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Real-time Prediction of Taxi Demand Using
Recurrent Neural Networks

Jun Xu, Rouhollah Rahmatizadeh, Ladislau Bölöni and Damla Turgut

Abstract—Predicting taxi demand throughout a city can help to
organize the taxi fleet and minimize the wait-time for passengers
and drivers. In this paper, we propose a sequence learning model
that can predict future taxi requests in each area of a city
based on the recent demand and other relevant information.
Remembering information from the past is critical here since
taxi requests in the future are correlated with information about
actions that happened in the past. For example, someone who
requests a taxi to a shopping center, may also request a taxi to
return home after few hours. We use one of the best sequence
learning methods, Long Short Term Memory (LSTM) that has
a gating mechanism to store the relevant information for future
use. We evaluate our method on a dataset of taxi requests in New
York City by dividing the city into small areas and predicting the
demand in each area. We show that this approach outperforms
other prediction methods such as feed-forward neural networks.
In addition, we show how adding other relevant information such
as weather, time, and drop-offs affects the results.

Index Terms—Taxi demand prediction; time series forecasting;
recurrent neural networks; mixture density networks.

I. INTRODUCTION

TAXI drivers need to decide where to wait for passengers
in order to pick up someone as soon as possible. Passen-

gers also prefer to quickly find a taxi whenever they are ready
for pickup. Effective taxi dispatching can help both drivers
and passengers to minimize the wait-time to find each other.

Drivers do not have enough information about where pas-
sengers and other taxis are and intend to go. Therefore, a taxi
center can organize the taxi fleet and efficiently distribute them
according to the demand from the entire city [1], [2]. This taxi
center is especially needed in the future where self-driving
taxis need to decide where to wait and pick up passengers. To
build such a taxi center, an intelligent system that can predict
the future demand throughout the city is required.

Predicting taxi demand is challenging because it is corre-
lated with many pieces of underlying information. One of the
most relevant sources of information is historical taxi trips.
Thanks to the Global Positioning System (GPS) technology,
taxi trip information can be collected from GPS enabled
taxis [3], [4]. Fig. 1 shows an example of taxi request patterns
in two areas. Analyzing this data shows that there are repetitive
patterns in the data that can help to predict the demand in a
particular area at a specific time. Several previous studies have
shown that it is possible to learn from past taxi data [5–8].

In this paper, we propose a real-time method for predicting
taxi demands in different areas of a city. We divide a big city
into smaller areas and aggregate the number of taxi requests in
each area during a small time period (e.g. 20 minutes). In this
way, past taxi data becomes a data sequence of the number of
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Fig. 1. Taxi demand pattern in two different areas of New York City.

taxi requests in each area. Then, we train a Long Short Term
Memory (LSTM) [9] recurrent neural network (RNN) with this
sequential data. The network input is the current taxi demand
and other relevant information while the output is the demand
in the next time-step. The reason we use a LSTM recurrent
neural network is that it can be trained to store all the relevant
information in a sequence to predict particular outcomes in
the future. In addition, taxi demand prediction is a time series
forecasting problem in which an intelligent sequence analysis
model is required. LSTMs are the state of the art sequence
learning models that are widely used in many applications
such as unsegmented handwriting generation [10] and natural
language processing [11]. LSTM is capable of learning long-
term dependencies by utilizing some gating mechanisms to
store information. Therefore, it can for instance remember how
many people have requested taxis to attend a concert and after
a couple of hours use this information to predict that the same
number of people will request taxis from the concert location
to different areas.

However, predicting real-valued numbers is tricky because
many times simply learning the average of the values in the
dataset does not give a valid solution. It will also confuse
LSTM in the next time-step since the network has not seen the
average before. Therefore, we add Mixture Density Networks
(MDN) [12] on top of LSTM. In this way, instead of direct
predicting a demand value, we output a mixture distribution
of the demand. A sample can be drawn from this probability
distribution and be treated as the predicted taxi demand.

The remainder of this paper is organized as follows. Section
II introduces related works on prediction applications using
past taxi data and sequential learning applications of LSTMs.
Section III shows how we encode the huge number of GPS
records and a brief explanation of recurrent neural networks.
Section IV describes the proposed sequence learning model,
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as well as the training and testing procedures. In Section V,
we show the performance metrics and present the experiment
results. Lastly, in Section VI we conclude the paper.

II. RELATED WORK

A. Prediction applications using past taxi data

There are few previous research works conducted on taxi
demand prediction. Zhang et al. [5] propose a passenger hot-
spots recommendation system for taxi drivers. By analyzing
the historical taxi data, they extract hot-spots in each time-step
and assign a hotness score to each of them. This hotness score
will be predicted in each time-step and combined with the
driver’s location, the top−k hot-spots would be recommended.
Zhao et al. [6] define a maximum predictability for the taxi
demand at street blocks level. They show the real entropy
of past taxi demand sequence which proves that taxi demand
is highly predictable. They also implement three prediction
algorithms to validate their maximum predictability theory.
Moreira-Matias et al. [13] propose a framework consisting
of three different prediction models. In each time-step, the
predicted demand is a weighted ensemble of predictions
from three models. The ensemble weights are updated with
individual prediction performances of previous time-steps in a
sliding-window. Their framework can make short term demand
prediction for the 63 taxi stands in the city of Porto, Portugal.
Davis et al. [14] use time-series modeling to forecast taxi travel
demand in the city of Bengaluru, India. This information can
be given to the drivers in a mobile application so that they
know where the demand is higher.

In addition, based on historical and real-time taxi data,
dispatching center has been modeled in some studies. Zhang et
al. [7] propose a real-time taxi dispatching application. In their
system, two kinds of passengers are defined to model real-
time taxi demand: previously left-behind passengers and future
arriving passengers. Both left-behind and arriving passengers
can be simulated at the dispatch center based on the real-time
GPS traces of each taxi. A demand inference model called
Dmodel is proposed using hidden markov chain to model the
state changes of both left-behind and arriving passengers. Miao
et al. [8] propose a dispatching framework for balancing taxi
supply in a city. Their goal is to match taxi demand and supply
and minimize taxi idle driving distance. In their work, the
next time-step taxi demand is calculated by the mean value of
repeated samples from historical data.

More prediction applications using historical taxi informa-
tion can be found on topics such as taxi sharing and destination
prediction. Yuan et al. [15] present a recommender system
for taxi drivers and people expecting to take a taxi. They do
this recommendation by learning from taxi GPS traces and
mobility pattern of passengers. Ma et al. [16] propose a taxi
ride-sharing system that efficiently serves real-time requests
sent by taxi users. Rong et al. [17] model the passenger seeking
taxis as a Markov Decision Process (MDP) and propose a
method to increase the revenue efficiency of taxi drivers.
Azevedo et al. [18] look further in the future and investigate
the problem of improving the mobility intelligence of self-
driving vehicles through a large-scale data analysis. For a more

extensive survey on different approaches to analyze and learn
from taxi GPS traces, the reader is referred to a survey [19]
that focuses on this topic.

B. Sequential learning applications with LSTMs

de Brébisson et al. [20] propose to use recurrent neural
networks to predict taxi destination given the beginning of
taxi trip GPS traces. However, in our work the network learns
the past taxi demand pattern and continuously predicts when
and where a new taxi trip will start.

There are many other applications that LSTMs have been
widely used. Graves [10] proposed an online handwriting
sequence generation with LSTMs. In this application, the data
sequence consists of x and y pen coordinates and the points in
the sequence when the pen is lifted off. His model can generate
highly realistic handwriting. Rahmatizadeh et al. [21] propose
to use LSTMs to learn the sequential trajectories for a robot
arm. Their goal is to make the robot perform complex manip-
ulation tasks in real world. Some other successful applications
include language modeling [22], speech recognition [23] and
visual recognition [24]. LSTMs perform very well in all these
sequential learning applications.

Overall, aforementioned works on taxi demand prediction
motivated us to rely on historical taxi trip information to
predict future taxi demands. In terms of the taxi demand
prediction, most works either use a weighted method on
previous taxi demands or a time series fitting model to fit
the demand sequence. The problem is that when the data
sequence is very long, the performance is poor in these
approaches. Furthermore, time series fitting model has to be
trained separately for each area, hence, the patterns learned in
one area can not be used in other areas.

One of the differences between our work and the previous
works is that our model can capture long term dependencies
in a sequence that happen very far away from each other.
We train our network on sequences that are as long as a
week and this can be easily extended to a month or a year
if we have enough computational power to train the network.
Another advantage of our model is that we predict all the
areas of a city at once using a single model. With this
formulation, the patterns learned by the LSTM in one area
can be used in other areas. Additionally, our model predicts
the entire probability distribution of taxi demands instead of
deterministically predicting the number of requests for each
area. This approach gives a more realistic prediction as it takes
into account the uncertainty while predicting.

III. MATHEMATICAL MODEL

In this section, first we introduce how we convert the
high resolution GPS data into the number of taxi requests
in each small area of the city. Then, we briefly explain the
mathematical formulation of recurrent neural networks.

A. GPS data encoding

In order to be able to accurately predict the demand, we
divide the entire city into small areas. It is desired to predict
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taxi demand in small areas so that the drivers know exactly
where to go. However, learning to predict taxi demand in very
small areas is difficult. So, we need to choose an area size
which is both easy to predict and sufficiently accurate for
the drivers. In this paper, we use the Geohash library [25]
that can divide a geographical area into smaller subareas with
arbitrary precision. Geohash is a geocoding system that has a
hierarchical spatial data structure which subdivides space into
buckets of grid shape. The size of the grid is determined by
the number of characters used in the geohash code.

In our experiment, we use taxi data from 1/1/2013 through
6/30/2016 at NYC [26], which includes around 600 millions
taxi trips after data filtering. The dataset specifies for each
drop-off and pick-up event the GPS location and the times-
tamp. In our experiments, we divide the entire New York City
into around 6500 areas, with a Geohash precision 7. Each area
size is smaller than 153m× 153m under this precision. Then
we count the number of taxi requests during every time-step
length. In such a way, historical taxi data in each area becomes
the number of requests data sequences. These data sequences
are fed into the LSTM for sequential patterns learning.

B. Recurrent neural networks

The sequential nature of taxi demand data leads us to the
choice of a model that can handle time series data. Recurrent
neural networks (RNNs) are one of the most popular models
that can process sequential data very well. The idea behind
RNNs is to store relevant parts of the input and use this
information while predicting the output in the future. Unlike
feed-forward neural networks that only predict the output
based on the current input, RNNs contain memory in which
some important information from the past inputs can be stored.
For instance, when we train RNNs on a language modeling
task in which we generate a text one character at each time-
step, it is better to store what characters the network has
predicted in the previous time steps since the next character
is dependent on the previous predictions.

RNNs are called recurrent because they perform the same
computation on every element of a sequence, with the output
being conditioned on the previous computations. A typical
RNN structure is given in Fig. 2.

Fig. 2. A recurrent neural network

As we can see, the RNN processes input x, stores hidden
state h and outputs y at each time-step t. A loop allows
information to be passed over from one step to the next. All
W s are the shared weights among different time-steps. For
training these weights, we unroll the network for finite number
of time-steps as shown in Fig. 3.

Fig. 3. An unrolled recurrent neural network.

When the network is unrolled, it is more clear why it is
being used for sequence learning and how the information is
being passed to the future. The computation at each time-step
can be formulated as follows:

- xt is the input at time-step t.
- ht is the hidden state at time-step t. It is calculated

based on the previous hidden state and the current input
with the application of a non-linearity. In most RNN im-
plementations, this non-linearity is a hyperbolic tangent:
ht = tanh(Wxhxt +Whhht−1 + bh).

- yt is the output at time step t. We can decide how it looks
like according to the task. For example, in predicting next
word in a sentence, the output yt can be a probability
distribution over a vocabulary.

All parameters Wxh, Whh and Why are shared among each
unrolled time-step. So the network is actually performing
the same computation at each time-step, but with different
inputs xt. This greatly reduces the total number of parameters
in the network and avoids over-fitting on smaller datasets.
Hidden state ht is the main feature of RNNs. It works as
the network memory which captures useful information about
what happened in all the previous time steps.

Currently, the most commonly used type of RNNs are Long
Short Term Memory networks (LSTMs). LSTMs are a special
kind of RNN, capable of learning long-term dependencies due
to their gating mechanism. They were introduced by Hochre-
iter & Schmidhuber [9], and were refined and popularized by
many people in the following years.

IV. TAXI DEMAND PREDICTION MODEL

In this section, we discuss the sequence learning model.
The number of taxi requests in each area depends on many
underlying factors unavailable to our model. This will naturally
cause uncertainty in the model. So instead of forecasting a
deterministic taxi demand value, we use a stochastic model
that can predict the entire probability distribution of taxi
demands in all areas. We then use this probability distribution
to decide taxi demand for each area.

A. Mixture density networks

The most successful application of neural networks has been
achieved on classification tasks. When it comes to predicting
real-valued data, the choice of network structure is very
important. The idea of mixture density networks (MDNs) [12]
is to use the outputs of a neural network to parameterize
a mixture distribution. Unlike the model with mean squared
error (MSE) cost which is deterministic, MDNs can model
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stochastic behaviors. They can be used in prediction applica-
tions in which an output may have multiple possible outcomes.
In our application, rather than direct predicting the number of
taxi requests, the neural network outputs the parameters of a
mixture model. These parameters are the mean and variance of
each Gaussian kernel and also the mixing coefficient of each
kernel which shows how probable that kernel is. Given the
parameters of the mixture distribution, we can draw a sample
from it and use this sample as the final prediction.

B. LSTM-MDN sequence learning model

As described in Section III, we divide the entire city into
small areas and convert the past taxi data into week-long data
sequences. Fig. 4 shows the structure of the data sequence at
one time-step. For each time-step t, the data sequence consists
of two parts: et and dt. et represents the number of pickups
in each area and its length is the number of small areas in the
entire city. dt represents date, day of the week, hours, minutes
and other impacting factors at time-step t. The input to the
network at each time-step is xt = {et, dt} and the network
will try to predict yt = et+1.

Fig. 4. The input data structure at one time-step.

The sequence learning model is created based on an LSTM
recurrent neural network and the MDNs. Fig. 5 shows the
structure of the unrolled LSTM-MDN learning model. The
total unrolling length is a hyper-parameter that can be set
according to testing scenario. LSTM can encode the useful
information of the past in a single or multiple layers. The
input to each layer is the output of the previous layer con-
catenated with the network input. Each LSTM layer predicts
its output based on its current input and its internal state. The
concatenation of outputs of all layers will be used to predict the
output of the network which will be compared with yt, the real
demand value from the dataset, to form the error signal. We
use two LSTM layers in which each layer contains 1200−1500
neurons based on the specific testing scenario.

As shown in Fig. 5, the output of LSTM layers are mixture
density parameters with the total number of M × (N + 2)
in which M is the number of Gaussian kernels, and N is the
number of areas in the city. For each Gaussian kernel, we have
N neurons for the means µk(x), one neuron for the variances
σk(x), and another neuron for the mixing coefficient wk(x).
To satisfy the constraint

∑M
k=1 wk(x) = 1, the corresponding

neurons are passed through a softmax function. The softmax
function is regularly used in multiclass classification methods
to “squash” a vector of n arbitrary real values z into a set

Fig. 5. The LSTM-MDN learning model unrolled through time-steps.

of values that add up to 1, and which can be interpreted as
probabilities:

softmax (z)j =
ezj

n∑
k=1

ezk
(1)

The neurons corresponding to the variances σk(x) are
passed through an exponential function and the neurons cor-
responding to the means µk(x) are used without any further
changes. The probability density of the next output yt can be
modeled using a weighted sum of M Gaussian kernels:

p(yt|x) =
M∑
k=1

wk(x)gk(yt|x) (2)

where gk(yt|x) is the kth multivariate Gaussian kernel. Note
that both the mixing coefficient and the Gaussian kernels are
conditioned on the complete history of the inputs till current
time-step x = {x1 . . . xt}. The multivariate Gaussian kernel
can be represented as:

gk(yt|x) =
1

(2π)
N/2

σk(x)
exp

{
−‖yt − µk(x)‖2

2σk(x)2

}
(3)

where the vector µk(x) is the center of kth kernel. We do
not calculate the full covariance matrices for each kernel, since
this form of Gaussian mixture model is general enough to
approximate any density function [27]. Finally, we can define
the error function in terms of negative logarithm likelihood:

Et = −ln

{
M∑
k=1

wk(x)gk(yt|x)

}
(4)

After the model is trained, we can make a prediction for
time-step t + 1 by inputting taxi demand at time-step t.
As we can see in Fig. 6, we use the output which is the
mixture density parameters to parameterize a Gaussian mixture
distribution. A sample can then be drawn from this distribution
and this sample would be the prediction of the next time-step
taxi demand, êt+1. This prediction can be repeated in a loop
to predict taxi demand for multiple time-steps.
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Fig. 6. The LSTM-MDN model perform one prediction for time t+ 1.

C. LSTM-MDN-Conditional model

In the LSTM-MDN model, the probability distribution of
taxi demands in all areas are predicted at the same time-step.
This means that prediction in each area is conditioned on all
areas of all previous time-steps. However, the taxi demand in
an area might not only be related to the past, but also to the
taxi demands of other areas in current time-step. So instead
of outputting a joint distribution for all areas in a single time-
step, we ask the network to predict the conditional distribution
of each area at a single time-step. This approach has been
adopted in other works such as in Pixel RNNs [28] and
Neural Autoregressive Distribution Estimator (NADE) [29].
Fig. 7 shows the idea of generating yit conditioned on all
the previously predicted demands left. Here yit represents the
predicted taxi demand in area i at time-step t.

Fig. 7. Generate conditional distributions in a sequential way.

We call this approach LSTM-MDN-Conditional model. It
has the same input xt as the LSTM-MDN mode, but each xt
only leads to one area taxi demand output. Unlike predicting
taxi demands for all areas in LSTM-MDN mode, this model
sequentially predicts demand for each area in a conditional
way. Fig. 8 shows the unrolled LSTM-MDN-Conditional
model structure for one time-step prediction.

This LSTM-MDN-Conditional model not only learns de-
mand patterns from past taxi data, but also takes into account
current demands in other areas. Training such a model takes
much longer time than the LSTM-MDN model because the
LSTM needs to be unrolled for much longer time-steps. For
a city with N areas, the model needs to be unrolled N times
more compared to the LSTM-MDN model. Fig. 9 shows a
density map of real and predicted taxi demands over the entire
city.

V. EXPERIMENTAL STUDY

In this section, we evaluate the proposed LSTM-MDN and
LSTM-MDN-Conditional models on a dataset of taxi requests

Fig. 8. The unrolled LSTM-MDN-Conditional model for one time-step
prediction.

and see how well they can predict taxi demand in the future.
In addition, we compare our models with two other baselines
and show that they outperform both.

A. Experimental setup
We evaluate the performance of the proposed network

models with the New York City taxi trip dataset [26]. There
are two kinds of cabs in NYC: the yellow cabs, which operate
mostly in Manhattan, and the green cabs, which operate mostly
in the suburbs. The dataset contains taxi trips from January
2009 through June 2016 for both yellow and green cabs.
Each taxi trip has a pickup time and location information. In
this application, we use its most recent 3.5 years data: from
January 2013 through June 2016, which contains over 600
million taxi trips after data filtering. We use 80% of the data
for training and keep the remaining 20% for validation. The
network model is implemented in Blocks [30] framework that
is built on top of Theano [31]. We stop the training when the
validation error does not change for 20 epochs. The training
takes 2-4 hours on a GTX 1080 for each of the experiments.
After the training, the time that takes for the network to predict
the demand is less than a second. Note that the prediction
time is more important than the training time. This is because
the model can be trained once but once deployed it needs to
predict the demand in a loop to provide this information in
real-time.

Theoretically, LSTM can be trained using arbitrary sequence
lengths. However, constrained by the computational power,
we use every one week data as a sequence and cut it into
time-steps with different lengths. For example, if the time-
step length is 60mins, the sequence length would be 24× 7.
If the time-step length is 20mins, the sequence length would
be 24 × 3 × 7. For the 60mins case, the encoded input data
shape is (182, 168, 6494) in which 182 is the total number
of sequences in the dataset, i.e., number of weeks in the 3.5
years, 168 is the sequence length: 24 × 7, and 6494 is the
number of features consisting of number of areas, impacting
factors such as date, day of the week and other information.
Table I includes the list of parameters in the experiments.

B. Performance metrics and baselines
To systematically examine the performance of our pre-

diction approach, we include results with two widely used
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Fig. 9. The density map of real demand and the predicted demand. Red areas show high demand for taxis, yellow areas show lower demand, and there is
no demand in other areas. The figure illustrates that the difference between the prediction and the real value is very small.

TABLE I
EXPERIMENTAL PARAMETERS

Area/grid size ≤ 153m× 153m
Data of each sequence 1 week data
Time-step length 5/10/20/30/60 mins
Sequence length 2016/1008/504/336/168
Number of sequences 182
Number of areas (N ) 6424
Number of hidden layers 1-2
Number of nodes in each hidden layer 1200-1500
Number of mixture Gaussian kernels 10-20

prediction error metrics: Symmetric Mean Absolute Percent-
age Error (sMAPE) [13], [32] and Root Mean Square Error
(RMSE) [33], [34]. Yi,t is the real taxi demand in area i

at time-step t, while Ŷi,t is the predicted taxi demand. The
sMAPE and RMSE in area i over time [1− T ] would be:

sMAPEi =
1

T

T∑
t=1

|Yi,t − Ŷi,t|
Yi,t + Ŷi,t + c

(5)

RMSEi =

√√√√ 1

T

T∑
t=1

(
Yi,t − Ŷi,t

)2
(6)

The constant c in Eq. 5 is a small number (c = 1 in this
application) to avoid division by zero when both Yi,t and Ŷi,t
are 0. Similarly, when evaluating the prediction performance
over the entire city, the sMAPE and RMSE of all areas at
time-step t would be:

sMAPEt =
1

N

N∑
i=1

|Yi,t − Ŷi,t|
Yi,t + Ŷi,t + c

(7)

RMSEt =

√√√√ 1

N

N∑
i=1

(
Yi,t − Ŷi,t

)2
(8)

Here N is the total number of areas in the city. From
the statistic perspective, RMSE shows the difference of the
predicted value from the real value while the sMAPE describes
a percentile error.

To evaluate the performance of the proposed models, we
compare the outcomes with prediction approaches based on
another two strategies: the fully connected feed-forward neural
networks and naive statistic average.

1) Fully connected feed-forward neural network predic-
tor: Feed-forward neural networks are commonly used for
classification and regression problems. Feed-forward neurons
have connections from their input to their output. The main
difference between feed-forward neural networks and recurrent
neural networks is that in RNNs, the recurrent connection from
the output to the input at next time-step makes the network
capable of storing information. In this approach, the layers
are fully connected which means that neurons between two
adjacent layers are all connected together.

2) Naive statistic average predictor: This approach predicts
based on the mean value of past demands in a sliding-window.
For example, if it is 10:00 am on Monday, the predicted
value would be the average of demands at 10:00 am in
the past 5 Mondays. While we use the term “naive”, even
this approach requires the maintenance of long term, detailed
statistics of both spatial and temporal distributions of pickups.
It is very likely a good approximation of what taxi companies
are currently deploying.
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Fig. 10. Prediction performance of different approaches according to sMAPE.

C. Performance results

First, we report prediction sMAPE and RMSE over the en-
tire city (all prediction areas). Second, we show the prediction
performance at some specific areas as time passes. Lastly,
we analyze the importance of different impacting factors on
prediction performance. For the four different predictors based
on LSTM-MDN-Conditional, LSTM-MDN, fully connected
feed-forward neural networks and naive statistic average, we
respectively use LSTM-C, LSTM, FC and Naive for short. We
do not include the LSTM-C predictor in the entire city perfor-
mance comparison. We only evaluate the LSTM-C model on
specific areas. This is because conditioning only neighboring
areas on each other should be enough. Two areas that are very
far from each other most probably will not affect each other.
In addition, if we condition more areas on each other, LSTM
will have a difficult time relating the events that happen many
time-steps away from each other.

1) Performance over the entire city: To evaluate the pre-
diction performance over the entire city which includes about
6500 areas, we compare the performance of the LSTM pre-
dictor, the FC predictor and the Naive predictor in terms of
RMSE and sMAPE from Eq. 7 and Eq. 8.

We report sMAPE and RMSE over the entire city in Fig. 10
and Fig. 11. As we can see, though they are different prediction
error metrics, they share some common patterns. For instance,
both of them reach the minimum values at about 3am and peak
at about 8am and 10pm. In both figures, LSTM shows better
performance in prediction than the FC and Naive predictors.
In Fig. 10, sMAPE shows the mean absolute percentage error,
which gives us a way to calculate the prediction accuracy
and observe that it is more than 80%. In Fig. 11, RMSE
shows the root mean squared difference between the predicted
demands and the real demands. Note that, to the real demands
in different areas, we have min = 0, max = 535 and standard
deviation σ = 12.0. The time-step length is 60mins.

Fig. 12 reports the error bar of prediction RMSE over
the entire city, with the standard deviation in one week. We
show this RMSE with different time-step lengths in the LSTM
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Fig. 11. Prediction performance of different approaches according to RMSE.
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Fig. 12. RMSE of different time-step lengths. With the real number of
pickups, min = 0, max = 535 and standard deviation σ = 12.0.

predictor. Basically, smaller time-step length means smaller
number of pickups in each time slot, which does affect the
final RMSE. To avoid this, we sum up the predicted number
of pickups every 60mins. As we can see in Fig. 12, the model
has the minimum RMSE at time-step length either 10 or 20
mins. Overall, the RMSEs are very close under different time-
step lengths.

2) Performance at specific areas: We compare the pre-
diction performances of LSTM-C, LSTM, FC and the Naive
predictors in specific areas. First of all, we select two areas
that their taxi demands in a week are shown in Fig. 13-a and
Fig. 13-b. The reason we select these two areas is that both
of them show regular demand patterns on both weekdays and
weekends. The first area is a working area while the second
area is one of the most popular areas (in terms of taxi requests)
according to our analysis to all the past taxi data in NYC. The
first area is close to the intersection of West 40rd Street and
9th Ave in downtown while the second area is close to the
intersection of West 33rd Street and 7th Ave.

The time-step length used here is 60mins in both areas.



8

Mo
n Tue We

d
Th
u Fri Sa

t
Su
n

0
5
10
15
20
25
30
35
40
45

Nu
m
 o
f r
eq
ue
st
s

a) Taxi demand

Mo
n Tue We

d
Th
u Fri Sa

t
Su
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

sM
AP

E

a) Prediction errors
LSTM-C LSTM FC Naive

Mo
n Tue We

d
Th
u Fri Sa

t
Su
n

0

50

100

150

200

250

300

Nu
m
 o
f r
eq
ue
st
s

b) Taxi demand

Mo
n Tue We

d
Th
u Fri Sa

t
Su
n

0.00

0.05

0.10

0.15

0.20

0.25

sM
AP

E

b) Prediction errors
LSTM-C LSTM FC Naive

Fig. 13. Comparison in areas with different demand patterns.

The right part of Fig. 13 shows the prediction sMAPE of each
day in both areas. We include continuous 5 weeks prediction
results and show each standard deviation with an error bar.

As we can see from Fig. 13, in both areas, LSTM-C and
LSTM models outperform FC and Naive models in most days.
This proves LSTM is good at learning sequential information,
even though the sequence length is as long as a week.
LSTM-C can give more accurate prediction results than the
LSTM, because it considers both past information and current
conditional information of other areas. But it requires a lot
of computational power to train such a conditional model. FC
sometimes results in larger errors than the Naive predictor due
to the irregularities in sequence patterns.

3) Importance of impacting factors: In this part, we report
the importance of different impacting factors in our prediction
models. The impacting factors in our model include Date &
Time, Day of week, Weather and Drop-offs. Date & Time
includes year, month, date and time of each time-step. Day of
week represents which day of week that time-step is. Weather
includes 4 different types: rain, snow, fog and thunder. We
get the official weather information of NYC from National
Oceanic and Atmospheric Administration (NOAA). It includes
climate observations from three land-based stations in the city.
We also include the number of Drop-offs as an impacting factor
to see if there is any relation between the pickups and drop-offs
in each area. To show the impacts of these inputs on prediction
performance, we conduct two experiments. Both experiments
are implemented on the LSTM-MDN model since we evaluate
the prediction performance for the entire city.

In experiment I, we want to show the impact of each single
factor on prediction performance. We design different models,
which are shown in Table II, with each single factor as model

input. The control group here is the model with only past taxi
pickups as input. All models are expected to output the next
time-step taxi demand in the city. Then we train each model
and show the prediction performance in Fig. 14.

TABLE II
MODEL WITH DIFFERENT IMPACTING FACTORS: I

Model Model input Model output
Model A Pickups Next time-step demand
Model B Date & Time Next time-step demand
Model C Day of week Next time-step demand
Model D Weather Next time-step demand
Model E Drop-offs Next time-step demand

As it is shown in Fig. 14, pickup is the most valuable
information in making future taxi demand prediction. In model
B and C, since no past taxi trip information is provided,
the models are trying to remember the mapping from the
input to the real taxi demand at each time-step. In this case,
LSTM works similar to the feed-forward neural networks.
Model D has the worst performance due to two reasons: one
reason is that it is hard for the model to make a taxi demand
prediction only based on a weather information. Another
reason is we only have climate information from three land-
based observations, which is not a good descriptor of the whole
city. In model E, we use number of drop-offs in each area
as input. It is interesting to find out it can give a prediction
performance close to model C, which means that the drop-offs
pattern has a close relation to the pickups pattern. However,
the drop-off information is not as useful as pickup information.
This is because the network needs to remember the drop-off
information to use them later. But, the pickup information
is the most informative feature probably because it does not
change much in one time-step (from input to the output).
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Fig. 14. Prediction performance on different single impacting factors.

In experiment II, we add impacting factors to the number
of pickups as model inputs to see if they really improve the
prediction accuracy. Table III shows the input to each model.
In the last group model F, we include pickups and all impacting
factors as input.

TABLE III
MODEL WITH DIFFERENT IMPACTING FACTORS: II

Model Model input Model output
Model A Pickups Next time-step demand
Model B Pickups + Date & Time Next time-step demand
Model C Pickups + Day of week Next time-step demand
Model D Pickups + Weather Next time-step demand
Model E Pickups + Drop-offs Next time-step demand
Model F Pickups + All factors Next time-step demand

Fig. 15 shows each model’s prediction performance. It can
be seen that all the models have close performances. The
reason is that pickup information is so informative that makes
the effect of other factors very small. Model D and E have the
worst performance compared with other models. In model F,
we include all impacting factors. As we can see, the median
prediction error is about 17%, which means a median accuracy
of around 83% can be obtained.

Overall, the experimental results show that LSTM-C and
LSTM outperform the other prediction approaches. This is
because LSTM can see and process information in the previous
time-steps. For instance, if a group of people request taxis to
go to a concert, it will remember this information and use it to
predict that after a couple of hours there would be almost the
same number of requests in the concert area. The FC network
can find the best mapping from the time and geographical
information to the number of requests without having access
to the demand in the previous time-steps. So this limitation
causes larger errors in its prediction. The Naive approach is
even more restricted since it has access to only a small history
of the demand in one area unlike the FC which is trained on
all the historical data of all areas.

To sum up, for better prediction, we need to use a model
that is very powerful and properly conditions the output on
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Fig. 15. Prediction performance on different impacting factors.

all the available information. In addition, the best prediction
performance is achieved when all the impacting factors con-
sidered in this work are available as input to the network.

VI. CONCLUSION

We propose a sequence learning model based on recurrent
neural networks and mixture density networks to predict taxi
demand in different areas of a city. By learning from historical
taxi demand patterns, the proposed LSTM-MDN model can
make taxi demand predictions for the entire city. Three and
a half years taxi trips data of New York City is used to train
our model. Experimental results show that the LSTM-MDN
model can get a good accuracy of around 83% at the city level.
We further extend the LSTM-MDN model to a conditional
model in which each prediction is not only made based on past
taxi information, but also conditioned on current demands in
other areas. We show that this approach can further improve
the prediction performance. In addition, we show that our
models outperform two other prediction models based on fully
connected feed-forward neural networks and naive statistic
average.

This work can be extended by adding more information
to the input of the network such as where businesses, shops,
restaurants, etc. are located. In addition, we can organize the
taxis in a city and distribute them in real-time according to
the demand prediction by our model. This can help a lot
in situations where in some areas there is large demand but
the taxi drivers are competing with each other for having
passengers in another area of the city. A central taxi dispatch
system would be especially beneficial when in the future self-
driving cars need to be organized automatically to respond to
the taxi requests in a city. Such a system can save a lot of time
from people who need taxis. In addition, it can save so much
gas that is currently being spent by taxis to find passengers.
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