
1

A Taxi Dispatch System based on Prediction of
Demand and Destination

Jun Xu, Rouhollah Rahmatizadeh, Ladislau Bölöni and Damla Turgut

Abstract—In this paper we describe an intelligent taxi dispatch
system that has the goal of reducing the waiting time of the
passengers and the idle driving distance of the taxis. The system
relies on two separate models that predict the probability dis-
tributions of the taxi demand and destinations respectively. The
models are learned from historical data and use a combination
of long short term memory cells and mixture density networks.
Using these predictors, taxi dispatch is formulated as a mixed
integer programming problem. We validate the performance of
the predictors and the overall system on a real world dataset of
taxi trips in New York City.

Index Terms—Taxi dispatch; demand prediction; destination
prediction; distribution learning; mixture density network.

I. INTRODUCTION

The emergence of ride-sharing systems had disrupted the
public transportation model in many areas in the world,
improved the travel experience and lowered the cost to the
users [1]. However, the growing number of ride-sharing vehi-
cles on the roads also increased fuel consumption, air pollution
and traffic congestion [2].

Understanding and predicting passenger demand patterns
promises to make taxi services and ridesharing systems more
efficient. Studies such as [3–7] have shown that historical taxi
trip data can provide rich insights about the temporal and
spatial variation of the taxi demand, i.e. the points at which
the taxi trips are originated. In addition, the prediction of
the destination of the trips also plays an important role in
a transportation system, because it helps to predict the spatial
distribution of the vehicle fleet at some time in the future [8].
These problems will still remain if human drivers are replaced
with self-driving cars because the passenger demand is not
determined by the (possibly automated) drivers but by the
human travellers.

Predicting traffic demand in space and time is a complex
problem, where naı̈ve approaches that predict expected de-
mand as a single value have difficulty capturing the data
patterns. Demand data is often multi-modal: it has multiple
peaks during the day, varies with the days of the week
and with special calendar and weather events. Predicting a
demand that minimizes the mean squared error (MSE) is often
uninformative in the case of a multi-modal distribution [9],
[10], because the predicted value might fall between the
modalities.

A solution to this problem is that instead of predicting a
single real number, we estimate the (possibly multi-modal)
probability distribution of the value. We propose to use a
mixture of Gaussians to estimate this probability distribution

and a mixture density network (MDN) [11] to find its param-
eters. Systems that require a single-point prediction can then
sample from these distributions. The MSE-based approach can
be regarded as the special case of using a single Gaussian
kernel in the MDN and retaining only the mean of that kernel
as the predictor.

Most existing studies focus on providing traffic demand and
destination-pattern predictions. The vehicle dispatch system is
also discussed in some of the previous works. However, there
are not many successful examples of building an end-to-end
intelligent vehicle dispatch system.

For the taxi demand prediction, we extend the approach [3],
[10] that uses a long short term memory (LSTM) [12] recurrent
neural network that takes as input features such as the date,
time of day, day of the week and weather information. The
output MDN predicts the distribution of the predicted load as
a real valued numerical information.

We treat the destination prediction model as a one-input /
multiple possible outputs problem and use a feed-forward neu-
ral network followed by an MDN. The output is a probability
distribution over geographical information (the collection of
Geohash cells of the city).

Using these predictors we describe a taxi dispatch system
that balances the supply-demand ratio throughout the city.
The system optimizes the taxi assignment and reallocation by
solving a mixed integer programming problem with the goal
of minimizing the average waiting time of the passengers and
the idle driving distances of the taxis. The system takes into
account the variable speed of the taxis which depend on the
time of the day and differ on weekdays and weekends.

In our experiments, both the demand and destination pre-
diction models were trained on the New York City taxi
trip dataset [13] for the entire 2015 year. We evaluated the
performance of the prediction models and the dispatch system
with taxi data from February 2016 from the same dataset and
found that they outperform both baselines using the historical
means as a predictor and ablated versions of the proposed
architecture.

The remainder of this paper is organized as follows. Sec-
tion II surveys related work on taxi demand and destination
prediction as well as intelligent transportation systems. Sec-
tion III describes the proposed taxi demand and destination
distribution learning models. Section IV presents the proposed
taxi dispatch system. Section V describe experimental studies
measuring the performance of the demand and destination pre-
diction models and the dispatch system. Section VI concludes
the paper.

2

II. RELATED WORK

A. Taxi demand and destination prediction

In recent years, taxi demand prediction became the focus
of several research efforts as one of the key components in
improving the taxi dispatch performance as well increasing
the sustainability of taxi companies. Moreira-Matias et al. [7]
propose a prediction framework where the prediction is a
weighted ensemble of outputs from three different models.
The ensemble weights are updated based on the previous
prediction performance of each model. The framework was
shown to make real-time demand predictions for the 63 taxi
stands in the city of Porto, Portugal. Zhao et al. [5] introduce
the concept of maximum predictability based on the entropy of
historical taxi demand. They prove that taxi demand is highly
predictable and then propose three prediction algorithms to
validate their maximum predictability theory. Miao et al. [14]
propose a dispatch framework for balancing taxi demand and
supply throughout a city. In their work, the future taxi demand
is predicted by the mean value of repeated samples from
historical demand.

Recent taxi demand prediction models take advantage of
advances in deep neural networks. Yao et al. [15] use convo-
lutional neural networks, a component popular in the image
processing and computer vision community, for taxi demand
prediction. Another direction is to use a recurrent neural net-
work (RNN) such as Long short-term memory (LSTM). Given
the sequential patterns in city taxi demand, the RNN showed
an excellent performance in capturing the traffic patterns in
our earlier work [10].

Taxi destination prediction is more complex than demand
prediction because it needs to predict a distribution of a
geographical location instead of a single number. One possible
approach is to use the beginning of taxi trip’s trajectories to
predict its final destination. Brébisson et al. [16] investigate
several neural network based models for predicting the final
destination. They found the best performing model to be a
multi-layer perceptron which, instead of directly predicting
the destination position, predicts the final destination as a
weighted sum of all destination cluster centers. The destination
clusters are pre-generated while the weights for sum are
learned by the neural network. Besse et al. [8] predict the
destinations as a probability distribution. They first generate
clusters of trajectories from historical data, and build Gaussian
mixture models for each set of points in the trajectory cluster.
When making a prediction, the approach first identifies the
cluster with the highest similarity score and predicts the final
destination as the mean of the destinations of the trajectories
in the cluster.

Another class of scenarios cover cases when we do not
know a prefix of the taxi trajectories. Alonso-Mora et al. [17]
propose a dispatch system in which the destination estimation
is sampled from a normalized distribution of past taxi trips
destinations.

In this paper, we build an improved LSTM based taxi
demand predictor. The motivation is to leverage the powerful
sequential pattern learning ability of the RNN technique. For
taxi destination predictions, we agree with Besse et al. [8]

and Alfonso-Mora et al. [17] on the direction to formulate
a distribution-based approach. However, different from them,
our approach uses a mixture of 2D Gaussians to capture
the likelihood of the destination. The motivation behind our
approach is two-fold. We first would like to capture the
distribution pattern of the passenger’s destination. Secondly,
we would like to consider passenger’s stochastic behaviors on
destinations. Thus, we propose a structure that utilizes a mix-
ture density network (MDN) [11] on top of a neural network.
The idea of MDN is to use the outputs of a neural network
to parametrize a mixture distribution. It has been proved very
useful in modeling patterns with stochastic behaviors [9], [18].

B. Modeling efficient taxi dispatching

Given the estimated future demand and destination, taxi
dispatching can be formulated as an optimization problem.
Zhang et al. [6] propose a real-time taxi dispatch application
with the goal to balance the passenger demand and taxicab
supply. Miao et al. [19] propose a dispatch model with the
goal to reduce the average demand-supply ratio mismatch and
the average total idle distance.

A more complex optimization problem is posed by systems
where several customers share the vehicle over some portion
of their trajectory. The word “ridesharing” is used to describe
this technique, but it needs to be distinguished from the same
general term applied to transportation network companies such
as Uber, Lyft or DiDi1. Ridesharing improves the utilization
of the vehicles, but in the general case lowers the utility
for the customer whose trip can become longer and comfort
lower. Some of the penalty for the customer can be reduced
during dispatching by finding optimal customer pairings. Lin
et al. [20] present a dispatch system for transportation hubs
with steady passenger streams that takes into account virtual
demand pools, passenger’s walking time and the ridesharing
mechanism. A match-making system is used for pairing trips
and scheduling taxis. Chen et al. [2] propose a system for
vehicle dispatch and ridesharing with the goal of balancing
the supply-demand ratio while minimizing the idle mileage.
Ridesharing is achieved by treating the taxis schedule as a
mixed integer programming problem. Alonso-Mora et al. [17]
propose a ridesharing framework that optimizes dynamic ve-
hicle routing and request assignment. Future taxi demand is
estimated by sampling from a probability distribution of his-
torical taxi data. Similar studies based on ridesharing systems
were conducted in [21], [22].

Our work focuses on learning and predicting taxi demand
and destination distribution patterns. In contrast to existing
work, we use a recurrent neural network to capture long term
dependencies in the sequence of taxi demand patterns. For the
destination prediction, our model predicts the entire probability
distribution over all areas in the city instead of sampling
from the destination frequencies of previously seen trips. Our
approach gives a more realistic prediction as it takes into
account the uncertainty while predicting. With the predicted
results, we build a dispatch system intending to balance future

1In this sense of the word, UberPool is a ridesharing service, while UberX
is not.

3

taxi supply and demand over the city while minimizing the
passengers’ average waiting time and the taxis’ idle driving
distances.

The starting point of this paper is our previous work [3],
[10]. The novel contributions of this work are the introduction
of the mixture density network based LSTM-MDN method
that takes into account both past data dependency and data
distributions, the use of a mathematical model that estimates
realistic taxi travel time between the areas, and the consider-
ation of the dispatch system performance trade-off.

III. TAXI DEMAND AND DESTINATION PREDICTION

A. Data representation

We train our system using a publicly available database
of New York City taxi trips [13]. The training data in-
cludes approximately 170 million trips between 1/1/2015 and
12/31/2015. The dataset specifies for each pick-up and drop-
off event a high resolution GPS location and a timestamp.
Such a high spatial resolution is not useful for a dispatch
system, where we are interested only in classifying whether
a taxi is close enough to a location for a pickup without
significant delay. To capture the desired level of accuracy, we
divide the city into a grid using the Geohash library [23]. This
technique encodes a [latitude, longitude] pair into a geohash
string where neighboring areas share the same string prefix.
For instance, two neighboring areas in our map are geohash
encoded as follows:{

g.encode(40.697, −73.931, 6) = dr5rt8

g.encode(40.699, −73.931, 6) = dr5rt9
(1)

The advantage of this encoding method is that in a sorted
list, strings of neighboring areas will stay close together. In
this work, we use a 6-character geohash, dividing the city into
approximately 1000 grid cells of size 1200m × 600m.

B. Taxi demand prediction

To predict the taxi demand at an arbitrary time in the future,
we start by discretizing the time of the day into a number of
time slots {0, 1, .., t, ...} where t is the tth time-slot of a day.
The length of the slot is a hyper-parameter. Next, we organize
the taxi requests for each grid cell into a data sequence grouped
by time slots. Preliminary data analysis shows that for each
area of the city the historical taxi demand shows recognizable
patterns influenced by the day of the week, time of the day
and weather. Motivated by these observations, we design a
sequence learning model that learns to predict future demand
from the historical data. In addition to the past demand, the
model will also take as input signals such as the date, day of
the week, time-step in the day and weather [24].

Fig. 1 shows the input and output data structures. For time
slot t, the input data xt is a tuple of vectors [ft, et]. ft
contains features such as the date, day of the week, time-step
in the day and weather while et is a vector representing the
number of pickups in each grid cell. Our scenario considers the
map of New York, with its relatively regular grid-like streets.
Thus, for this scenario we don’t need to consider aspects such

Fig. 1. The input and output data structures for the demand prediction model.

as reachability. This might need to be considered in other
scenarios that are beyond the scope of this paper.

1) LSTM model: In a sequence learning model the next
output depends not only on the current input, but also on the
previous ones. To capture this relationship, the predictor needs
to have a memory. In recent years, a popular model for such
tasks is Long Short Term Memory, a type of recurrent neural
network. LSTM has been widely used in many applications
such as unsegmented handwriting generation [9], natural lan-
guage processing [25] and robot control [26].

As shown in Fig. 2, the input data to the model at time-slot
t is [xt−seq, ...xt−1, xt], where seq is the number of previous
data points used to predict the data in the next time slot. seq
is a hyper-parameter that is set large enough to enable the
network to learn long-term dependencies. Given the input data
at t, the network predicts the output ŷt, the number of requests
in each area at the next time slot. A simple way to train the
network using stochastic gradient descent is to minimize the
mean squared error (MSE) between the predicted ŷt and the
ground-truth demand yt.

2) LSTM-MDN model: Predicting the traffic demand is
inevitably probabilistic. If the probability distribution is uni-
modal, a variation around a value, optimizing the MSE leads
the network to predict the most likely value. However, if the

Fig. 2. LSTM-based demand sequence learning model.

4

Fig. 3. LSTM-MDN based demand sequence learning model.

probability distribution is multi-modal, for instance, by having
two independent peaks, optimizing the MSE would predict a
value between those two peaks, which might be a value which
is not likely to be the correct one. Preliminary data analysis
on taxi data shows that indeed, taxi demand is multi-modal.

To account for this, we propose to use mixture density
networks (MDNs) [11] to model stochastic behaviors. MDNs
had been used to model multi-modal distributions in domains
as varied as speed synthesis [27] and drawing sketches [28].
The outputs of an MDN parameterize a Gaussian mixture
distribution. Using a sufficient number of Gaussian kernels,
this system can approximate an arbitrary distribution. The
MSE minimization approach can be regarded as the special
case of the mixture Gaussian model with only one Gaussian
kernel.

Our approach is to use the mixture of Gaussians controlled
by the MDN to approximate the demand distribution in
each grid cell. Fig. 3 shows the structure of the LSTM-
MDN learning model. In contrast to Fig. 2, the output of
LSTM layers would be mixture density parameters of size
M × (N + 2) where M is the number of Gaussian kernels,
and N is the number of grid cells. For each Gaussian kernel,
we have N neurons for the means µk(x), one neuron for the
variance σk(x), and another neuron for the mixing coefficient
wk(x). The vector w is normalized to satisfy the constraint∑M

k=1 wk(x) = 1. The probability density of the next output
yt can be modeled using a weighted sum of M Gaussian
kernels:

p(yt|x) =

M∑
k=1

wk(x)gk(yt|x) (2)

where gk(yt|x) is the kth multivariate Gaussian kernel. Note
that both the mixing coefficient and the Gaussian kernels are
conditioned on the complete history of the inputs till current
time slot x = {x1 . . . xt}. The multivariate Gaussian kernel
can be represented as:

gk(yt|x) =
1

(2π)
N/2

σk(x)
exp

(
−‖yt − µk(x)‖2

2σk(x)2

)
(3)

where the vector µk(x) is the center of kth kernel. Finally, we
can define the error in terms of negative log-likelihood:

0 200 400 600 800 1000
Index of area

0

200

400

600

800

Nu
m
 o
f d

ro
po

ffs

a) Real distribution in area I

0 200 400 600 800 1000
Index of area

0

200

400

600

800

Nu
m
 o
f d

ro
po

ffs

b) Real distribution in area II

0 200 400 600 800 1000
Index of area

0

200

400

600

800

Nu
m
 o
f d

ro
po

ffs

c) Predicted distribution in area I

0 200 400 600 800 1000
Index of area

0

200

400

600

800

Nu
m
 o
f d

ro
po

ffs

d) Predicted distribution in area II

Fig. 4. Histograms of destination cells for taxi rides starting in two specific
grid cells. Top: real values, bottom: predicted values.

Et = − ln

(
M∑
k=1

wk(x)gk(yt|x)

)
(4)

To summarize, the LSTM-MDN model outputs the param-
eters of a Gaussian mixture distribution. To make a prediction
of the taxi-demand in the next time-slot we can draw a sample
êt+1 from this distribution. This prediction can be repeated in
a loop to predict taxi demand for multiple time-steps.

C. Taxi destination prediction

As we discussed in the introduction, we aim to predict not
only the demand for taxis in a specific area in the future, but
also the destination of those trips. As these trips will take place
entirely in the future, we cannot rely on partial GPS traces of
the trips to predict the destination. Our goal is to predict the
probability distribution of likely destinations for a trip started
in a specific grid cell.

To investigate the nature of destination distributions that ap-
pear in practice, let us consider the histogram of the destination
cells from two specific starting cells (Fig. 4-top). For better
visualization, in this figure we cluster neighboring cells sorted
by geohash into different bins. The horizontal axis represents
the area index while the vertical axis represents the number of
dropoffs in the area. We notice that the distribution is far from
uniform - certain locations are heavily favored as a destination.
Furthermore, the distribution is multi-modal, with multiple
independent peaks. The overall shape of the distribution makes
it suitable to modeling using a mixture of Gaussians.

To build a distribution learning model, we first extract
information for each trip from the historical taxi dataset, which

5

Index of pickup
grid cell 0.35 0.10 ….

𝑓𝑘: date, time, weather,
affecting factors

Index of drop-
off grid cell

𝑥$ 	=		

𝑦$ 	=		

Fig. 5. The input and output data structure for destination prediction.

contains the time-stamp, pickup location, and dropoff location
and encode it into the data structure shown in Fig. 5. One
of the advantages of using geohashes is that neighboring grid
cells will stay close when we sort them by the encoding string.
Each trip is converted into a pair of data points [xk, yk], where
k represents the trip index in the dataset. xk consists of the
pickup area and the corresponding features such as the time
slot in the day, the day of the week and the weather. yk
represents the destination area of the trip.

Fig. 6 shows the distribution learning model. The goal is to
learn the parameters of a mixture of Gaussians for each area.
The input data xk is fed to a fully connected neural network.
The expected output is a vector of distribution parameters with
length 3×M . M is the number of Gaussian kernels, which is
a hyper-parameter. Each Gaussian kernel consist of 3 variables
[ω, µ, σ] where ω is the mixing coefficient, µ is the mean and
σ is the standard deviation.

A suitable loss function is to minimize the log-likelihood
of the distribution of the training data:

Cost = − ln

(
M∑

m=1

wm(x)φm{y, µm(x), σm(x)}

)
(5)

where φm{y, µm(x), σm(x)} is the mth Gaussian kernel. It
can be represented as:

φm{y, µ, σ} =
1

2πσm(x)
exp

(
−|y − µm(x)|2

2σ2
m(x)

)
(6)

Fig. 6. Destination distribution learning model.

For each pair [xk, yk] in the training dataset, we calculate the
cost based on the predicted distribution versus the actual value,
and minimize the sum of the costs. The resulting network, as
illustrated in Fig. 4-bottom provides a close prediction of the
real distribution.

IV. DISPATCH SYSTEM

In this section, we describe a taxi dispatch system that
uses the predictive models trained in the previous section.
In the scenario we are considering, customers send real time
taxi requests to a centralized server, specifying the start and
destination locations. The overall goal of the system is to
balance the supply and demand, minimize the idle driving of
the taxi and minimize the time customers are waiting for the
taxi after making a request.

A. Estimating the travel time

In order to make efficient dispatch decisions, we need to
know the time it takes to travel between two destinations (at
the resolution of the grid). We introduce the driving distance
matrix Dist with Dist [i][j] being the distance traveled by a
taxi when going from grid cell i to grid cell j. For pairs for
which we have historical data, we estimate this value as the
average distance on these trips. However, as the number of
values in Dist scales quadratically with the number of cells,
we found that not all cell pairs had historical trips between
them. For such cell pairs, the distance can be estimated by
considering the shortest trip composed of segments for which
we have historical information. Algorithm 1 shows an iterative
approach for generating the full distance matrix.

Another aspect that must be considered when dispatching is
that the average speed of the taxis is influenced by the traffic,
and thus varies with the time of the day and the day of the
week. Following [17], [29] we estimate the speed of the taxi
for each time period with the historical average for the given
time separately for weekdays and weekend days (see Fig. 7).

Having the distance matrix and the estimated speed allows
us to estimate the speed for any taxi trip.

12:
00

am
2:0

0 a
m
4:0

0 a
m
6:0

0 a
m
8:0

0 a
m

10:
00

am

12:
00

pm
2:0

0 p
m
4:0

0 p
m
6:0

0 p
m
8:0

0 p
m

10:
00

pm

12:
00

am
10

12

14

16

18

20

22

Av
er
ag

e
sp
ee

d
(m

ile
s p

er
 h
ou

r) Weekday
Weekend

Fig. 7. The hourly variation of the average speed of the taxi for weekdays
and weekend.

6

Step I: Greedily assign
requests to taxis

Predicted requests
and destinations

Step II: Taxi dispatch
for future balance

Simulate future
taxi assignment in period

𝑡 ∈ (𝑛𝑜𝑤,𝑛𝑜𝑤 + 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑]

At time slot 𝑡 in area 𝑎

Available taxis,
Unassigned requests

MIP (mixed integer
programming)

Available taxis: 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑡𝑎
Requests: 𝑑𝑒𝑚𝑎𝑛𝑑𝑡𝑎

Dispatch solution

Fig. 8. The operation flow of calculating the future dispatch.

Algorithm 1: Distance matrix generation

1 all cells, list of all cells
2 N = len(all cells)
3 all trips, grouped by trip start area
4 Distance matrix Dist [N][N]
5 /* initialize distance for cells pairs with records */
6 for (ai, aj) in all cells do
7 trips = get trips(ai, aj , all trips)
8 Dist [i][j] = mean(trips.distance)
9 end

10 /* cell pairs without trip records */
11 while not converged do
12 for (ai, aj) in all cells do
13 candidatepaths =
14 bidirectionsearch(ai, aj ,Dist)
15 Dist [i][j] = min(candidatepaths)
16 end
17 end
18 return Dist

B. Dispatch system

For the following discussion, we are going to use 1 minute
as the length of our time slots. For any grid cell a, a ∈
all cells, we represent its taxi demand at time slot t as
demandat :

demandat = new demandat + unassignedat (7)

where new demandat represents the newly received taxi re-
quests in area a at time step t, while unassignedat represents
the unassigned taxi requests from previous time steps.

Similarly, the available number of taxis is represented as
availableat which consists of two parts: idleat represents the
number of original idle taxis in area a at time step t while

arrivalat represents the number of estimated arriving non-
occupied taxis to area a at time step t:

availableat = idleat + arrivalat (8)

The workflow of the dispatch system is shown in Fig. 8. At
each time step t, the dispatch system executes two steps. In
step I, for each grid cell a, we sort the requests demandat by
receiving time then perform a greedy assignment with the taxis
available in that cell availableat . As there is no guarantee that
availableat ≥ demandat , it is possible that not all requests
can be served in the given time slot. Step II has the goal
of balancing the future supply and demand ratio. With the
prediction models described in Section III, we first sample
each area’s future taxi requests and their destinations within a
number of lookahead time steps. Then, we simulate the taxi
assignment (step I) for each area in the next lookahead time
steps. After this process, we obtain the remaining unassigned
requests and available taxis in each area. A taxi dispatch
process is conducted to balance the supply-demand curves
in each area over the entire city. We optimize the dispatch
strategy by solving a mixed integer programming problem
whose objective is to minimize the total idle driving distances
while serving all the incoming requests formulated as:

min

now+lookahead∑
t=now

M∑
taxi=1

idle distancettaxi (9)

subject to

N∑
a=i

availablea + dispatchat <= M (10)

now+lookahead∑
t=now

N∑
a=i

availableat + dispatchat >= demandat

(11)

7

V. EXPERIMENTAL STUDY

A. Experimental setup

We used the New York City taxi trip dataset [13] to train and
validate the performance of the proposed system. This dataset
contains daily recorded taxi trips by more than 15000 taxis,
including the yellow cabs, which operate mostly in Manhattan,
and the green cabs, which operate mostly in the suburbs.
The number of trips varies with the day; for instance, in one
week in 2016, the recorded trips from Monday to Sunday
were 374305, 395678, 408184, 432087, 453192, 480818 and
418237. We used the trips from the whole calendar year 2015
as training data, and validated the prediction models as well as
the dispatch system with data from the first week of February
2016.

For the taxi demand prediction, we discretize the requests
into time slots of 15 minutes for each area in 2015. The input
data shape is (365× 96, 96, 997 + 10) where 365× 96 is the
total number of time slots, 96 is the sequence length (one day
or 24×4), 997 is the number of grid cells and 10 is the number
of features. The features include the date, the time slot in the
day, the day of the week and the weather.

For the destination prediction, the input is the trip informa-
tion consisting of the starting grid cell and features such as
the date, time step of the day, day of the week and weather
type.

For the dispatch system, we initialize the taxi distribution
based on the sum of historical requests in each cell. We used a
time slot length of one minute for the prediction system. The
experimental parameters are summarized in Table I.

Before proceeding with the experimental results, let us
briefly discuss the computational cost of the proposed ap-
proach, which has a significant impact on the practical applica-
bility. The computational cost most impactful for the practical
application is the prediction, which is done as an inference
on the neural network. This process takes less than 1 second,
even on a computer without a GPU accelerator. The neural
network does not need to be retrained unless a significant
amount of new and different data has been accumulated. The
training process takes approximately 12 hours on an NVidia
GTX 1080 GPU, and it is done offline. Another component
of the operational system is the mixed integer linear system
used to find the dispatch solution. For the problem sizes we
considered (with 3000 to 5000 taxis), this process took less
than 10 seconds.

TABLE I
EXPERIMENTAL PARAMETERS

Grid cell size ≤ 1.2km× 0.61km
Number of cells N 997
Dispatch system time slot 1 minutes
Number of layers for neural networks 2
Number of Gaussian kernels 1-24

B. Performance metrics

We measure the prediction performance of our approach
using symmetric Mean Absolute Percentage Error (sMAPE),
a widely used prediction error metric. sMAPE describes a

percentile prediction error which, in our case, is defined as
follows:

sMAPEt =
1

N

N∑
n=1

|Yn,t − Ŷn,t|
Yn,t + Ŷn,t + c

(12)

where t is the time slot in a day and N is the number of areas
in the city. Yn,t represents the real taxi demand in grid cell
an at time slot t while Ŷn,t is the predicted taxi demand. The
constant c is a small number introduced to avoid division by
zero when both Yn,t and Ŷn,t are 0 (we used c = 1) .

We define the classification accuracy for destination predic-
tion as the fraction of correct predictions for all requests in a
given time slot.

For the dispatch system, we show the performance in terms
of the average time the passengers wait before being picked-
up and the idle driving distance of the taxis, i.e. the distance
they traverse without carrying a passenger.

C. Systems compared in the experimental study

To investigate the performance of the proposed algorithms,
we assembled several alternative systems by making choices
for the demand prediction, destination prediction and the full
dispatcher. Our strategy was to compare against both well
chosen baselines that do not rely on deep learning systems, as
well as ablated versions of our proposed architecture. We did
not compare against clearly inferior baselines such as constant
prediction or random allocation. The chosen models are listed
below.

Demand predictors:
- Sliding-Window Mean Demand (SWMD): predict taxi

demand as the mean of past demands in a sliding window
over the same timeslot and day of the week. For example,
predict the demand during [10 : 00am, 10 : 00am+ ∆t]
on Monday as the mean demand of the same time period
on the previous 5 Mondays.

- LSTM: predict taxi demand using using an LSTM net-
work and an MSE loss with the model described in
Section III-B1.

- LSTM-MDN: predict the taxi demand using an LSTM
network followed by an MDN loss as described in
Section III-B2.

Destination prediction:
- Sliding-window Destination Distribution (SWDD): uses

the frequency distribution in a sliding window to predict
the distribution of destination. For example, the predicted
destination distribution at Monday 10:00am from location
n will be the frequency of all destinations from the same
area, at the same time on the past five Mondays.

- FN: uses the traditional feed-forward neural network.
- FN-MDN: uses the feed-forward neural network followed

by an MDN as described in Section III-C.
- FN-MDN-neighbors: modifies the FN-MDN model by

accepting neighboring grid cells as correct prediction.
This is justified by the fact that the grid cells are small
(0.6 times 1.2 km) and thus a dispatcher can reasonably

8

Real taxi requests

Dispatch
arrival/departure

Requests to be fulfilled
in system V

52 56 47 36 32 ….

+9 +18 +5 -4 -1 ….

2 6 0 0 0 ….

11 25 36 12 15 ….Requests to be fulfilled
without dispatch

Real requests Predicted requests

Fig. 9. The density map of real and predicted number of requests and an
example of taxi dispatch flow from the JFK airport.

TABLE II
COMPARED DISPATCH SYSTEMS

Dispatch system Demand prediction Destination prediction
System I SWMD SWDD
System II LSTM FN
System III LSTM FN-MDN
System IV LSTM-MDN FN
System V LSTM-MDN FN-MDN

ignore the idle distance when traveling from the neigh-
boring areas.

Dispatch systems: We compare the performance of five dif-
ferent dispatch systems based on various combinations of the
demand and destination predictors as listed in Table II. The
FN-MDN-neighbors approach is not included because from
the point of view of the dispatch decisions is identical to FN-
MDN. All dispatch systems use the dispatch strategy shown
in Fig. 8.

Fig. 9 shows a density map of the real and predicted taxi
requests. We find that there is a good match between the
predicted and the real value. The figure also shows an example
of the taxi dispatch flow from the John F. Kennedy airport,
showing how the proposed system reduces the number of
requests whose fulfilment is delayed.

D. Prediction Performance

Fig. 10-top compares the demand prediction performance
of the different algorithms. We find that the sMAPE values
vary with the time of the day, in general being the lowest
during early morning hours, when the traffic is lower. For
all days and all times of the day, the LSTM-MDN approach
has the best prediction performance, followed by the LSTM
and the SWMD approachess, with the sMAPE being almost
twice for the SWMD approach compared with the LSTM-
MDN. The difference between LSTM and LSTM-MDN are

relatively minor when the traffic is low, such as at Monday
4:00am, but is much more pronounced at higher traffic hours,
such as at 8:00am Monday.

Fig. 10-bottom shows the destination prediction accuracy
(in these results, higher is better). We find that FN-MDN
consistently outperforms SWDD, with the accuracy during
daytime being about 75% versus 60%. The FN-MDN-neighbor
graph is even higher, reaching an accuracy of around 85%.
This shows that even when we cannot exactly predict the grid
cell of the destination, we can still often predict the correct
cell with an error of a single cell.

An interesting observation that can be made by comparing
the top and bottom graphs in Fig. 10 is that during the early
hours of the morning the demand prediction is consistently
better, while the destination prediction is consistently worse.
We hypothesize that the reason could be that in this time period
the total number of requests is low and is mainly from areas
such as airports and bars, but the corresponding destinations
can be anywhere in the town and are not that predictable.

E. The impact of the Gaussian kernels

In the previous section, we have seen that the approaches
using an MDN output outperformed alternative prediction
models. In this section, we explore the impact of using differ-
ent numbers of Gaussian kernels in the MDN. As we discussed
in Section III, MDNs use the outputs of a neural network
to parameterize a mixture distribution. Given a sufficient
number of Gaussian kernels, theoretically we can model any
data distributions. The MSE minimization approach can be
regarded as similar to the special case of the mixture Gaussian
model when M = 1 in Eq. 2 (but it is not exactly the same
mathematical formula).

Fig. 11 shows the prediction performance for different
number of Gaussian kernels in the demand prediction model
over the course of the first week of February 2016. We find that
the prediction performance improves up to M = 8, but then it
starts to decrease as the number of kernels is increased further.
The reason for this is that adding additional kernels, while
increasing the expressiveness of the model, it also increases
the number of parameters, which makes the model more prone
to overfit on the training data and harder to train.

Fig. 12 shows the prediction performance for different num-
ber of Gaussian kernels in the destination prediction model
over the course of the first week of February 2016. In contrast
to the demand prediction model, we do not find any significant
over-fitting; however, the performance appears to plateau at
around 15 Gaussian kernels.

F. The Performance of the Dispatch System

As we discussed in the introduction of this section, we are
comparing five different dispatch systems based on various
combinations of the predictive models as listed in Table II.
For each dispatch system, we show the performance in terms
of the taxi passengers’ average waiting time and taxi drivers’
average idle driving distance.

The way the dispatcher can take into account the demand
and destination predictions is by looking ahead. For instance,

9

Monday

Tuesday

Wednesday

Thursd
ay

Fri
day

Saturday

Sunday
0.02

0.07

0.12

0.17

0.22
De

m
an

d
pr

ed
ict

io
n

er
ro

r (
sM

AP
E) Demand prediction

SWMD
LSTM-MSE
LSTM-MDN

Monday

Tuesday

Wednesday

Thursd
ay

Fri
day

Saturday

Sunday
0.25

0.35

0.45

0.55

0.65

0.75

0.85

De
st

in
at

io
n

pr
ed

ict
io

n
ac

cu
ra

cy

Destination prediction

SWDD
FN
FN-MDN
FN-MDN-Neighbor

Fig. 10. Prediction performance in one week by different demand and destination prediction models.

1 2 4 6 8 10 12 14 16
Number of Gaussian kernels in MDNs

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

De
m

an
d

pr
ed

ict
io

n
er

ro
r (

sM
AP

E)

Fig. 11. The impact of the number of Gaussian kernels in the MDN for
demand prediction using LSTM-MDN

the dispatcher might preemptively send taxis to grid cells
where high demand is expected. From this predicted demand,
the dispatcher can subtract the number of taxis which are
predicted to end up there anyhow, by having their predicted

1 3 6 9 12 15 18 21 24
Number of Gaussian kernels in MDNs

0.3

0.4

0.5

0.6

0.7

De
st
in
at
io
n
pr
ed
ict
io
n
ac
cu
ra
cy

Fig. 12. The impact of the number of Gaussian kernels in MDNs for
destination prediction using FN-MDN.

destinations in this point. Obviously, any benefit is contingent
on the accuracy of the predictions. If too many predictions
are wrong, the taxis will make many unnecessary idle trips
to locations where too many customers were predicted, while

10

None 05 10 15 20
Future dispatch lookahead steps (mins)

0

1

2

3

4

5

6

7
Av

er
ag

e
wa

iti
ng

 ti
m

e
(m

in
s)

a)
System I
System II
System III
System IV
System V

None 05 10 15 20
Future dispatch lookahead steps (mins)

0

2

4

6

8

10

Av
er

ag
e

id
le

 d
riv

in
g

di
st

an
ce

 (k
m

)

b)
System I
System II
System III
System IV
System V

Fig. 13. Performance of passengers average waiting time, taxi average idle driving distance on different lookahead time duration. Settings of each dispatch
system: System I: SWMD + SWDD, System II: LSTM + FN, System III: LSTM + FN-MDN, System IV: LSTM-MDN + FN and System V: LSTM-MDN +
FN-MDN.

Results obtained via using total number of 4000 taxis in the city.

3000 4000 5000
Total number of taxis

0

1

2

3

4

5

6

7

Pa
ss

en
ge

r a
ve

ra
ge

 w
ai

tin
g

tim
e

(m
in

s)

a)
System I
System II
System III
System IV
System V

3000 4000 5000
Total number of taxis

0

2

4

6

8

10

12

14

Ta
xi

 a
ve

ra
ge

 id
le

 d
riv

in
g

di
st

an
ce

 (k
m

)

b)
System I
System II
System III
System IV
System V

Fig. 14. The average waiting time of the passengers (left) and the average idle driving distance of the taxis (right) function of the number of taxis. Settings
of each dispatch system: System I: SWMD + SWDD, System II: LSTM + FN, System III: LSTM + FN-MDN, System IV: LSTM-MDN + FN and System V:
LSTM-MDN + FN-MDN. For all experiments we set lookahead = 15 .

the customers who actually show up might have to wait longer
as there are not enough nearby taxis available. The lookahead
parameter determines how far ahead in time will the dispatcher
predict and take actions.

Fig. 13 shows the results and the standard deviation for
the two performance metrics for different lookahead time slot
values. As expected, if there is no lookahead, all dispatchers
have identical waiting time and idle driving values. The
waiting time decreases with the lookahead up to around 10-15
minutes, after which it increases again, as the prediction errors
become larger the farther in the future we make predictions.
For a given lookahead, the performance waiting time decreases

as we progress through Systems I, II, III, IV and V. This
is expected because, as shown in the results in the previous
section, the prediction components are getting better in this
order. For the idle driving time, the pattern is different: moving
from no lookahead to a 5 minute lookahead the idle driving
distance actually increases, as taxis are required to make more
pre-emptive trips. However, as the lookahead increases further
to 10 and 15 minutes, the idle distance decreases as we find a
more efficient dispatch that takes into account the destination.
Starting with a lookahead of 20 minutes, the performance
begins to weaken again with the higher prediction errors.

Fig. 14 shows experimental results and the standard de-

11

viation for the two performance metrics while varying the
number of taxis in the city. As expected, raising the number
of taxis from 3000 to 4000 reduces the waiting time of the
passengers, with the differences being larger for the weaker
predictor models. However, further raising the number of taxis
to 5000 gives only a minor improvement in the average waiting
time. A similar pattern applies to the idle driving distance -
there is a more significant decrease from 3000 to 4000, and
a minor decrease from 4000 to 5000. Another consideration
here is that increasing the number of taxis, while does not
add to the idle driving distance, it does add to the idle waiting
time of the taxis and lowers the average utilization and thus
the per-vehicle income.

The results of our dispatcher experiments can be summa-
rized as follows. Using a better prediction engine improves
the performance of the dispatcher for non-zero lookahead. An
appropriately chosen lookahead in the dispatcher can improve
the performance on the customer waiting time and the idle
driving distance. Finally, the quality of the predictor in the
dispatcher can achieve the same customer waiting time and
idle driving distance with significantly lower number of taxis
- for instance in Figure 14 the performance of System V with
3000 taxis is comparable to System I with 5000 taxis.

VI. CONCLUSION

In this paper, we used deep learning techniques to create
two predictive models of taxi demand and destination in
a city and built a dispatch system that takes advantage of
these predictions. The optimal taxi assignment and reallocation
strategy is obtained by formulating it as a mixed integer
programming problem. We validated our work with real-world
taxi trip data from New York City. The experimental results
show that the proposed dispatch system can decrease the
average waiting time of the passengers and the average idle
driving distances of the taxis.

REFERENCES

[1] W. Li, J. Cao, J. Guan, S. Zhou, G. Liang, W. K. Y. So, and M. Szczecin-
ski, “A general framework for unmet demand prediction in on-demand
transport services,” IEEE Transactions on Intelligent Transportation
Systems, pp. 1–11, 2018.

[2] X. Chen, F. Miao, G. J. Pappas, and V. Preciado, “Hierarchical data-
driven vehicle dispatch and ride-sharing,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), Dec 2017, pp. 4458–4463.

[3] J. Xu, R. Rahmatizadeh, L. Bölöni, and D. Turgut, “Taxi dispatch
planning via demand and destination modeling,” in 2018 IEEE 43rd
Conference on Local Computer Networks (LCN), Oct 2018, pp. 377–
384.

[4] K. Zhang, Z. Feng, S. Chen, K. Huang, and G. Wang, “A framework for
passengers demand prediction and recommendation,” in Proc. of IEEE
SCC’16, June 2016, pp. 340–347.

[5] K. Zhao, D. Khryashchev, J. Freire, C. Silva, and H. Vo, “Predicting taxi
demand at high spatial resolution: Approaching the limit of predictabil-
ity,” in Proc. of IEEE BigData’16, December 2016, pp. 833–842.

[6] D. Zhang, T. He, S. Lin, S. Munir, and J. A. Stankovic, “Taxi-passenger-
demand modeling based on big data from a roving sensor network,”
IEEE Transactions on Big Data, vol. PP, no. 99, pp. 1–1, 2016.

[7] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and
L. Damas, “Predicting taxi passenger demand using streaming data,”
IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3,
pp. 1393–1402, 2013.

[8] P. C. Besse, B. Guillouet, J. Loubes, and F. Royer, “Destination
prediction by trajectory distribution-based model,” IEEE Transactions
on Intelligent Transportation Systems, vol. 19, no. 8, pp. 2470–2481,
Aug 2018.

[9] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[10] J. Xu, R. Rahmatizadeh, L. Bölöni, and D. Turgut, “Real-time prediction
of taxi demand using recurrent neural networks,” IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 8, pp. 2572–2581, Aug
2018.

[11] C. M. Bishop, “Mixture density networks,” Aston University, Tech. Rep.,
1994.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] NYC Taxi Limousine Commission. Taxi and limousine
commission (tlc) trip record data. [Online]. Available:
http://www.nyc.gov/html/tlc/html/about/trip record data.shtml

[14] F. Miao, S. Han, S. Lin, J. A. Stankovic, D. Zhang, S. Munir, H. Huang,
T. He, and G. J. Pappas, “Taxi dispatch with real-time sensing data
in metropolitan areas: A receding horizon control approach,” IEEE
Transactions on Automation Science and Engineering, vol. 13, no. 2,
pp. 463–478, 2016.

[15] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, and Z. Li,
“Deep multi-view spatial-temporal network for taxi demand prediction,”
in Proc. of AAAI’18, April 2018.

[16] A. de Brébisson, É. Simon, A. Auvolat, P. Vincent, and Y. Bengio,
“Artificial neural networks applied to taxi destination prediction,” CoRR,
vol. abs/1508.00021, 2015.

[17] J. Alonso-Mora, A. Wallar, and D. Rus, “Predictive routing for au-
tonomous mobility-on-demand systems with ride-sharing,” in Proc.
of IEEE International Conference on Intelligent Robots and Systems
(IROS), Sept 2017, pp. 3583–3590.

[18] L. T. Loris Bazzani, Hugo Larochelle, “Recurrent mixture den-
sity network for spatiotemporal visual attention,” arXiv preprint
arXiv:1603.08199v4, 2017.

[19] F. Miao, S. Han, S. Lin, Q. Wang, J. A. Stankovic, A. Hendawi,
D. Zhang, T. He, and G. J. Pappas, “Data-driven robust taxi dispatch
under[-2pt] demand uncertainties,” IEEE Transactions on Control Sys-
tems Technology, pp. 1–17, 2018.

[20] J. Lin, S. Sasidharan, S. Ma, and O. Wolfson, “A model of multimodal
ridesharing and its analysis,” in 2016 17th IEEE International Confer-
ence on Mobile Data Management (MDM), June 2016, pp. 164–173.

[21] D. Pelzer, J. Xiao, D. Zehe, M. H. Lees, A. C. Knoll, and H. Aydt, “A
partition-based match making algorithm for dynamic ridesharing,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp.
2587–2598, Oct 2015.

[22] H. Zheng and J. Wu, “Online to offline business: Urban taxi dispatching
with passenger-driver matching stability,” in 2017 IEEE 37th Interna-
tional Conference on Distributed Computing Systems (ICDCS), June
2017, pp. 816–825.

[23] G. Niemeyer. (2008) Tips & tricks about geohash. [Online]. Available:
http://geohash.org/site/tips.html

[24] National Oceanic and Atmospheric Administration. National oceanic
and atmospheric administration (noaa) climate data online. [Online].
Available: https://www.ncdc.noaa.gov/cdo-web/

[25] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. of NIPS’14, December 2014, pp. 3104–
3112.

[26] R. Rahmatizadeh, P. Abolghasemi, A. Behal, and L. Bölöni, “Learning
real manipulation tasks from virtual demonstrations using LSTM and
MDN,” in Proc. of AAAI Conf. on Artificial Intelligence (AAAI’18), Feb
2018.

[27] H. Zen and A. Senior, “Deep mixture density networks for acoustic
modeling in statistical parametric speech synthesis,” in Proc. of IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2014, pp. 3844–3848.

[28] D. Ha and D. Eck, “A neural representation of sketch drawings,”
International Conference on Learning Representations, 2018.

[29] X. Zhan, S. Hasan, S. V. Ukkusuri, and C. Kamga, “Urban link travel
time estimation using large-scale taxi data with partial information,”
Transportation Research Part C: Emerging Technologies, vol. 33, pp.
37 – 49, 2013.

12

Jun Xu is currently a software engineer at Facebook.
He has received his PhD degree in Computer Science
at the University of Central Florida. He received his
MS degree in Electrical Engineering from Beijing
University of Posts and Telecommunications, China.
His research interests include mobility model, agent
path planning and machine learning.

Rouhollah Rahmatizadeh received his BS degree
in computer engineering from Sharif University of
Technology, Tehran, Iran, and MS and Ph.D degrees
in Computer Science at the University of Cen-
tral Florida. His research interests include machine
learning, robotics, and wireless sensor networks.

Ladislau Bölöni is a Professor of Computer Science
at University of Central Florida (with a secondary
joint appointment in the Dept. of Electrical and
Computer Engineering). He received a PhD degree
from the Computer Sciences Department of Purdue
University in May 2000, an MSc degree from the
Computer Sciences department of Purdue University
in 1999 and BSc. Computer Engineering with Hon-
ors from the Technical University of Cluj-Napoca ,
Romania in 1993. He received a fellowship from the
Computer and Automation Research Institute of the

Hungarian Academy of Sciences for the 1994-95 academic year. He is a senior
member of IEEE, member of the ACM, AAAI and the Upsilon Pi Epsilon
honorary society. His research interests include cognitive science, autonomous
agents, grid computing and wireless networking.

Damla Turgut is a Charles Millican Professor of
Computer Science at University of Central Florida.
She received her Ph.D. degree from the Computer
Science and Engineering Department of University
of Texas at Arlington. Her research interests include
wireless ad hoc, sensor, underwater and vehicular
networks, cloud computing, smart cities, IoT-enabled
healthcare and augmented reality, as well as consid-
erations of privacy in the Internet of Things. She
is also interested in applying big data techniques
for improving STEM education for women and

minorities. Her recent honors and awards include the NCWIT 2021 Mentoring
Award for Undergraduate Research (MAUR) Award, Women of Distinction
Award by the UCF Faculty Excellence Center for Success of Women Faculty,
UCF Research Incentive Award, and the University Excellence Award in
Professional Service. Dr. Turgut serves on several editorial boards and
program committees of prestigious ACM and IEEE journals and conferences.
She is a senior member of IEEE, a member of ACM and the Upsilon Pi
Epsilon honorary society.

