Privacy-Preserving Learning of Human Activity Predictors in Smart Environments

Abstract—The daily activities performed by a disabled or elderly person can be monitored by a smart environment, and the acquired data can be used to learn a predictive model of user behavior. To speed up the learning, several researchers designed collaborative learning systems that use data from multiple users. However, disclosing the number of data samples are counted from the tens of thousands to 500 billion (the Common Crawl dataset used to train the GPT-3 model). The activity logs of assistive environments, in contrast, are an example of small data: the number of individual activities performed by a user each day is counted in dozens, and we expect the model to yield actionable predictions in a matter of weeks after the system deployment.

A possible solution to this dilemma is the use of collaborative learning which, by building a common model M_{shared} from the data of a pool of users, operate closer to the big data regimes favored by deep learning algorithms. The simplest choice of collaborative learning is centralized learning: the environments transfer their logs to a cloud-based central authority, which combines these logs into a common training set. A different variant of collaborative learning, federated learning [7], also relies on a cloud-based central authority but requires the environments to perform learning locally and transfer only parameters of the learned model to the central system. Having access, directly or indirectly, to more data, collaborative learning promises faster convergence.

An assumption of the collaborative learning approach is that the logs used for training are independently and identically distributed (iid). The daily routines of different users have clearly much in common due to biological and cultural factors as well as medical recommendations. On the other hand, every user has his/her own preferences, and the nature of the environment, the home and surroundings might also affect the schedule. For instance, a morning walk that is feasible in California in January might not be feasible in Minnesota. The fact that the iid assumption is only approximately satisfied bounds the performance achievable with collaborative learning. Local learning, which uses only the data collected from the given user is not subject to this limitation, as we can assume that these data is iid (at least over timespans that does not include significant lifestyle changes).

A very important aspect of learning in smart environments is the consideration of privacy. The elderly and disabled are a vulnerable population, frequently targeted by hackers and scammers. Furthermore, the benefits of a smart environment are contingent on the trust of the user, which is strongly correlated with privacy. One of the fundamental principles of privacy is that of data minimization. In the context of machine learning this principle means that the minimum amount of training data must be collected from users in order to acquire the specific benefits of the application. This principle was stated, among others, in the consumer privacy report of the US White House in 2012 [8], by the UK Information Commissioner’s office [9] and it is also embedded in the European
Predicting future events in smart environments.

Most of the research in prediction in smart environments can be grouped into two categories: predicting the activities of daily living and predicting the location of events [3].

The development of machine learning based approaches for such predictors require training data which is considerably harder to obtain for a human-inhabited physical system such as a smart-home compared to domains where training data can be simply obtained by scraping the internet. The CASAS dataset [14] is one of the most complete, maintained and publicly available smarthome datasets; it had been the catalyst of many subsequent research efforts.

Minor, Doppa and Cook [15] used the CASAS dataset to learn activity predictors. In contrast to our predictor which predicts the probability of the next event (essentially, a probabilistic classification problem), this work predicts the individual time delays when the next event of a given class would take place (a regression problem). To this end, the authors trained separate regression models with model trees of each class. Another work that focused on a current activity recognition task based on the sensory data inputs in CASAS datasets is by Liciotti et al. [16].

Mshali et al. [17] developed an e-health monitoring framework to detect abnormal and risky daily activities and predict the health conditions of the residents using a Grey prediction model (GM) [18]. Choi et al. [19] proposed two deep learning algorithms based on deep belief networks [20] and restricted Boltzman machines [21] to predict the behaviors of residents using MIT home dataset [22].

Federated learning.

Federated learning had initially been proposed as a technique to improve communication efficiency in distributed learning [7]. However, it had been pointed out that the technique also allows the learning system to ensure differential privacy [11]. One of the early, high profile applications was Google’s Gboard [23] which used federated averaging (FedAvg) [24] to improve next word prediction. In recent years, several research projects improved the performance and privacy characteristics of federated learning. Zhao et al. [25] suggested a data sharing approach to improve the performance of the FedAvg algorithm in case the training data is non-IID. Wang et al. [26] aims to optimize learning of a gradient-descent based federated learning algorithm at the edge. In federated learning algorithms, local training happens at the edge and global aggregation is performed on a central place. They proposed a control algorithm that determines the best frequency of global aggregation with which computation and communication resources at the edge can be used efficiently in federated learning. Zhang et al. [27] proposed building trustworthy federated learning systems using trusted execution environments (TEEs). Their main focus was to assure that the local training on clients side is being done correctly.

Yu et al. [28] suggested a framework to automatically learn contextual access control policies for IoT devices in smart homes in order to detect if an access to an IoT device should be allowed or blocked. To learn an accurate model for this, sufficient and diverse data required which cannot be provided by a single home. On the other hand, collecting data from all smart homes will bring privacy concerns to the users. To address these issues, they leveraged federated multi-task learning (FMTL) approach. Nishio and Yonetani [29] focused on client selection in federated training (FedCS). In their
suggested protocol, the central mobile edge computing (MEC) operator sends a resource information request to the random clients. Based on their information such as computational capacity, wireless channel status and size of data, the MEC can decide which client will be able to participate in training and deliver the updates for global aggregation in time. For our client selection, however, we simulate the deployment time of smart homes and select the participants in training by that information.

III. Training Data for Collaborative Learning in Smart Environments

The performance of machine learning models depends on the data used for training. Everything else being equal, more data is better, and highly expressive models, such as deep neural networks, require more training data to avoid overfitting. Many recent achievements of deep learning took place in a "big data" regime; Google, Facebook and Amazon rely on a steady stream of data from the users interacting with their services. For instance, a success story in federated learning is predicting the next word on a mobile device’s keyboard [23], relying on a very large number of users receiving the collaborative learning client simultaneously.

However, in the case of a smart environment participating in a collaborative learning scheme, this model cannot be taken for granted. A privacy conscious user (or the environment acting on her behalf) would not share any data unless there is a strong likelihood that it would benefit from the transaction. At the same time, the user will stop sharing when no further benefit is likely. As we have seen in the introduction, this data minimization behavior approach had been recommended by government directives in the US, UK and EU. As the problem of privacy is particularly acute for the vulnerable elderly and disabled population, the regulatory pressure is likely to increase.

We need to emphasize that the data minimization principle does not preclude the use of collaborative learning and other cloud based techniques. It means however, that some of the simplifying assumptions are not applicable: we need a better understanding of the temporal aspect of data sharing: what training data is available, to whom and when.

The first simplifying assumption we need to discard is the synchronized start of data collection. The deployment of a smart environment for the disabled or elderly is not instantaneous. It requires physical installation of hardware, software configuration, user training and possibly legal and medical approval. Thus, the smart environment will be deployed for some users earlier than for others. As the deployment times are random but independent from each other, they follow a Poisson arrival process. Furthermore, the number of smart environments contributing to a single collaborative domain is significantly smaller than the countrywide domains used by web services. Under these conditions, modeling the deployment time is necessary, because it affects the amount of training data available to the predictor.

Let us discuss the problem of the data available for learning in a group of smart environments. We will consider a set of smart homes H_1, \ldots, H_M that started to operate at times $t_{i_{\text{start}}}$ distributed according to a Poisson process with an arrival rate λ. We take the perspective of the target smart home H_{tg} that had started to operate on day t_{tg}.

![Fig. 1. The data available for collaborative training for a group of users. The deployment time of the system is modeled through a Poisson arrival starting from January 1st. The users stop sharing data when further data sharing is not justified by the advantage of collaborative learning. The red part of the bars illustrates the data available for collaborative training on January 16th.](image)

Figure 1 illustrates an example with $M = 30$, $\lambda = 0.5$, starting time January 1st, and we are considering $H_{tg} = H_{14}$ with $t_{tg} = \text{January 6}$.

Local learning involves the training of a model based on data collected from the same home. This approach has the highest level of privacy, as no personal information needs to leave the premises. The weakness of the local training model is the paucity of the data, especially early in the deployment. On day t_{tg}, the system has no training data whatsoever, on day $t_{tg} + 1$ it will only have one day of training data and so on. Thus we expect the accuracy to start from a very low level, but increase in time as training data accumulates. The red part of Home 14 data in Figure 1 shows the data available to this home on January 16 in the local training regime (ten days of recordings from January 6 to January 15).

Let us now consider the case of centralized learning. As the smart environment was deployed at different homes at different times, on the day the target home had started, a number of other homes are already operating and providing data. If home H_i started at time $t_{i_{\text{start}}}$, the total amount of
training data available at that point will be:

$$D_{tg}^{centralized} = \bigcup_{i : t_i^{start} < t_{tg}^{start}} D_i[t_i^{start} : t_i^{start}] \quad (1)$$

For our example, the data available for training is the data from all homes where the system was deployed before January 16 - these are all the parts of bars shown in red in Figure 1.

Another simplifying assumption that is not applicable for privacy-aware users is that once a user joined a collaborative learning setup, it will provide data indefinitely into the future. To do this might be in the interest of the central authority, but it is not compatible with the privacy principle of data minimization. A rational user will stop providing data to the central system as soon as the local learning yields better results than the predictive models received from the center. As shown by the termination of the bars in Figure 1, this cross-over point might happen sooner or later in time and it triggers the end of sharing data t_i^{end}. We note that this time point only shows the end of data sharing; the smart environment will continue to operate and the local learning will continue to receive data past this time. Thus the data available for centralized learning will be:

$$D_{tg}^{centralized} = \bigcup_{i : t_i^{start} < t_{tg}^{start}} D_i[t_i^{start} : \min(t_i^{end}, t_{tg}^{start})] \quad (2)$$

Federated learning operates on the same amount of data, with the difference that the data is never put together to a shared database.

IV. LEARNING THE ACTIVITY PREDICTION MODEL

In this section we describe the architecture and training process of a human activity predictor for a smart environment that predicts the future activities of the residents based on the history of activities and current environment. We represent the input as a sequence of tuples (h, d, a) containing one-hot encoded hour of the day h, day of the week d and activity label a. Our predictor f takes a sequence of L tuples and outputs the probability of occurrence of next activity:

$$f((h_1, d_1, a_1), \ldots, (h_{L+l-1}, d_{L+l-1}, a_{L+l-1})) \rightarrow p(a_{L+l}) \quad (3)$$

Our goal is to find the “best” predictor. One way to formalize this is by assuming that the function f is part of a parameterized family of sufficiently expressive functions $f(\cdot) = F(\cdot, \theta)$. In our case, this family will be a particular type of deep neural network, and θ will map to the network weights - but many other choices exist. Thus finding the best function is mapped to finding the optimal $\theta = \theta^*$.

Naturally, we cannot exactly predict every activity due to the inherent randomness of the human behavior. We will define the accuracy of predictor in the form of a loss function expressed as the cross-entropy between the predicted probabilities and the actually occurring activity. The optimal θ^* will be the value that minimizes this loss over the available training data. In the remainder of this section, our focus will be on finding the appropriate form for the function F and the optimization process for finding θ^*.

A. A Long-Short Term Memory Based Activity Predictor

In recent years, time series predictors based on a specific type of recurrent neural networks, Long-Short Term Memory (LSTM) [30] had been successfully applied to problems ranging from natural language processing [31], [32] to robotics, computer vision and taxi demand prediction [33]–[35]. Compared to other machine learning approaches where feature engineering is essential, deep neural networks, trained end-to-end using stochastic gradient descent, learn their own latent feature encoding. Within the field of deep neural networks, LSTMs have the advantage of having a learned memory state. This allows a prediction to be conditioned on events that happened many time steps in the past, while still handling one event at a time.

Fig. 2 shows the architecture of a deep neural network designed to learn the prediction function Eq 3. The input layer of shape $l \times n$ encodes the l tuples of history. The second layer is an LSTM of size 256 unrolled l times. The hidden state h and the cell state c (memory) in the previous time step alongside the input in the current time step is given to the current LSTM cell. This procedure runs repeatedly until all data in the given sequence is processed. At that point, the output of the LSTM cell o will become the input of the next layer, which is a dense layer with a ReLU activation function. This layer is followed by a dropout layer [36] with a dropout rate of 0.5 to improve the generalization of the model. Finally, we have another dense layer with a softmax activation function that outputs a probability for each activity. For training purposes, we are using a cross-entropy loss between the output of the softmax and the actual next activity. When deployed and used as a predictor, the smart environment can take the activity with the highest probability to be the predicted activity for the next time step.

In the following, we describe three possible scenarios for training activity predictors for the smart environments: local training and two collaborative training scenarios - centralized
This learning model is shown in Fig 3-Middle. Central authority runs the learning algorithm daily, creating a their daily logs to the central authority as training data. The cloud-based central authority. The participating homes upload their own data. In general, we expect the paucity of the training data to result in an initially weak predictor which, however, will improve in time as more training data becomes available.

D. Federated Training

Federated training is a variant of collaborative learning which does not require the participating nodes to share their data. Each node implements a learner that has access to the locally generated data. As in the centralized training approach, there is a cloud based central authority that learns and distributes a shared model. However, in contrast to the centralized approach, the central authority does not receive training data from the environments, but parameters from the locally updated models.

There are several techniques through which the federated learner can update the shared model. The approach we use is the federated averaging model introduced by McMahan et al. [24], due to its robustness to unbalanced datasets like the ones found in smart environments with different deployment dates. The updated model is then transmitted to the nodes.

D. Federated Training

Federated training is a variant of collaborative learning which does not require the participating nodes to share their data. Each node implements a learner that has access to the locally generated data. As in the centralized training approach, there is a cloud based central authority that learns and distributes a shared model. However, in contrast to the centralized approach, the central authority does not receive training data from the environments, but parameters from the locally updated models.

There are several techniques through which the federated learner can update the shared model. The approach we use is the federated averaging model introduced by McMahan et al. [24], due to its robustness to unbalanced datasets like the ones found in smart environments with different deployment dates. The updated model is then transmitted to the nodes.

Fig. 3. Activity prediction approaches 1. local (in-home) training (top), 2. centralized training (middle), and 3. federated training (bottom).
E. Predicting If Smart Environments Benefit from Federated Training

Let us now summarize the expected accuracy profiles and the three learning approaches we consider:

- **Local training**: will start with a low accuracy due to lack of training data, the performance will increase in time, and in principle is limited only by natural variability of activities and by model capacity. Privacy is guaranteed as no data leaves the premises.
- **Centralized training**: will start with a higher accuracy due to existing training data from nodes that were deployed earlier. The accuracy will increase relatively slowly and, in addition, will be limited by the non-iid distribution of the training data between different environments. Significant privacy concerns due to data sharing.
- **Federated training**: accuracy profile expected to be similar to centralized training. Privacy concerns lower, but information leakage still possible.

Note that we are expecting that eventually the local training will overtake the collaborative learning approaches. At this point, a rationally behaving privacy aware smart environment will stop participating in the collaborative learning model, stop sharing data and continue improving its activity predictor using local learning.

One additional insight we must consider is that simply participating in the collaborative learning and sharing a single day’s activities might be the largest privacy loss, as it might disclose the user’s age, medical needs and disability condition. Disclosing further day’s data of the same daily routine will disclose relatively few additional information. Thus, the smart environment must consider carefully whether it should participate in the collaborative learning pool.

We are going to define a number of measurable quantities that would allow the environment to make these decisions. One such quantity is the **crossover point**: the day in the future from which the model acquired through local training will consistently overtake the one received from the collaborative learning (centralized or federated). Intuitively, the closer the crossover point is, the less justified is for the user to join the collaborative learning pool.

The second quantity of interest is the area between the local and collaborative learning models accuracy in time up to the crossover point. Using a term borrowed from the field of reinforcement learning, we will call this quantity **regret** - this is the overall accuracy performance lost if the user does not join the collaborative learning pool. The smaller the regret, the less justified is to join the collaborative learning pool.

Naturally, both the crossover point and the regret can be measured only after the fact. In this paper, we propose the hypothesis that while these values are difficult to predict, we can train a classifier for a good surrogate measure that can be used as a decision aid. We will create a classifier that, based on the histogram of the first k days of the node and the average over all nodes will predict whether the crossover point will happen before specific day d or not.

As a note: training such a classifier requires the collaboration of the central authority, and might result in the node not joining the collaborative learning pool. Thus, it would not be in interest of the centralized authority to provide this classifier if the authority has a business model that relies on data sharing. However, it would be in the interest of the authority to help make this decision if the privacy interests of the central authority and the nodes are aligned.

V. Experimental Study

In the previous section we made certain conjectures about the accuracy profiles of the activity predictors. Qualitatively, these predictions are supported by objective facts: we know that local training has less training data than collaborative ones, and we know that centralized training can emulate federated learning but not the vice-versa. However, any practical application would need to rely on the quantitative results.

For instance, if the crossover point would take years to reach, collaborative learning would be the only reasonable alternative for a smart environment. If the difference between the centralized and federated learning results is large, the system will need to choose centralized learning even if privacy vulnerabilities exist.

These quantitative factors strongly depend on the actual data. We could be right about the overall patterns, but wrong about the scales at which these patterns happen. Performing experiments using real world data is the only way in which we can understand the decisions faced by smart environments.

A. Datasets and Pre-processing

For our experiments we used the datasets collected by the CASAS project [13] 1. This collection contains 30 datasets collected in homes with volunteer residents performing their daily routines. There is a significant diversity in the datasets and the routines: some of the residents were younger adults, some were healthy older adults, some were older adults with dementia, and some were having pets.

In order to make the datasets suitable for our experiments, we performed several pre-processing steps.

Mapping the activity labels into a common ontology. The original activity labels are closely related, but not fully identical across the various datasets. Labels at various levels of granularity exist, such as work, work at table, work on computer and work at desk. The use of different labels would make any form of collaborative learning impossible, and local learning difficult to compare between datasets. We solved this problem by mapping the activity labels to a higher level, coarser granularity categories, creating 10 new category labels.

1https://archive.ics.uci.edu/ml/datasets/

Human+Activity+Recognition+from+Continuous+Ambient+Sensor+Data
Converting to an event-based time series. The CASAS dataset uses a variable sampling rate from a resolution ranging from several seconds to sometimes hours. When the sampling rate is fast, it usually results in many repeated entries with the same activity label.

We have several choices to convert these entries into a format that is more suitable to machine learning. We could, for instance, map the entries into a shared, uniform time grid across all the datasets. However, this approach would create very large datasets, with redundant information.

Instead, we chose to use an event-based representation of the activity time series, by representing every contiguous activity with a single entry. One side effect of this is that the dataset for each day will be significantly shorter, but entries for the individual days might have a varying length. This, however, is naturally handled by the LSTM-based activity recognition without overlap between them. The mapping of the original activity labels to the new common ontology is shown in Table I.

Table I
Mapping the Dataset Activity Labels to a Higher Level Daily Activity Categories

<table>
<thead>
<tr>
<th>Original Activities</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>evening meds, morning meds, take medicine, exercise, toilet, groom, dress, r2.dress, bathe, personal hygiene, r2.personal hygiene</td>
<td>PERSONAL HEALTH AND HYGIENE</td>
</tr>
<tr>
<td>eat, eat breakfast, r2.eat breakfast, eat lunch, eat dinner</td>
<td>EAT</td>
</tr>
<tr>
<td>drink</td>
<td>DRINK</td>
</tr>
<tr>
<td>cook, r1.cook breakfast, cook lunch, cook dinner, cook, cook breakfast, wash dishes, wash breakfast dishes, wash lunch dishes, wash dinner dishes, laundry</td>
<td>CHORES</td>
</tr>
<tr>
<td>nap, sleep, r1.sleep, sleep out of bed, go to sleep / wake up (interval between them)</td>
<td>REST</td>
</tr>
<tr>
<td>relax, watch TV, read</td>
<td>RELAX</td>
</tr>
<tr>
<td>phone, entertain guests</td>
<td>SOCIAL</td>
</tr>
<tr>
<td>work, work at table, work on computer, work at desk</td>
<td>WORK</td>
</tr>
<tr>
<td>leave home</td>
<td>LEAVE HOME</td>
</tr>
<tr>
<td>enter home</td>
<td>ENTER HOME</td>
</tr>
<tr>
<td>other activity, step out, bed toilet transition</td>
<td>NOT TRACKED</td>
</tr>
</tbody>
</table>
engine. Note that this approach does not encode the length of an activity through the number of repeated entities. However, the temporal information is still present by the encoding of the time of the day as one of the features.

Feature representation We are using a representation where every entry in the time series has three data fields: the hour of the day (as an integer 0-23), the day of the week (as an integer 0-6), and the activity label which is also encoded as an integer in the range 0-9. Each value was individually encoded with a one-hot representation, and the resulting values were concatenated. Thus the input data was organized in the form of 24+7+10=41 binary values. Correspondingly, the output is encoded as an array of 10 values which, being the output of a softmax layer, encode the probabilities of the next activity.

Modeling the deployment times. Our objective is to model the data available for a collaborative / local model at various moments in time. As we discussed in Section III, for the collaborative learning models, this depends on the deployment schedule. The CASAS datasets were collected over many years, at time points separated by large intervals, sometimes from successive inhabitants from the same home. To model our scenario, we changed the starting times of the individual datasets to represent different smart environments deployed over the course of 2 months, with a Poisson arrival distribution. This is a realistic model of a small scale deployment by a local health care provider.

B. Training the Activity Predictor

Using the preprocessed datasets described in the previous section, we trained the LSTM-based activity predictor from Fig. 2. For the local training case, we trained 30 different predictors on their local data, for every day of operation. For the centralized predictor, we trained a single shared predictor on the data available, described by Eq. 2. For the local and centralized learning, we used the Keras library on top of Tensorflow 2.1.0. For the federated learning, we have trained local predictors with the appropriate local data and updated the shared model using Tensorflow-Federated 0.13.1.

The training configurations for the different model are shown in Table II.

<table>
<thead>
<tr>
<th>Hyperparameters</th>
<th>Local</th>
<th>Centralized</th>
<th>Federated</th>
</tr>
</thead>
<tbody>
<tr>
<td>batch size</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>number of epochs</td>
<td>500</td>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td>lstm use bias</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>early stopping patience</td>
<td>50</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>early stopping minimum</td>
<td>0.01</td>
<td>0.01</td>
<td>20</td>
</tr>
<tr>
<td>number of rounds</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>client learning rate</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>server learning rate</td>
<td>-</td>
<td>0.001</td>
<td>0.5</td>
</tr>
<tr>
<td>client optimizer</td>
<td>Adam</td>
<td>-</td>
<td>Adam</td>
</tr>
<tr>
<td>server optimizer</td>
<td>Adam</td>
<td>SGD</td>
<td></td>
</tr>
</tbody>
</table>

C. Results: Accuracy, Crossover Point and Regret

The approach we took in this paper is to focus on the individual user of the specific smart environment. The centralized and federated approaches are not a goal in themselves, they are useful only inasmuch as they help the individual.

Thus, our performance evaluation is based on measuring the accuracy of the learned predictor (one per home for the local, a shared one for centralized and federated models) on the individual user’s data. As a note, even when the predictor is shared, it will give different results for the individual users.

We found that the temporal evolution of the accuracy curves fall into several different patterns. Fig. 4 shows a selection of 12 out of the 30 homes in our dataset, chosen to be representative of the different patterns. Note that the starting day on the x axis varies reflecting the deployment day of the various smart environments.

We can make several observations:

- Relatively good prediction results. In interpreting Fig. 4 we need to keep in mind that the accuracy of random prediction would be 0.1. Fully accurate prediction is not possible, as the users behavior can vary randomly from day to day. The ability to predict the next action with about 45% accuracy out of 10 possibilities is helpful for many applications for the smart environments.

- The gap between the federated and centralized training is minor. As expected, we found that the centralized training gives better accuracy results than the federated. However, the differences are small and usually diminish in time. The practical conclusion, for a deployment is that a privacy-aware smart environment would participate in a federated training based collaborative model, as the privacy benefits are significant and the accuracy cost minor.

- The crossover point is sometimes very early. The next question we need to investigate is the relationship between the local and the federated training models. Fig. 4 shows with a red triangle the crossover point when the local training overtakes the federated learning (if such a point exist in the time interval considered), and with a filled with yellow fill the area corresponding the regret - the accuracy lost if the environment would choose not to participate at all in the federated learning pool.

We found that the result validate our expectations about the shapes of the accuracy curves: the local learning starts out lower but eventually overtakes the federated learning in 10 out of 12 cases in the figure. In Home 3 the local training starts out better and stays as such, so the regret is zero. In Home 14, where the trends are as expected but the local learning did not yet overtook the accuracy of the federated at the end of the data collection.

Overall, the location of the crossover point varies. For homes 3, 25, 27 and 29, the crossover happens so early, and the regret area is so small that the deployment of the collaborative learning does not appear to be justified. For other homes, such as Home 2, the crossover happens almost a month after the deployment and the regret is significant.
We chose the values of d to be between 1 and 45 since if crossover point happens more than 45 days from deployment, we assume that the home will benefit from collaborative learning. As the number of training data points is small, this problem is better suitable for the traditional machine learning approaches. To find the best model, we trained four different classifiers based on decision trees, support vector machines, nearest neighbors and random forests.

The F1-score of the results are shown in Table III. All models achieve a good predictive value, considering the very small amount of training data. The best performing model was the k-nearest neighbor with $k = 2$, possibly due to the fact that the best predictor of high federated learning performance is the similarity in profile to nodes already in the pool.

Overall, the performance of the classifier is sufficient to serve as a decision making aid in helping the user join the federated learning pool or not. One drawback of the approach is that the training of the classifier requires information from all nodes, and thus it can only be done by a centralized authority.

VI. Conclusions

In this paper we considered techniques for learning a human activity predictor for a smart environment in a realistic scenario where the privacy of the users must be weighted against the advantage offered by cloud based, collaborative learning models. We designed an activity predictor using state-of-the-art deep recurrent neural networks and trained it in three separate training scenarios: local, centralized and federated. A novel aspect of our work is that in contrast to previous studies we carefully accounted for what training data is available for the environments at every point in time. Our experiments had shown that there is only a minor difference between the centralized and federated approach, thus the greater privacy of federated learning would make it the preferred cloud based model. Furthermore, our experiments had also shown that the local training model will overtake the accuracy of the federated model for almost all the cases. In fact, for a significant subset of the environments, this crossover points happens within a couple of days of the deployment. To allow the user to predict this and use it to maximize his privacy, we trained a classifier that can predict the early crossover based on the first days’ data, with no disclosed information.