Abstract—In this paper, we focus on a taxi dispatch system with the help of auxiliary models that predict future demand and destination. We build two different neural networks for learning taxi demand and destination distribution patterns based on historical data. The trained models can predict taxi demand and destination for any area in a city at a future time. Our proposed dispatch system relies on the predictions of the previous models and is designed not only to minimize the waiting time of passengers, but also to assign the taxis to passengers in a way to minimize the idle driving distances of taxis. In order to achieve this, we balance future taxi supply-demand over the city by solving a mixed-integer program (MIP). We validate our dispatch system as well as the prediction models using a dataset of taxi trips in the New York City.

Index Terms—taxi dispatch; demand prediction; destination prediction; recurrent neural network; optimization.

I. INTRODUCTION

Traditional transportation systems with all the comfort that provides to humans, still face serious challenges due to the rapid growing traffic and inefficient dispatch operation. For instance, taxi drivers often drive for a long time to pickup a passenger and passengers often need to wait for a long time before a taxi picks them up. In addition to the wasted times, this will lead to a wide variety of problems such as more fuel consumption, traffic congestion, and air pollution [1]. To address these problems, intelligent transportation systems such as vehicle rebalance and ridesharing systems are proposed by the researchers. To make these systems more efficient, we need to understand and predict the demand of the passengers since these systems highly rely on the future demand patterns. Previous studies [2–5] have shown that historical taxi trip data can provide rich insights about how taxi demand varies from area to area and time to time. In addition, the destination prediction also plays an important role in a transportation system as it provides more detailed vehicle fleet distribution information for a dispatch center. We can also look a bit ahead and consider the future where self-driving vehicles need to autonomously decide where to look for passengers and also to balance the supply-demand ratios over the city without human help [6]. To achieve these, robust and efficient prediction models are necessary and also can be of great help to passengers, human drivers, and autonomous vehicles.

In our previous work [6], we presented a taxi demand predictor in which we make real time taxi demand predictions for the whole city. In this paper, we further extend our previous work and predict the destination of each trip. We present two different neural networks to learn historical taxi demand and destination distribution patterns. With the trained models, we can predict taxi demand and the corresponding destination for future time at any area throughout the city. In addition, we build a taxi dispatch system in which the predicted demand and destination are used for taxis supply-demand rebalance throughout the city. We optimize the taxi assignment and reallocation by solving a mixed integer programming (MIP) with the goal of minimizing the average waiting time of the passengers and the idle driving distances of the taxis.

We divide the entire city into about 1000 areas with Geohash [7] library and for each area, we encode taxi trips into specific sequential data structure for the learning models. We use Recurrent Neural Networks (RNNs) to learn the taxi demand pattern at each area. Affecting factors such as date, time steps in the day, day of the week and weather information are used to train the model. For the destination prediction model, we treat it as one input multiple possible outputs problem and use Mixture Density Networks (MDNs) [8] to model the outputs distribution. Instead of learning and predicting a destination area directly, the proposed model learns the destination pattern and outputs a distribution over all the areas in the city. We train both the demand and destination prediction models with one year taxi data in 2015 from the New York City taxi trip dataset [9]. We evaluate the performance of the prediction models and the dispatch system with taxi data in 2016 from the same dataset.

The remainder of this paper is organized as follows. Section II introduces related work on taxi demand and destination predictions as well as intelligent transportation systems. Section III describes the proposed taxi demand and destination distribution learning models. Section IV presents the proposed dispatch system. In Section V, we provide the experimental results. Section VI concludes the paper.

II. RELATED WORK

Taxi demand prediction is a current research topic since it is one of the key strategies to improve the taxi dispatch performance as well increasing the sustainability of taxi companies. Zhao et al. [3] define a maximum predictability based on the real entropy of historical taxi demand. They prove that taxi demand is highly predictable and then propose three prediction algorithms to validate their maximum predictability theory. Moreira-Matias et al. [5] propose a prediction framework that consists of three different models and their predicted
result is a weighted ensemble of outputs from those models. The ensemble weights are updated according to the previous prediction performance of each model. Their framework can make real-time demand prediction for the 63 taxi stands in the city of Porto, Portugal. Miao et al. [10] propose a dispatch framework for balancing taxi demand and supply throughout a city. In their work, the future taxi demand is predicted by the mean value of repeated samples from historical demand.

Taxi destination prediction is more complex than the demand prediction because it contains more uncertainty. Some well-performing models are using a small window of GPS traces to predict the destination of each trip [11]. We consider a different scenario in which we predict possible destinations for future taxi trips without relying on their GPS traces. In some dispatch systems [12] the destination estimation is sampled from a normalized distribution of destinations. However, the distribution is simply the historical average of the destinations.

In this paper, we use a more powerful model based on deep neural networks that can learn highly nonlinear functions to capture patterns in the data.

Given the estimated future demand and destination, different intelligent transportation systems have been proposed. Zhang et al. [4] propose a real-time taxi dispatch application. Two types of passengers are defined to model real-time taxi demand: previously left-behind, and passengers arriving shortly. A demand inference model called Dmodel is designed with hidden Markov chain to describe the state changes of passengers. Transportation system with ridesharing is also a recent popular topic with the hope of improving the utilization of taxis. Chen et al. [1] propose a system for vehicle dispatch and ridesharing. The goal is to balance the taxi supply-demand ratio while minimizing the idle mileage. Ridesharing is achieved by solving the taxis schedule with a Mixed Integer Programming (MIP). Lin et al. [13] present a dispatch system for transportation hubs with steady passenger streams. In their work, virtual demand pools, passengers walking time and ridesharing mechanism are considered. Trips pairing and taxi scheduling are done by a MatchMaking system. Similar studies based on ridesharing systems are conducted in [12], [14].

Our work focuses more on learning and predicting taxi demand and destination distribution patterns. Different from existing works, we use a recurrent neural network to capture long term dependencies in the sequence of taxi demand patterns. For the destination prediction, our model predicts the entire probability distribution over all areas in the city instead of sampling from the pre-seen destinations frequencies. Our approach gives a more realistic prediction as it takes into account the uncertainty while predicting. With the predicted results, we further build a dispatch system with the goal of balancing future taxi supply and demand over the city while minimizing the passengers’ average waiting time and the taxis’ idle driving distances.

III. TAXI DEMAND AND DESTINATION PREDICTION

In this section, we discuss the taxi demand prediction and the corresponding destination prediction.

A. Subareas

To predict taxi demand and destination, we first divide the entire city into small areas. Same as our previous work [15], we are using the Geohash library [7] which can divide the whole city into subareas at arbitrary precision. Each pair of [latitude, longitude] can be encoded into a geohash string where neighboring areas share the same string prefix. The advantage of this encoding method is that when we sort all the encoded strings, the index of neighboring areas stay together. Later we will show that this is very helpful in our destination prediction. In this paper, we divide the entire city into around 1000 small areas with geohash precision 6 (eachcell ≤ 1.2km x 0.61km).

B. Predicting future demands

We propose a taxi demand predictor that can predict taxi demand in any target area of the city in the next hours, days and weeks. For any given area, the past taxi demand can be treated as a sequence. Fig. 1 shows taxi demand at two different places in New York City over a period as long as a week. We observe that in a specific area of the city, the historical taxi demand shows a predictable sequential pattern every week. Motivated by observing this pattern, we design a sequence learning model that learns the demand patterns from the sequential data.

Fig. 1. Taxi demand patterns in two different areas.

We first divide a day into discretized time-steps \(\{t_0, t_1, \ldots, t_{\text{max}}\} \) where \(t_i \) is the \(i^{th} \) time-step of a day. Note that the time-step length is a hyper-parameter. Second, for each area, we count the number of taxi requests in each time-step. Fig. 2 shows the input and output data structures in one time-step. For time-step \(t_i \), the input data \(x_i \) consists of two parts: \([f_i, e_i] \). \(f_i \) represents potential affecting factors such as date, day of the week, time-step in the day and weather. We use the official historical weather information of NYC from National Oceanic and Atmospheric Administration (NOAA). \(e_i \) represents the number of pickups in each area and its length is the number of small areas in the entire city.

To build a sequence learning model, we use one of the best Recurrent Neural Networks (RNNs): Long Short Term Memory (LSTM). As shown in Fig. 3, the input data to the model at time-step \(t_i \) is \([x_{i-seq}, \ldots, x_{i-1}, x_i] \). The meaning of \(seq \) here is that we are using previous \(seq \) time-steps data to predict next time-step data. \(seq \) is a hyper-parameter that
is set large enough to enable the network to learn long-term dependencies. Given the input data at t_i, the network predicts the output y'_i, the number of requests in each area at the next time-step. To train the network using stochastic gradient descent, we try to minimize the mean squared difference between the predicted y'_i and the ground-truth demand y_i.

With the trained model, we can predict taxi demands for all areas in future. Fig. 4 shows a density map of real and predicted taxi demands over the entire city. As we can see that red areas show high demand while yellow areas show lower demand. The figure illustrates that the difference between the predicted and the real demand is very small.

C. Predicting destination distributions

Destination prediction is much harder than the demand prediction because it contains much more uncertainty. Some works [11] are using a small window of GPS traces to predict the destination of each trip. We consider a different scenario in which we predict possible destinations for future taxi trips without relying on their GPS traces. We solve it as a distribution prediction problem from a statistical perspective.

Consider a trip request from one of the areas, its destination can be any area in the city. Fig. 5 (a,b) show two examples of destination distributions start from two different areas. The time period is 30 mins. We cluster neighboring areas sorted by Geohash into different bins for better visualization. The horizontal axis represents the area index while the vertical axis represents the number of dropoffs in the area.

Fig. 5 (a,b) show interesting distribution patterns. The data distribution is multi-modal, i.e. for each input there are multiple possible outputs. This motivates us to use Mixture Density Networks (MDNs), developed by Christopher Bishop [8] that is designed to model real-valued multi-modal distributions. The idea behind MDN is to use the output of a neural network to predict the parameters of a mixture Gaussian kernels. Note that Gaussian kernels have a different set of parameters in each area. With the learned parameters, we can sample the destination predictions for each taxi trip.
\[x_k = \begin{array}{c|c|c|c}
\text{Index of} & 0.35 & 0.10 & \ldots \\
\text{pick-up area} & & & \\
f_k; \text{date, time, weather} & & & \\
\text{affecting factors} & & & \\
\end{array} \]

\[y_k = \begin{array}{c}
\text{Index of} \\
\text{drop-off area} \\
\end{array} \]

Fig. 6. Input and output data structure for destination prediction.

To build a distribution learning model, we first extract each trip information from historical taxi dataset, which contains time-stamp, pickup location, and dropoff location. Then we encode it into a data structure shown in Fig. 6. One of the advantages of using Geohash library is that the encoded neighboring areas will stay close when we sort them. Each trip is converted into a pair of data point \([x_k, y_k]\), where \(k\) represents the trip index in the dataset. \(x_k\) consists of the pickup area and the corresponding factors such as time step since the beginning of the day, day of the week and weather. \(y_k\) represents the destination area of this trip.

Fig. 7 shows the distribution learning model. The goal is to learn the parameters of mixture of Gaussians for each area. As shown in Fig. 7, we feed \(x_k\) to a fully connected neural network. The expected output is a vector of distribution parameters with length \(3 \times M\). \(M\) is the number of Gaussian kernels, which is a hyper-parameter. Each Gaussian kernel consist of 3 variables \([\omega, \mu, \sigma]\). \(\omega\) is the mixing coefficient, \(\mu\) is the mean and \(\sigma\) is the standard deviation.

A suitable loss function is to minimize the logarithm of the likelihood of the distribution of the training data:

\[
\text{Cost} = -\ln \left(\sum_{m=1}^{M} w_m(x) \phi_m \{ y, \mu_m(x), \sigma_m(x) \} \right) \tag{1}
\]

where \(\phi_m \{ y, \mu_m(x), \sigma_m(x) \}\) is the \(m\)th Gaussian kernel. It can be represented as:

\[
\phi_m \{ y, \mu, \sigma \} = \frac{1}{2\pi \sigma_m(x)} \exp \left\{ -\frac{|y - \mu_m(x)|^2}{2\sigma_m^2(x)} \right\} \tag{2}
\]

For each pair \([x_k, y_k]\) in the training dataset, we can calculate the cost based on the predicted distribution versus the actual value, and then attempt to minimize the sum of all the costs combined. Fig. 5 (c,d) shows the corresponding predicted distributions. As we can see, there are some differences compared to the real distributions in Fig. 5 (a,b) but overall the differences are small.

IV. DISPATCHING MODEL

In this section, we discuss how we do the taxi dispatch using the demand and destination predictive models we trained in the previous section.

Similar to the current mobile app based taxi services, we consider a scenario where passengers can send real time taxi requests to the system with start and destination locations. Goals of our dispatch system are given as follows:

- Serve all the taxi requests.
- Minimize idle driving distances of taxis.
- Minimize passengers average waiting time (time between sending request and pickup).

As we discussed in section III, we divide the whole city into a list of small areas \(\text{all_areas}\). We also divide a whole day into time-steps \(\{t_0, t_1, \ldots t_{\text{max}}\}\) such that \(t_i\) means the \(i\)th time-step of a day. Besides, we generate a distance matrix between each pair of areas \((a_i, a_j), i, j \in N\), where \(N = \text{len}\{\text{all_areas}\}\) is the total number of areas, \(a_i\) is the pickup area, and \(a_j\) is the dropoff area. The trip distance is shown by \(d_{ij}\) and is the average distance for all trips between \(a_i\) and \(a_j\) from historical taxi data. For pairs of areas \((a_i, a_j)\) that there are no recorded trips between them, we use a bidirectional search to find intermediate areas between them and then the shortest path \(\text{argmin}(d_{ip} + d_{pq} + d_{jq})\) is returned as the distance \(d_{ij}\). Here \(p\) and \(q\) are intermediate areas indexes. Algorithm 1 shows the process of generating distance matrix.

Given the distance matrix, for each taxi request received by the system, the corresponding travel time can be estimated. Based on this information, we build the dispatch system. For any area \(a\), we represent the taxi demand at time-step \(t_i\) as \(D_i^a\). Similarly, the available number of taxis is represented as \(P_i^a\) which consists of 2 parts:

\[
P_i^a = \text{idle}_i^a + \text{arrival}_i^a \tag{3}
\]

where \(\text{idle}_i^a\) represents original idle taxis in area \(a\) at time step \(t_i\), \(\text{arrival}_i^a\) represents arriving available taxis to area \(a\) at time step \(t_i\).

At time-step \(t_i\), we assign available taxis to requests in two steps. First, for each area, we sort taxi requests \(D_i^a\) by receiving time, then a greedy assignment with available taxis \(P_i^a\) is conducted. There is a possibility that some requests can not be assigned due to limited number of available taxis in the same time-step. Since we sort all the taxi requests by receiving
Algorithm 1: Distance matrix generation

1. all_areas, list of all areas
2. N = len(all_areas)
3. all_trips, from dataset, grouped by trip start area
4. Distance matrix Dis = [N][N]
5. for (a_i, a_j) in all_areas do
6. trips = gettrips(a_i, a_j, all_trips)
7. Dis[a_i][a_j] = mean(trips.distance)
8. end
9. /* inferring distances
10. for (a_i, a_j) in all_areas do
11. if Dis[a_j][a_j] == NULL then
12. /* no recorded trips */
13. candidatepaths =
14. bidirectionsearch(a_i, a_j, Dis)
15. Dis[a_i][a_j] = min(candidatepaths)
16. end
17. return Dis

Algorithm 2: Taxi dispatching

1. all_areas, list of all areas
2. Distance matrix Dis
3. Future rebalance time steps lookahead
4. Demand prediction model M0
5. Destination prediction model M1
6. for t_i ∈ [begin, end] do
7. P_i = idle_i + arrival_i
8. /* greedy assign taxis to requests
9. remainshi = sort_assign(D_i, P_i)
10. update(idle, arrival)
11. s_i = rebalance(t_i, remainshi, idle, arrival)
12. if s_i ≠ NULL then
13. assign(s_i, P_i)
14. end
15. /* rebalance for future
16. end
17. Function rebalance(t, remains, idle, arrival):
18. for t_j ∈ (t, t + lookahead] do
19. D_j’ ← M0.predict(t_j) /* demand
20. Des ← M1.predict(t_j, D_j’) /* destination
21. update(arrival) ← (Des, Dis)
22. P_j’ = idle_j + arrival_j
23. D_j’ = D_j’ + remainshi
24. remainshi = sort_assign(D_j’, P_j’)
25. update(idle, arrival)
26. end
27. solution = MIP(remains, P’)
28. return solution
29. end

time, a high priority is given to earlier requests and they will be fulfilled in the next time-step. Second, we rebalance the taxis according to our prediction of future demand within a number of lookahead time steps. For a future time step t_j at area a, where t_j ∈ (t_i, t_i+lookahead], we use the predicted taxi demand D_j′ and the available taxis P_j′ to model the taxi assignment process. After this, a taxi rebalance process is conducted to optimize the supply-demand curves in each area over the entire city.

With the predicted taxi demand and destination, we optimize the task assignment and rebalance by solving a Mixed Integer Programming (MIP). The objective of the MIP is to minimize the total idle driving distances while serving all the coming requests. The details of dispatch process is shown in Algorithm 2.

In Algorithm 2, the dispatch process at each time step is shown in lines 6-16. For each area, we first assign available taxis to requests in a greedy fashion. Then, the unassigned requests together with updated available taxis are passed to the rebalance function. During the rebalance process, the system first uses the predicted future demand and destination to model the greedy assignment according to future predictions. After that, all the remaining unassigned requests and the available taxis in the system are the targets to be matched. We optimize the matching by solving a MIP with the goal of minimizing the total idle driving distances. Finally the MIP solution is returned and a real taxis rebalance is conducted to serve the future demand.

V. EXPERIMENTAL STUDY

In this section, we evaluate our taxi demand and destination prediction models as well as the performance of the dispatch system.
of the day, day of the week and weather information.

For the destination distribution learning model, we use a feed-forward neural network. We use a time step length 30 minutes to learn the destination distribution for each area since it helps to make the data more predictable compared to 10 minutes. In the dispatch system, we use the same mixture Gaussian parameters every 30 minutes at one area.

For the dispatch system, we initialize the taxi distribution based on a sum of historical requests in each area. We use the generated distance matrix and a fixed taxi speed of 64 km/h to estimate the traveling time between pairs of areas in the city. Table I includes the list of parameters in the experiments.

Table I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area/grid size</td>
<td>≤ 1.2 km × 0.61 km</td>
</tr>
<tr>
<td>Dispatch system time step</td>
<td>1 min</td>
</tr>
<tr>
<td>Taxi speed</td>
<td>64 km/h (40 mph)</td>
</tr>
<tr>
<td>Number of areas</td>
<td>997</td>
</tr>
<tr>
<td>Number of hidden layers</td>
<td>2</td>
</tr>
<tr>
<td>Number of Gaussian kernels</td>
<td>5</td>
</tr>
</tbody>
</table>

B. Performance metrics and baselines

1) Demand prediction: To systematically examine the performance of our prediction approach, we include results with the widely used prediction error metric called symmetric Mean Absolute Percentage Error (sMAPE) [6]. From the statistical perspective, sMAPE describes a percentile prediction error and can be defined as follows:

\[
sMAPE_i = \frac{1}{N} \sum_{n=1}^{N} \frac{|Y_{n,i} - \hat{Y}_{n,i}|}{Y_{n,i} + \hat{Y}_{n,i} + c}
\]

(4)

Herein \(i\) is the time step \(t_i\) and \(N\) is the total number of areas in the city. \(Y_{n,i}\) represents the real taxi demand in area \(a_n\) at time-step \(t_i\) while \(\hat{Y}_{n,i}\) is the predicted taxi demand. The constant \(c\) in Eq. 4 is a small number (\(c = 1\) in this application) to avoid division by zero when both \(Y_{n,i}\) and \(\hat{Y}_{n,i}\) are 0.

2) Destination prediction: For the destination prediction, we show the classification accuracy by using the number of correct predictions divided by the total number of requests at time step \(t_i\).

\[
\text{Accuracy}_i = \frac{\text{Corrects}_i}{\text{Corrects}_i + \text{Incorrects}_i}
\]

(5)

3) Dispatch system: for our dispatch system, we show the performance in terms of three metrics:

- Passengers’ average waiting time.
- Taxis’ average idle driving distances.
- Dispatch algorithm time complexity (Computational time for solving the MIP).

C. Performance results

First, we report demand prediction error sMAPE and destination prediction accuracy over the entire city (all prediction areas). Second, we report metrics that characterize the dispatch system.

1) Prediction performance: We show the prediction performance in terms of the metrics formulated in Eq. 4 and Eq. 5. As a comparison, we also show the performance of methods based on the average of historical data. For instance, for each area, if it is 10:00 am on Monday, the predicted demand would be the average of demands there at 10:00 am in the past 5 Mondays. The corresponding destinations would be the normalized average of all destinations (starting from same area) at 10:00 am of past 5 Mondays.

For the demand prediction, we respectively use \textit{Predict-LSTM}, \textit{Predict-Average} to represent our LSTM-based approach and the historical data average-based approach. For the destination prediction, we respectively use \textit{Predict-GM}, \textit{Predict-Average} to represent our Gaussian mixture-based approach and the normalized average-based approach.
Fig. 8 shows the prediction sMAPE over the entire city. Similar to the results in [6], the LSTM-based model always has a better prediction performance compared to the model based on historical data average. Besides, note that during busy hours around 8:00 am in the morning, the LSTM-based model still performs very well while the data average based model becomes much worse. This is because the LSTM-based model takes into account long term dependencies of past information while predicting the future.

Fig. 9 reports the destination prediction performance. It can be seen that Gaussian mixture model performs better than the normalized average-based method. Besides, since our prediction is sampled from a continuous distribution, if we accept neighboring areas as correct predictions, we achieve better results as shown in Fig. 9 (Prediction-GM-Neighbors). Note that predicting neighboring areas as destination is still acceptable and useful for our taxi dispatch application since the taxi is very close to the target area. On the other hand, considering Fig. 8 and Fig. 9 we observe that interestingly both of them have a small value at around 4:00 am. This however means that demand prediction achieves the best performance (lowest error) while destination prediction hits its worst accuracy during that time period. The reason could be that the total number of requests is low and mainly from some hot areas such as airports and bars, but the corresponding destinations can be anywhere around the town and are not that predictable.

2) Performance of Dispatch System: We evaluate the performance of our dispatch system from two perspectives. The first one is the performance metrics based on different total number of taxis in the system and the second one is the performance metrics based on different future rebalance lookahead time steps.

Fig. 10 (a-c) show the error bars with standard deviation for average waiting time of each passenger, average idle driving distances of taxis, and the computational time of solving the MIP based on different total number of taxis in the system. As we can see, both the average waiting time and the average idle driving distances gradually decrease as there are more taxis running in the system. Large standard deviation is shown when total number of taxis is 3000. On the other hand, the goal of the MIP is to find the rebalance solution while minimizing total idle driving distances. The time complexity increases as the total number of taxis grows.

Fig. 10 (d-f) show three performance metrics on different future rebalance look ahead time steps. As we can see, by increasing the lookahead time steps, shorter average waiting time for passengers can be obtained. Large standard deviation
In this paper, we first propose two learning models to capture the patterns of historical taxi demand and destination distributions in each area over a city. The trained models can make real-time prediction of taxi demands and the destinations for the whole city. We also build a dispatch system in which the predicted demands and destinations are used for the taxis reallocation towards the future supply-demand balance in the city. The optimal taxi assignment and reallocation strategy is obtained by solving a mixed-integer program (MIP). We validate our dispatch system with taxi trip data of 2016 in New York City. Experimental results show that the proposed dispatch system can decrease the average waiting time of the passengers and the average idle driving distances of the taxis.

We believe that our approach has a great potential to optimize the distribution of taxis throughout the city so that the number of taxis required is minimized. Finally, analyzing passenger behaviors can result in finding some insights that lead to making the transportation more efficient. For instance, it might help to develop ride-sharing strategies or using some shuttles in high demand routes. A well-performing demand and destination prediction model is the key step towards reaching an integrated and efficient transportation system.

VI. CONCLUSION

In this paper, we first propose two learning models to capture the patterns of historical taxi demand and destination distributions in each area over a city. The trained models can make real-time prediction of taxi demands and the destinations for the whole city. We also build a dispatch system in which the predicted demands and destinations are used for the taxis reallocation towards the future supply-demand balance in the city. The optimal taxi assignment and reallocation strategy is obtained by solving a mixed-integer program (MIP). We validate our dispatch system with taxi trip data of 2016 in New York City. Experimental results show that the proposed dispatch system can decrease the average waiting time of the passengers and the average idle driving distances of the taxis.

We believe that our approach has a great potential to optimize the distribution of taxis throughout the city so that the number of taxis required is minimized. Finally, analyzing passenger behaviors can result in finding some insights that lead to making the transportation more efficient. For instance, it might help to develop ride-sharing strategies or using some shuttles in high demand routes. A well-performing demand and destination prediction model is the key step towards reaching an integrated and efficient transportation system.

REFERENCES