node communication is

facilitated by a wireless ad hoc network routing protocol.

One of the challenges of the scenario is that the mobility of

the nodes changes the network topology and the routing of

the packets.

Our scenarios use two well known protocols, represen-

tative of the major classes of wireless ad hoc routing

protocols. DSDV [32] is a pro-active routing protocol in

which the nodes maintain routing tables and perform

actions to keep them up-to-date. AODV [33] is a reactive,

on-demand routing protocol where the routes are estab-

lished only as a result of explicit demand. These two

classes of protocols exhibit different behavior in relation to

the time-parallel simulation.

We use the ‘‘random waypoint’’ model [10] to simulate

the node movement. Traffic patterns are generated by

constant bit rate (CBR) sources sending 512-byte UDP

packets at a rate of 1 packet per second. The simulation

area is 500 · 500 and the default number of nodes is 80.

All the nodes have a transmission range of 100 m. The

scenario extends over a time interval of 600 s. Table 2

shows the default settings and the range of the parameters

for our experiments.

5.2 Achievable speedup

In our implementation m threads start at the simulation

time si = (i � 1)s/m and run concurrently. The first

approximate solution is obtained when all the threads have

progressed at least to time sd = s/m, thus the first approx-

imation can be obtained m times faster compared to a serial

simulation, ignoring the overhead required to extract and

assemble the approximate trace file.

It would appear therefore, that we want to increase m up

to the number of available processors. However, the

accuracy of the results decreases when m increases. Our

approach is to run the simulation for several more iterations

k, in each iteration the simulation progressing another s/m

on all threads.

The iterations will stop when the desired accuracy is

reached. For this paper, we assume that the desired

accuracy is 95%. Let us assume that the simulation

requires k95 iterations to reach this level of accuracy.

The speedup of the time-parallel simulation will be

g = m/k95. The value of k95 depends on many factors:

the choice of m, the length of the simulation, the

deployed protocols and the simulation scenario. The use

of initial state approximation can reduce the required

number of iterations.

In a series of simulation experiments, we have measured

the accuracy for various segment sizes sd = 10, 20, 30, 40,

50, and 60 s. In our experiments the simulated time being

s = 600 s, this corresponds to values of m = 60, 30, 20,

15, 12, and 10, respectively.

We show the relative error for the packet loss ratio,

Fig. 3(a), (c), (e), and the relative error for the throughput,

Fig. 3(b), (d), (f). The lines marked protocolname.ITER-

ATION.i show the relative error after the ith iteration. The

results show the average and the 95% confidence interval

of 10 simulation runs.

The first observation is that for all simulations the

accuracy in general is increasing with the number of iter-

ations (although some accidental reversals are possible).

As expected, for a given iteration, the accuracy is higher

for longer segment sizes (i.e., smaller m values). The

accuracy of the throughput is in general higher than the

packet loss ratio, thus we conjecture that the throughput is

relatively less sensitive to perturbations than the packet

loss ration.

There is a significant difference between the accuracy

obtained at a given iteration for AODV (diagrams a and b)

and DSDV (diagrams c and d). The proactive, table-driven

DSDV protocol has a much lower accuracy for a given

iteration, than the reactive AODV protocol. This is espe-

cially noticeable for the packet loss ratio. This validates

our inference from Sect. 3.4. We note a significant increase

in the accuracy for every iteration.

Table 2 The default values and the range of the parameters for the

simulation scenario

Parameter Default Range

simulation area 500 · 500 (m2)

number of nodes 80

transmission range 100 (m)

speed 1 (m/s) 1–21 (m/s)

pause time 15 (s)

simulation time 600 (s)

segment duration 30 (s) 10–60 (s)

number of CBR sources 20 4–40

CBR packet size 512 (bytes)

CBR sending rate 4 (kbps)
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Table 3 shows a different view of this data, which might

be more important for a researcher. With our assumption that

the desired accuracy is 95%, the table shows for each m and

corresponding sd value the number of iterations necessary to

achieve that accuracy k95, the actual accuracy obtained

(1 � e) and the overall speedup of the simulation g.

A conclusion to be drawn from Table 3, is that time-

parallel simulation leads to a significant speedup. The

speedup is 20 times for AODV, 4.28 times for DSDV

without ISA, and 8.6 times for DSDV with ISA. In general,

the speedup is greater for reactive routing protocols. Initial

state approximation with the model described in Sect. 4.2
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Fig. 3 The relative measurement error function of the segment

duration at various iterations of the time-parallel simulations. The left

side of the figure diagrams (a, c and e) show the measured packet loss

ratio, the right side of the figure diagrams (b, d and f) the measured

throughput. Diagrams (a and b) show the results for the AODV

routing protocol, diagrams (c and d) for DSDV while diagrams (e and

f) for DSDV with initial state approximation used in the time-parallel

simulation
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can significantly increase the speedup for proactive,

table-driven protocols as well, but it comes with the dis-

advantage that it requires additional code besides the

standard ns-2 protocol implementation.

5.3 The influence of the scenario parameters

on the accuracy

Our results show that a significant speedup can be

achieved, while the accuracy is dependent on the choice of

the routing protocols. In a series of experiments, we

investigated the influence of other parameters of the sce-

nario on the accuracy of the time-parallel simulation. In

these experiments, we used a segment duration sd = 30 s

corresponding to m = 20 simulation threads. For all the

measurements, we measured the relative errors of packet

loss ratio and throughput for AODV, DSDV without ISA,

and DSDV with ISA.

Figure 4 shows the relative errors at various iterations

function of the network load. The network load is simu-

lated by varying the number of CBR sources (from 5 to 45).

Figure 4(a) shows the relative error of the packet loss ratio

and Fig. 4(b) shows the relative error for the throughput.

We see a very slight tendency for the relative error on

packet loss ratio to increase with the throughput for the

early iterations. In general, however, the relative error

remains almost constant across the range of the CBR

sources considered. At the third iteration, the relative error

was below 5% for all CBR values.

Figure 4(c), (d) shows the relative error for packet loss

ratio and throughput, respectively, for the simulation of the

DSDV protocol. Interestingly, the relative error for packet

loss ratio shows a decreasing trend with the number of

CBR sources for the early iterations and a slightly

increasing trend for the later iterations. For the throughput,

the relative error is almost constant for a given iteration,

independently of the network load. These slight trends

notwithstanding (some of which might be an artifact of the

experimental setup), in general the relative error consis-

tently decreases with the number of iterations for both

packet loss ratio and throughput, for all the tested values of

CBR sources.

Figure 4(e), (f) shows the values for DSDV with the

initial state approximation approach being used in the time-

parallel simulation. The trends are essentially the same as

in the case without initial state approximation. However,

for the equivalent iterations the relative error is signifi-

cantly lower. For higher network loads, we see that the

relative error for packet loss ratio is actually very close for

iterations 2 and 3, and in one case, for 32 CBR sources, the

iteration 3 shows a slight increase in the relative error over

iteration 2 (although both errors are less than 5%). This

reversal indicates the limits of the improvement obtainable

with the initial state approximation approach.

In conclusion, we find that the relative error of the packet

loss ratio and throughput shows only very slight dependence

on the network load. The general trend is that the relative

error consistently decreases with the number of iterations.

Figure 5 shows the same set of measurements test

function of the average mobility of the network nodes,

ranging from 1 to 21 m/s. For most experiments, the results

show that the relative error has a slight tendency to

decrease when node mobility increases. A plausible

explanation is that in a highly mobile network the routing

tables and the cached flow entries are recomputed more

frequently, thus limiting the influence of perturbations.

Other than this, all the previously observed tendencies

remain valid for all the possible values of node mobility.

The relative error decreases with the number of iterations

for both the packet loss ratio and the throughput. In gen-

eral, AODV converges to a relative error of less than 5% in

three iterations. DSDV converges much slower, but the

convergence can be sped up using initial state approxi-

mation. Overall, the influence of the mobility on the

accuracy is minor and predictable.

We conclude that the only significant parameter of the

scenario is the choice of the routing protocol and, for pro-

active routing protocols, whether initial state approxima-

tion was deployed or not. This is a favorable result, because

it limits the number of variables a researcher needs to

control for a time-parallel simulation.

Table 3 The number of

iterations k95 needed, the

accuracy (1 � e) and the

speedup g, as a function of

segment duration, for the

simulation of AODV, DSDV

without ISA and DSDV with

ISA

m-no. of threads sd-segment

duration (s)

AODV DSDV w/o ISA DSDV with ISA

k95 1 � e (%) g k95 1 � e (%) g k95 1 � e (%) g

60 10 3 95.6 20.0 14 97.3 4.28 7 98.4 8.6

30 20 2 95.4 15.0 8 96.9 3.75 4 97.6 7.5

20 30 2 95.4 10.0 5 96.7 4 4 98.4 5.0

15 40 2 95.8 7.5 4 96.5 3.75 3 98.1 5.0

12 50 2 95.8 6.0 4 97.7 3 2 96.3 6.0

10 60 2 95.7 5.0 3 97.3 3.3 2 97.2 5.0
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6 Summary and future work

In this paper, we described a methodology for time-parallel

simulation of wireless ad hoc networks. We presented a

quasi-formal analysis of perturbations, which gives us

some understanding of the source of errors in one-shot

time-parallel simulations. Based on a layer-by-layer anal-

ysis of the propagation of perturbations in the wireless

networking stack, we proposed several avenues for

improving the accuracy of the time-parallel simulation.
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Fig. 4 The relative measurement error function of the network load

at various iterations of the time-parallel simulations. The left side of

the figure diagrams (a, c, and e) show the measured packet loss ratio,

the right side of the figure diagrams (b, d, and f) the measured

throughput. Diagrams (a and b) show the results for the AODV

routing protocol, diagrams (c and d) for DSDV while diagrams (e and

f) for DSDV with initial state approximation used in the time-parallel

simulation
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Building on these considerations, we described an imple-

mentation of time-parallel simulation based on the ns-2

simulator. The techniques deployed are the iterative

extension of the warmup period, and initial state approxi-

mation for the proactive, table-driven routing protocols. A

series of experiments showed that a speedup between 5 and
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Fig. 5 The relative measurement error function of the node mobility

at various iterations of the time-parallel simulations. The left side of

the figure diagrams (a, c, and e) show the measured packet loss ratio,

the right side of the figure diagrams (b, d and f) the measured

throughput. Diagrams (a and b) show the results for the AODV

routing protocol, diagrams (c and d) for DSDV while diagrams (e and

f) for DSDV with initial state approximation used in the time-parallel

simulation
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20 times can be obtained for an accuracy of 95%,

depending on the choice of the routing protocol and whe-

ther initial state approximation was deployed or not. In

general, the simulation of reactive routing protocols shows

a higher accuracy and/or speedup than the one for proac-

tive, table-driven protocols. We show, however, that the

accuracy is relatively independent on other parameters of

the scenario, such as network load or node mobility.

Time-parallel simulation can be used to study measures

of performance such as packet loss ratio and throughput,

but there are other measures, such as end-to-end delay, that

require a different approach.

Future work include improved initial state approxima-

tion techniques that would bring the speedup of the table

driven protocols closer to the one for reactive protocols.

We are also considering more sophisticated models to

predict the accuracy of the simulation for arbitrary sce-

narios and combinations of networking protocols. Finally,

we plan to develop software components for time-parallel

simulation of wireless ad hoc networks on cluster com-

puters, without the requirement of in-depth knowledge of

the protocol implementation.
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