
Pervasive and Mobile Computing 71 (2021) 101334

D

n
i
s
I
b
o

c
e
u

Contents lists available at ScienceDirect

Pervasive andMobile Computing

journal homepage: www.elsevier.com/locate/pmc

Modeling an intelligent controller for predictive caching in
AR/VR-enabled home scenarios
Sharare Zehtabian ∗, Siavash Khodadadeh, Ladislau Bölöni, Damla Turgut
epartment of Computer Science, University of Central Florida, Orlando, FL, USA

a r t i c l e i n f o

Article history:
Received 22 June 2020
Received in revised form 3 November 2020
Accepted 9 January 2021
Available online 14 January 2021

Keywords:
Intelligent systems
User modeling
Predictive caching for AR/VR

a b s t r a c t

In a possible future, pervasive augmented and/or virtual reality (AR/VR) might become
the primary delivery method for audio-visual information. To achieve a high level of
user satisfaction, such a system must answer user requests with high-quality content
delivered with minimal lag. As bandwidth and latency limitations will still apply, the
system must perform predictive caching of the content. In this paper, we investigate
several strategies for predicting the information needs of a user in an AR/VR-enabled
home. The paucity of datasets is a major challenge in such studies. We are starting
from the hypothesis that the user’s patterns of daily life guide the content consumption
regardless of the delivery medium. This allows us to synthetically generate realistic
content requests starting from real-world databases of user activities in smart homes.
Using these datasets, we develop techniques for demand prediction and content caching
that aim to optimize the quality of user satisfaction while minimizing the cost of caching.
We propose three algorithms: one based on probabilistic modeling, one based on long
short term memory (LSTM) networks, and one based on majority voting. Through a
set of experimental studies, we show that our techniques outperform baseline caching
techniques both in terms of user satisfaction and caching cost.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Augmented/virtual reality (AR/VR) can apply to a wide range of in-home scenarios such as entertainment, training,
avigation, storytelling, question-answering agents, and so on. People commonly use mobile devices to receive this
nformation; however, depending on the situation, they might prefer to see the content as dynamic 3D images on a big
creen or through augmented/virtual reality devices. Max reality, for example, is a product of The Weather Company, an
BM business aiming to deliver personalized and more interactive visualization of weather or traffic report to the users to
etter understand travel conditions and plan for their commute. Their studies showed that Max reality appealed to 62%
f participants and 64% will stay tuned in longer if Max reality is coming up in the next segment.1
In this paper, we consider a system that provides information regarding various daily in-home scenarios. For example,

hecking the news for major sports events, weather or traffic report, parking status, and checking online information for
veryday tasks such as appropriate cooking recipes through AR/VR devices or screens. In these scenarios, we assume that
sers’ satisfaction relies significantly on the quality level of the delivered information and how quickly it is delivered.

∗ Corresponding author.
E-mail addresses: sharare.zehtabian@knights.ucf.edu (S. Zehtabian), siavash.khodadadeh@knights.ucf.edu (S. Khodadadeh),

ladislau.boloni@ucf.edu (L. Bölöni), damla.turgut@ucf.edu (D. Turgut).
1 Study conducted by the weather company research panel in March 2015
https://doi.org/10.1016/j.pmcj.2021.101334
1574-1192/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.pmcj.2021.101334
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmcj.2021.101334&domain=pdf
mailto:sharare.zehtabian@knights.ucf.edu
mailto:siavash.khodadadeh@knights.ucf.edu
mailto:ladislau.boloni@ucf.edu
mailto:damla.turgut@ucf.edu
https://doi.org/10.1016/j.pmcj.2021.101334


S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334

c
s
s
d
i
t
w
a

t

2

a
s
n

2

r
m
s
n
l
a
c
a
s
s
r

2

i
n
4
a
A
S
i
A
d

The system needs to have sufficient computational resources, display capabilities, and fast and efficient access to the
information required to deliver a high-quality experience.

The required data can be locally accessed (having been cached on the local device), downloaded from the web, or
omputed (for instance, through local rendering). Downloading all the information from the web is not an optimal solution
ince bandwidth is costly, especially when the highest quality is requested. Local computing is also burdensome for the
ystem and expensive in terms of energy expenditure. One ideal solution would be to have a locally cached copy of the
ata associated with the highest quality, on every device for all possible user experiences. However, this strategy can
nvolve the problems mentioned above. Also, the device’s storage capacity might be limited and not sufficient for caching
he higher quality format of all the experiences. A more intelligent strategy would be to predict what experience the user
ill request and in which time frame of the day this request will happen, so the system can cache the necessary data in
dvance to deliver that experience on the device.
In this work, we implement an intelligent controller that aims to maximize the quality of experience while optimizing

he caching cost by predicting the user’s preferences in the future. Our main contributions can be summarized as follows:

• We simulate the user’s request in an AR/VR enabled home by building synthetic sequential datasets from two real
datasets, wireless sensor networks (WSNs) and CASAS, and two bigger Open Smart-Home simulated (OpenSHS)
datasets of daily human activities.

• We propose a method based on long short term memory networks (LSTMs) and a probability-based approach to
predict the user’s future requests at a specific time of the day. We suggest caching the required content based on
these strategies, and finally, we compare the results with three baseline caching strategies.

. Prior work

This paper is an extension of our previous work in which we aimed to model interactions between a user and
n augmented/virtual reality agent system and showed how predictive caching improved the user experience in such
ystems [1]. The proposed work described in this paper is related to several active research areas in user modeling and
etworking.

.1. User modeling

Efficient delivery of experiences requires us to model the user based on his or her behavior to predict his/her future
equests. Observed sample results can be used to make predictions about a user in the context of predictive statistical
odels. Several techniques have been generated by machine learning and reasoning under uncertainty for predictive
tatistical modelings such as decision trees, neural networks, classification and rule-induction methods, and Bayesian
etworks [2]. Chen et al. [3] proposed a data mining approach to model user intention in which proper concepts of
inguistic features are extracted using rule association and classified with a Naive Bayes classifier. Guha et al. [4] deployed
user modeling system for Google Now personal assistant based on long-term user history with thousands of queries and
licks. They showed that identifying contexts such as users’ interests and habits is critical to building a useful personal
ssistant. Similarly, we use the user’s daily activities to create synthetic request data in an in-home assistant AR/VR
cenario. The main difference in our user modeling system is that we build our synthetic data by considering a common-
ense association between daily activities and potential requests. For example, it is more likely to check the weather
eport when the user is getting dressed. Also, it is less likely for the user to request for traffic report before sleep.

.2. Networking requirement in AR/VR

Augmented/virtual reality applications require larger bandwidth, lower latency, and a reliable network. For instance,
n reporting major sports events or music education, high-quality video streams should be transmitted via a very reliable
etwork [5,6]. It gets even more challenging when many users are requesting the same content at the same time. Current
G wireless systems have difficulty meeting the demands of high bandwidth and low latency requirements in AR/VR
pplications. In order to overcome these challenges, even 5G network architectures should be ingeniously designed for
R/VR applications [7]. In AR/VR applications, deciding what to cache and where to cache are crucial problems, and as
ukhmani et al. [8] argue, Quality of Experience (QoE) needs to work with Quality of Service (QoS). Westphal [9] suggested
nformation-centric networks as a potential architecture to assist with the deployment of AR/VR. We propose a central
R/VR controller responsible for making decisions about the type and quality of the information required for caching to
eliver at a specific time in the future.
2



S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334

r
t
a
c
c

c
c

C
w

e
s
f
s
d
s
s
a

3

3

s
S
m
h
s
e
h
d
h
t
s

Table 1
Relative quality and caching cost levels of experience units and data chunk size for a 15 to 20 seconds
experience unit. To compute the relative cost, we consider the worst case for each type of format.
Type Size of exp. unit Relative quality Relative cost

4K video 32.7 MB 1.00 205.66
HD video (1080p) 10.6 MB 0.90 66.67
low-res video MKV 483 KB 0.81 3.04
3GP low-res QCIF 159 KB 0.73 1.00
sound-only – 0.66 –
text-only – 0.59 –
3D animation 2 MB–20 MB 1.00 125.79

2.3. Caching strategies for AR/VR

Content-centric/information-centric networking (CCN/ICN) models allow us to optimize the bandwidth utilization and
educe the delivery delay by using a caching function inside the intermediate network nodes. One possible approach is for
he nodes to cache all the content within the network and respond to the user request from their sources [10]. Another
vailable caching policy is Leave Copy Everywhere (LCE) [11,12], which recommends all the caching nodes to cache the
ontent data. The replacement policy of the Least Recently Used (LRU) algorithm updates locally saved content if the
aching nodes do not have enough space.
These policies are simple and easy to implement; however, unnecessary caching significantly increases the network

ost, bandwidth utilization, and storage consumption [13]. As a result, designing an appropriate caching strategy, reducing
aching redundancy, and increasing cache hit is an active research area [14].
Proactive caching has been demonstrated to outperform reactive policies such as LRU [7]. Koch et al. [15] used a

onvolutional Neural Network (ConvNet) to extract music features to predict the content more likely to be accessible
ithin the next time.
Chakareski [16] designed an optimization framework to maximize the reward that a multi-cellular system can

arn when serving AR/VR users by enabling the base stations to select cooperative caching/streaming/edge-computing
trategies. Du et al. [17] proposed a pre-fetching approach at the user end to preload videos before the user requests
rom a famous Swedish TV service provider by analyzing the request patterns over eleven weeks. Koch et al. [18]
tudied the traditional caching strategies and designed a video category-aware caching algorithm, adaptive content-aware
esigned cache (ACDC), that enables differentiating the caching strategies concerning the workloads and popularity. They
pecifically focused on the publicly available different YouTube video categories such as music, news, entertainment,
ports, and so on. While these approaches have shown significant advantages, we believe that deep learning-based
lgorithms such as long short term memory networks (LSTMs) are compelling to learn the pattern in a sequential data.

. User modeling

.1. Problem statement

In this paper, we consider a set of household scenarios in which residents use AR/VR devices to request experiences
uch as (a) summary of the news, (b) weather report, (c) parking availability report, (d) traffic report, and (e) food recipe.
tatistically, a given type of experience is more likely to be accessed at a specific time of the day. For instance, a user
ight more likely need a recipe during dinner preparation time, or a weather forecast can be most helpful before leaving
ome. The users in an AR/VR-enabled home go through a series of interactions split into experience units, a particular
hort interaction with the AR/VR system, delivered through AR/VR devices. In our scenarios, we consider experiences that
ach ‘‘unit of experience’’ is approximately 15 to 20 seconds long and can be delivered at different ‘‘level of quality’’ from
igh such as 4K videos or 3D animation to low such as 3GP low-resolution QCIF. For instance, a weather forecast can be
elivered as a short text message, a dynamic 3D image on a big screen, or a dual-4K immersive visualization. Providing a
igh-quality experience requires both networking and computing power. Therefore, it is limited by the (1) capabilities of
he devices through which it is delivered and by the (2) signal limitations such as network delay and bandwidth. Table 1
hows the quality levels we consider in this paper and the size of the data chunk necessary to deliver the experience unit.

Considering a particular experience e, we define the delay by dividing the size of the content in MB by external
bandwidth:

delaye =
size(e)

external_bandwidth
. (1)

One conventional approach to rate user satisfaction would be by evaluating objective metrics such as video definition
(video quality), fluency (interruptions), response speed (initial delay) [19]. According to this, we estimate the ‘‘user
satisfaction’’ by the score as follows:

score = ddelaye · d (e) · max_score (2)
e d f

3



S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334

(

i
c
c

D
a
R
w
(

in which dd is the discount factor for the delay, df (.) is the discount factor of quality of each experience shown in Table 1
column of relative quality), and max_score is the value for the maximum quality. Notice that the value of dd and df (e)
are between 0 and 1. In other words, more significant delay or lower quality both result in smaller score value. Other
than user satisfaction, we have to consider the cost of caching. We calculate the cost of caching as cost = nc · rc , where nc
s the number of cached items and rc is the relative cost of each type of content available in Table 1 (column of relative
ost). Since the size of sound-only and text-only formats are very small, we do not consider cache cost for these types of
ontent. We obtain relative cost by size

min_size , in which size is the content size for a 15 to 20 seconds experience unit based
on type, and min_size is the minimum content size for 3GP low-res QCIF type equals 159 KB. Eventually, the final score
is computed as

final_score = α · score − β · cost (3)

where α and β are coefficients for score and cost value, respectively.

3.2. Modeling the users’ interaction with AR/VR devices

As we discussed earlier, our objective is to maximize the quality of the AR/VR experiences for the user by predicting
when specific experiences will be requested and using this information for efficient predictive caching. The prediction of
the requests is ultimately rooted in the regularities of everyday life. For instance, a user typically asks for a weather report
in the morning before leaving the house. However, we need to be aware that such predictions are inevitably probabilistic.
On a given day, the same user might ask for the weather report in the evening or not ask for it for several days. As user
preferences are particular to the given user and household, we propose techniques through which they can be learned
from actual user data instead of engineering a user model from first principles.

One of the challenges of such an approach is the lack of existing datasets for AR/VR requests. As the AR/VR systems
are just starting to emerge, no extensive data is yet available. However, the design of the system would need exactly such
data to learn the user model. To solve this challenging problem, we propose to generate training data starting from daily
user behavior datasets already acquired in homes without AR/VR components. We can then extend these datasets with
logical assumptions about when the users would have requested experiences, should they have been available.

3.3. Real world and simulated datasets of user activities in homes

The emergence of sensor-augmented smart homes made it possible to acquire datasets that track certain aspects of the
inhabitants’ behavior in the last several years. In general, tracking the personal life of users opens serious privacy issues.
However, several projects captured and made publicly anonymized datasets of human behavior in the home, tracking the
project-specific collection of actions. In addition to a real-world dataset of daily activities in a smart home, in order to
facilitate the dataset building, simulation environments are designed as a smart home by which the users can simulate
their daily activities and collect these actions. While these actions (in both real or simulated environments) might not
directly map to AR/VR experience requests, they can anchor the generation of training data.

3.3.1. Real-world datasets
In this paper, we started from two publicly available real-world datasets of Activities of Daily Livings (ADLs) in two

different homes:
Dataset 1: This dataset [20] was collected through wireless sensor networks (WSNs), which is a practical choice due to
the low cost, flexibility, ability to supply constant supervision, and inherent non-intrusive characteristics (as compared
to video-based surveillance). However, WSNs cannot gather as much information about user contexts as other sensing
systems, such as video cameras. Obtaining a good body of labeled data is difficult. Users are reluctant to write down
their activities because it is time-consuming and can compromise their privacy. The dataset describes the activities of a
26-year-old man in a smart home with 14 state-change sensors installed at doors, cupboards, the refrigerator, and the
toilet flush. Sensors were left unattended, collecting data for 823 data points of 28 days of activities in the apartment.
Eight annotated ADLs included shave, brush teeth, get a drink, get dressed, prepare for leaving, prepare brunch, and
prepare dinner. We can see the list of performed actions and their distribution during the day in Fig. 1 (top-left). The
x-axis describes time intervals from hour 0 to 24 during a day. We also show the names of the eight tasks on the y-axis.
ataset 2: CASAS dataset [21], collected by the Center for Advanced Studies in Adaptive research group, describes the
ctivities of a volunteer adult couple in an apartment for 1199 data points of 57 days of activities. The apartment residents
1 and R2 carry out various tasks. Annotated actions in this dataset include night wandering, bed to toilet, R1 wake, R2
ake, R2 take medicine, breakfast, leave home, lunch, dinner, R1 sleep, R2 sleep, R1 work in office, and laundry. Fig. 1
top-right) visualizes dataset 2 by showing each task’s frequency in specific time slots. The x-axis describes time intervals

from hour 0 to 24 during a day and the y-axis shows the names of the 13 tasks (R1 and R2 are the residents).

4



S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334
Fig. 1. The action distributions for each day. The x-axis shows time in hours during a day of real-world dataset 1 (top-left), real-world dataset 2
(top-right), simulated dataset 1 (bottom-left), and simulated dataset 2 (bottom-right).

3.3.2. Simulated dataset: Open Smart-Home simulated (OpenSHS)
Since the number of data points in real-world daily activity datasets is limited, we also used simulated datasets of

everyday activities collected from the Open Smart Home Simulator (OpenSHS) [22], which is an open-source, cross-
platform 3D smart home simulator for dataset generation. Data collection requires two entities: the researcher and
the participants. The researcher designs the environment, import the devices and sensors and assigns activities’ labels.
The researcher is also responsible for creating contexts such as morning, evening, weekday or weekends. Participants
performed the Activities of their Daily Livings (ADLs) for different contexts in a week, e.g., weekdays, weekends, and
in a day, e.g., mornings and evenings, in this simulation environment [23]. The actions include work, eat, sleep, leisure,
personal, and other. We chose two out of seven simulated datasets for our experiments. Dataset 1 (Fig. 1, bottom-left)
and dataset 2 (Fig. 1, bottom-right) contain 77, 328, and 100, 544 data points, respectively. Both datasets include two
months of activities simulated and collected with a time-margin equal to 0.

3.4. Creating synthetic datasets using common-sense association

We create realistic synthetic datasets of the user’s requests from the system using datasets of the users’ daily activities
in their homes. We generate our synthetic scenarios by matching the statistical properties of the real-world and simulated
datasets. We probabilistically associate specific experiences with activities that are present in the dataset using common-
sense associations. Creating synthetic datasets using common-sense has been applied to different problems in machine
learning, such as Question-Answering challenges [24] and visual reasoning [25].

The mappings we used to create the synthetic data are shown in Table 2. In these mappings, we made certain
assumptions, such as the user is likely to request a recipe while preparing food. It is also more probable to check the
weather news, traffic report, or parking status before leaving home or while the user is getting dressed. We assign a
probability of occurrence for each mapping from activity or task in the real and simulated datasets to the corresponding
request. These probabilities are also set based on common-sense. For example, people usually leave their homes to work
in the morning. Therefore, they are more likely to see the weather report while eating or preparing breakfast rather than
watching a breakfast recipe.

4. Methods

In this section, we discuss our design for a predictive AR/VR controller, which, knowing the preferences and habits
of the user, makes intelligent decisions about what to cache. Also, we discuss three caching algorithms as the baseline
caching methods.
5



S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334

4

Table 2
Mapping approach from daily task to daily request of the users for real-world dataset 1 (top), real-world
dataset 2 (middle), and simulated dataset 1 and 2 (bottom).
Task (Real-world Dataset 1) Corresponding request

Shave, Brush teeth, Get a drink Summary of news
Get dressed, Prepare for leaving (30% of the times) Weather report
Prepare for leaving (50% of the times) Traffic report
Prepare for leaving (20% of the times) Parking status
Prepare brunch, Prepare dinner Recipe

Task (Real-world Dataset 2) Corresponding request

R1 wake, R2 wake Summary of news
Breakfast (70% of the times), Leave home (30% of the times) Weather report
Leave home (50% of the times) Traffic report
Leave home (20% of the times) Parking status
Breakfast (30% of the times), Lunch, Dinner Recipe

Task (Simulated Datasets 1 and 2) Corresponding request

Other (50% of the times), Leisure (60% of the times) Summary of news
Other (15% of the times), Work (30% of the times) Weather report
Other (10% of the times), Work (50% of the times) Traffic report
Other (5% of the times), Work (20% of the times) Parking status
Other (20% of the times), Leisure (40% of the times), Eat Recipe

Fig. 2. The many-to-one neural network used in the LSTM-based caching algorithm.

.1. Predictive caching algorithms

Implemented caching strategies for the proposed AR/VR controller are as follows2:

4.1.1. Probability-based caching
We define 24 intervals with the length of 1-hour for each day in the datasets. The proposed algorithm calculates the

probability of a specific request within a particular time interval by counting the data occurrences in the training set.
Accordingly, the requests with a probability higher than a threshold are cached for each interval in each day. We validate
this approach on a different threshold for the number of request occurrence in a specific time interval. The best result on
the validation dataset is then applied to the test dataset.

4.1.2. LSTM-based caching
We propose the LSTM-based caching algorithm, based on training a Long Short Term Memory (LSTM) [26] recurrent

neural network on the training dataset. We tried two different approaches for implementing the LSTM model: (i)
many-to-one and (ii) many-to-many. The LSTM models are shown in Figs. 2 and 3.

2 The code is available here: https://github.com/sharare90/AR-VR-Research.
6

https://github.com/sharare90/AR-VR-Research


S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334

N
s
i
M
a
t
P
u
t
a
o
o
i
o
M
a
a
2
a
a
T
F
u
A
a

4

o
s
r

4

Fig. 3. The many-to-many neural network used in the LSTM-based caching algorithm.

Input data is a sequence of requests. We divide a day into 24 intervals, each with a fixed list of requests shown with
0s and 1s. We have N different type of requests: {r1, r2, . . . , rN}. The data for each interval is a vector x of length N , and

is five in our experiments since we assumed having five types of requests (summary of news, weather report, parking
tatus, traffic report, food recipe). The value of element xi(i ∈ {1, 2, . . . ,N}) is 1 if the request ri has occurred in the
nterval, otherwise its value is 0. Furthermore, the number of classes equals the number of valid requests.
any-to-one LSTM based prediction: In this LSTM based prediction, the input is T = 24 hours history of request actions,
nd the output is the request of the next interval (Fig. 2). For example, if we need to predict the action of the user during
he time interval of 3:00 PM–4:00 PM, the sequence of input intervals will include 3:00 PM–4:00 PM yesterday, 4:00
M–5:00 PM yesterday, and so on until 2:00 PM–3:00 PM today. The LSTM takes these intervals sequentially as input and
pdates its hidden state based on this sequence. When all the intervals are processed, the LSTM layer outputs a vector
hat goes into the following fully connected and dropout layers. The dropout layers, in turn, help with generalization and
re only active during training. In other words, they mask a part of input such that the network learns to predict the
utput from a partial input. As a result, the network remains impartial to just one particular element in the output vector
f the LSTM. During testing, dropout layers are disabled. In other words, they act as an identity function and pass their
nput without masking any element to the next layer. Finally, the classification layer with as many neurons as the number
f activities predicts the probability of each activity by a number between 0 and 1.
any-to-many LSTM based prediction: In this LSTM based prediction, the network processes each interval vector one
t a time and outputs the occurrence probabilities of requests for the next interval (Fig. 3). In the first interval of the day,
ll the input values are 0. We then concatenate this zeros vector with the lists of requests for interval 1 to 23, so we have
4 lists of requests for T = 24 intervals of the day as the input of the network. The difference with the many-to-one
pproach is that instead of processing all the intervals first and then output a vector, the LSTM layer outputs a vector
s soon as it receives the first interval and outputs another vector once it receives the second input interval, and so on.
hese vectors then go into dense and dropout layers, and for each of them, we predict the activity of the next interval.
or example, at the time interval of 12:00 AM–1:00 AM, the LSTM predicts the action in time interval 1:00–2:00 AM and
pdates its internal hidden states. After receiving the ground truth activities of what happened in time interval 1:00–2:00
M and based on its updated hidden states, it predicts the activities in the next time interval, which is 2:00–3:00 AM,
nd so on.

.1.3. Majority vote-based caching
Majority voting is one of the basic prediction/classification methods in which multiple classifiers predict the label based

n the majority vote of the classifiers [27,28]. We create N different LSTM models by altering various hyperparameters
uch as learning rate, number of epochs, number of layers, or changing regularization method (dropout or l1 or l2
egularization), initial weights, and so on. The majority voting hyperparameters are shown in Table 3.

Subsequently, we predict the label value: ŷ = mode{ŷ1, ŷ2, . . . , ŷN}.

.2. Baseline caching algorithms

In this section, we explain the three baseline predictive caching algorithms.
7



S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334

W

4

d
c

4

c

5

A
o

Table 3
Selected values for hyperparameters of majority vote-based prediction.
Hyperparameters Values

Learning rate 0.001, 0.01
Number of epochs 225, 300, 500, 1000
Number of dense layers 2, 3
Regularization method dropout (0.0, 0.2, 0.5, 0.8), l1 and l2

Fig. 4. Train and validation F1-score by increasing the size of data.

Table 4
F1-score of the prediction, using the many-to-one LSTM model on real-world dataset 1, real-world
dataset 2, simulated dataset 1, and simulated dataset 2 based on history of activities with size of 24
hours by using early stopping with patience 70.
Results for real-world dataset 1 Train Validation Test

Precision 1.00 0.33 0.13
Recall 1.00 0.50 0.12
F1-Score 1.00 0.40 0.13

Results for real-world dataset 2 Train Validation Test

Precision 0.93 0.36 0.61
Recall 0.92 0.40 0.43
F1-Score 0.92 0.36 0.47

Results for simulated dataset 1 Train Validation Test

Precision 0.70 0.82 0.81
Recall 0.80 0.85 0.98
F1-Score 0.73 0.81 0.88

Results for simulated dataset 2 Train Validation Test

Precision 0.71 0.87 0.73
Recall 0.65 0.39 0.62
F1-Score 0.65 0.47 0.65

4.2.1. Oracle
This baseline method is a caching algorithm where we assume that it can predict the requests with 100% accuracy.
e can essentially achieve the highest final score in each experiment.

.2.2. Cache everything
This baseline algorithm suggests to cache every possible experience, ensuring the delivery of every experience with a

elay = 0. However, caching everything has a high redundancy, and since we have cost = 1 for each cached request, the
aching cost increases accordingly.

.2.3. Random caching
In this basic strategy, we assume not having any prior knowledge about the request, and thus we cache a randomly

hosen request from the pool of possible requests.

. Experimental approach

This section describes a series of experiments on real and simulated datasets to predict the user’s next request from
R/VR devices We compared our proposed three predictive caching algorithms to three baseline algorithms in this series
f experiments. Thus, in the remainder of this section, we refer to the following six caching algorithms:
8



S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334

i
a

Fig. 5. The F1-score of the prediction, using many-to-one LSTM model for the train (blue) and validation (orange) of real-world 1 (top) and real-world
2 (bottom) based on the history of 24 hours by using patience 70 and 1 hour time interval.

• Probability-based caching
• LSTM-based caching
• Majority vote-based caching
• Oracle
• Cache everything
• Random caching

Furthermore, we are interested in two performance metrics:

• Prediction accuracy as measured by the F1-score for the training phase on different datasets.
• The final_score combines the cost and user’s satisfaction (Eq. (3)). The less latency the agent has, the more satisfied

the user would be. Also, the more optimized caching translates to a less costly predictive model. There is a cost for
caching whether the user has a request or not; however, caching before the user’s request will give the user more
satisfaction, which should avoid the extra cost for missing requests.

5.1. Prediction accuracy

We described in Section 4.1.2 how the input matrix to LSTM is constructed. It is important to notice that the data
s unbalanced, which means the number of 0s is much more than the number of 1s in constructed matrices. Therefore,
ccuracy is not a useful metric for evaluation since it could be very high even if the network predicts only 0s. To handle
9



S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334

1

d
d
a
a
t
t
d

1
v
t

Fig. 6. The F1-score of the prediction, using many-to-one LSTM model for the train (blue) and validation (orange) of simulated dataset 1 (top) and
simulated dataset 2 (bottom) based on the history of 24 hours by using patience 70 and 1 hour time interval.

datasets that are unbalanced in terms of requests, we report our results in the form of F1-score, as well as precision and
recall. Precision shows how many predicted requests match a user’s real request in the specific time interval. Recall, on
the other hand, counts how many of the users’ actual requests are predicted by our model.

5.1.1. Long-short term memory network
Table 4 shows the results of the many-to-one LSTM based predictive agent for the real-world and simulated datasets

and 2.
As expected, there is a gap between test and train accuracy in real data. We see that the gap is minimal for simulated

ata, and sometimes test accuracy is even better. The reason is that usually in simulated datasets, the distribution of test
ata is very close to the distribution of data during training, and that is because simulated datasets are not as complicated
s real datasets in nature. Nevertheless, our method is effective in both scenarios. We show that this is due to data scarcity,
nd having bigger real datasets can help decrease the gap between train and test accuracy. Fig. 4 shows that by increasing
he number of days of data collection in a real situation, the F1-score on the validation data approaches the F1-score on
he training data. Therefore, the current gap between train F1-score and validation F1-score is a variance error that can
ecrease by training over a bigger dataset.
Fig. 5 shows how the train and the validation F1-score grows by increasing the number of epochs on real-world datasets

(top) and 2 (bottom) for many-to-one architecture. Fig. 6 presents the many-to-one LSTM F1-score on the training and
alidation data for simulated dataset 1 (top) and simulated dataset 2 (bottom) based on the history of activities with
he size of 24 hours using patience 70 and time interval length = 1 hour. The graphs of the evolution of the F1-score
10



S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334

c
F
t
(

a
m

2
2
a

5

t
s
r
W
m
s

Fig. 7. The F1-score of the prediction, using the proposed many-to-many LSTM model for the train (blue) and validation (orange) of real-world
dataset 1 (top) and real-world dataset 2 (bottom) after 225 epochs and time interval length = 1 hour.

orrespond to the prediction accuracy based on the LSTM method. In training an LSTM network, the precision, recall, and
1-score on train and validation data are calculated after each epoch. By plotting these results, we can figure out the best
ime to stop training. For example, if the accuracy of validation is not changing more than a threshold, after 70 epochs
patience=70), we can stop training to avoid overfitting.

We also monitor the evaluation metrics during the training. Table 5 shows the results for real-world datasets 1 and 2
nd simulated datasets 1 and 2 for many-to-many architecture. As expected, the gap between validation and training is
ore significant within real-world datasets than simulated ones.
Fig. 7 shows the many-to-many LSTM F1-score on the training and validation data for real-world 1 (top) and real-world
(bottom). Fig. 8 presents the many-to-many LSTM F1-score on the training and validation data for simulated dataset
(top) and simulated dataset 2 (bottom) after 225 epochs and time interval length = 1 hour. We see that validation
ccuracy has plateaued, indicating the need to stop training to avoid overfitting.

.1.2. Experimental results of the overall predictive caching agent
It is common to rate user satisfaction by objective metrics such as video definition (video quality), fluency (interrup-

ions), response speed (initial delay) [19]. If the user sends a request and we have the requested content cached in the
ystem, we increment the score by using Eq. (2) and the d(e) = 0 since there is no delay in this case. However, if a user
equests non-cached content, we need to load it with a delay that depends on the content size and external bandwidth.
e consider external_bandwidth = 100 Mbps for the experiments in this paper. We also normalize the results with a
ax–min normalization. We decided to use many-to-many LSTM predictions for the LSTM-based caching experiments
ince the prediction results are more promising for this architecture.
11



S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334
Table 5
F1-score of the prediction, using the many-to-many LSTM model on real-world 1, real-world 2, simulated
dataset 1, and simulated dataset 2 after 225 epochs.
Results for real-world dataset 1 Train Validation Test

Precision 0.69 0.62 0.52
Recall 0.54 0.52 0.31
F1-Score 0.61 0.54 0.39

Results for real-world dataset 2 Train Validation Test

Precision 0.72 0.54 0.54
Recall 0.55 0.43 0.46
F1-Score 0.62 0.47 0.50

Results for simulated dataset 1 Train Validation Test

Precision 0.84 0.87 0.90
Recall 0.81 0.72 0.82
F1-Score 0.82 0.79 0.83

Results for simulated dataset 2 Train Validation Test

Precision 0.79 0.77 0.89
Recall 0.80 0.93 0.88
F1-Score 0.79 0.84 0.86

Fig. 8. The F1-score of the prediction, using the proposed many-to-many LSTM model for the train (blue) and validation (orange) of simulated
dataset 1 (top) and simulated dataset 2 (bottom) after 225 epochs and time interval length = 1 hour.
12



S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334

d

Fig. 9. Caching approaches scaled final score (Eq. (3)) results on real-world dataset 1 (top) and real-world dataset 2 (bottom) for each delivery
format.

Figs. 9 and 10 show the scaled final score for each caching algorithm, calculated based on Eq. (3) on real and simulated
atasets, respectively. The final_score for the majority voting and LSTM-based approach is almost better than others.

However, for the lowest quality of delivery, such as low-res video MKV, we do not see that much difference between
approaches. The final results for 3GP low-res QCIF are mostly near 0 since both user satisfaction and caching costs are
around 0. Furthermore, the prediction accuracy is higher when we have a bigger dataset with more data points (see
Fig. 10).

6. Conclusions

The last twenty years significantly changed the way we are consuming information. From physical newspapers and
the evening news, we transitioned to reading weather predictions on our phones and looking up recipes on YouTube. In
a possible future, all the media we access will be delivered through virtual or augmented reality techniques. One of the
challenges of this vision is that AR/VR techniques are susceptible to lag and jitter, requiring local caching and pre-rendering
of the content. Such content caching would be prohibitively expensive unless combined with a prediction of the content
that the user will access. While such pervasive AR/VR environments are not yet available, in this paper we made the
conjecture that the content accessed by the user is primarily determined by his or her interests and lifestyle. This allows
us to model the user requests by generating synthetic datasets starting from real-world recordings of user activities in
smart homes. A second conjecture is that the complexity of the user requests means that we need to make predictions at
higher levels of abstraction, as the low-level caching strategies are unlikely to perform well. We proposed three prediction
models, one based on probabilistic modeling, one based on long short term memory (LSTM) networks, and one based on
majority voting. Our experimental studies validated our conjecture: the proposed approaches significantly outperformed
the baseline caching techniques in finding the right balance between user satisfaction and caching cost.

The described techniques open several directions of future work. One important challenge is that users have diverging
preferences about the quality of the experience. Capturing the preference of the user concerning different features can
significantly impact the optimal caching strategies. We plan to perform studies that investigate both the user perception
and adapt the cache optimization strategies to the user preference.
13



S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334
Fig. 10. Caching approaches scaled final score (Eq. (3)) results on simulated dataset 1 (top) and simulated dataset 2 (bottom) for each delivery
format.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The support for this work was provided by the National Science Foundation, USA under Award No. 1800961. Any
opinions, findings, and conclusions and recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References

[1] S. Zehtabian, M. Razghandi, L. Bölöni, D. Turgut, Predictive caching for AR/VR experiences in a household scenario, in: 2020 Int’l Conf. on
Computing, Networking and Communications, ICNC, 2020, pp. 591–595.

[2] I. Zukerman, D.W. Albrecht, Predictive statistical models for user modeling, User Model. User-Adapt. Interact. 11 (1–2) (2001) 5–18.
[3] Z. Chen, F. Lin, H. Liu, Y. Liu, W.-Y. Ma, L. Wenyin, User intention modeling in web applications using data mining, World Wide Web 5 (3)

(2002) 181–191.
[4] R. Guha, V. Gupta, V. Raghunathan, R. Srikant, User modeling for a personal assistant, in: Proc. of the Eighth ACM Int’l Conf. on Web Search

and Data Mining, 2015, pp. 275–284.
[5] M. Erol-Kantarci, S. Sukhmani, Caching and computing at the edge for mobile augmented reality and virtual reality (AR/VR) in 5G, in: Ad Hoc

Networks, 2018, pp. 169–177.
[6] A. Baratè, G. Haus, L.A. Ludovico, E. Pagani, N. Scarabottolo, 5G technology for augmented and virtual reality in education, in: Proc. of the Int’l

Conf. on Education and New Developments 2019, END 2019, 2019, pp. 512–516.
[7] E. Bastug, M. Bennis, M. Médard, M. Debbah, Toward interconnected virtual reality: Opportunities, challenges, and enablers, IEEE Commun.

Mag. 55 (6) (2017) 110–117.
[8] S. Sukhmani, M. Sadeghi, M. Erol-Kantarci, A. El Saddik, Edge caching and computing in 5G for mobile AR/VR and tactile internet, IEEE MultiMedia

26 (1) (2019) 21–30.
14

http://refhub.elsevier.com/S1574-1192(21)00009-2/sb2
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb3
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb3
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb3
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb5
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb5
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb5
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb7
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb7
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb7
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb8
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb8
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb8


S. Zehtabian, S. Khodadadeh, L. Bölöni et al. Pervasive and Mobile Computing 71 (2021) 101334
[9] C. Westphal, Challenges in networking to support augmented reality and virtual reality, in: IEEE Int’l Conf. on Computing, Networking and
Communications, ICNC, vol. 54, (8) 2017.

[10] F. Li, K.-Y. Lam, L. Wang, Z. Na, X. Liu, Q. Pan, Caching efficiency enhancement at wireless edges with concerns on user’s quality of experience,
Wirel. Commun. Mob. Comput. 2018 (2018).

[11] Z. Hu, Z. Zheng, T. Wang, L. Song, X. Li, Game theoretic approaches for wireless proactive caching, IEEE Commun. Mag. (2016) 37–43.
[12] E. Zeydan, E. Bastug, M. Bennis, M.A. Kader, I.A. Karatepe, A.S. Er, M. Debbah, Big data caching for networking: Moving from cloud to edge,

IEEE Commun. Mag. 54 (9) (2016) 36–42.
[13] F. Qazi, O. Khalid, R.N.B. Rais, I.A. Khan, A.u.R. Khan, Optimal content caching in content-centric networks, Wirel. Commun. Mob. Comput. 2019

(2019).
[14] P. Hassanzadeh, A. Tulino, J. Llorca, E. Erkip, Cache-aided coded multicast for correlated sources, in: Proc. of the Int’l Symposium on Turbo

Codes and Iterative Information Processing, ISTC, 2016, pp. 360–364.
[15] C. Koch, S. Werner, A. Rizk, R. Steinmetz, Mira: Proactive music video caching using convnet-based classification and multivariate popularity

prediction, in: 2018 IEEE 26th Int’l Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, MASCOTS,
2018, pp. 109–115.

[16] J. Chakareski, VR/AR immersive communication: Caching, edge computing, and transmission trade-offs, in: Proc. of the Workshop on Virtual
Reality and Augmented Reality Network, 2017, pp. 36–41.

[17] M. Du, M. Kihl, Å. Arvidsson, C. Lagerstedt, A. Gawler, Analysis of prefetching schemes for tv-on-demand service, in: ICDT 2015: The Tenth
International Conference on Digital Telecommunications, 2015,

[18] C. Koch, J. Pfannmüller, A. Rizk, D. Hausheer, R. Steinmetz, Category-aware hierarchical caching for video-on-demand content on youtube, in:
Proc. of the 9th ACM Multimedia Systems Conference, 2018, pp. 89–100.

[19] P. Juluri, V. Tamarapalli, D. Medhi, Measurement of quality of experience of video-on-demand services: A survey, IEEE Commun. Surv. Tutor.
18 (1) (2016) 401–418.

[20] T.L. van Kasteren, G. Englebienne, B.J. Kröse, Human activity recognition from wireless sensor network data: Benchmark and software, in:
Activity Recognition in Pervasive Intelligent Environments, 2011, pp. 165–186.

[21] D.J. Cook, A.S. Crandall, B.L. Thomas, N.C. Krishnan, CASAS: A smart home in a box, Computer (2013) 62–69.
[22] N. Alshammari, T. Alshammari, M. Sedky, J. Champion, C. Bauer, Openshs: Open smart home simulator, Sensors 46 (7) (2017) 1003.
[23] T. Alshammari, N. Alshammari, M. Sedky, C. Howard, SIMADL: Simulated activities of daily living dataset, Data 3 (2) (2018) 11.
[24] A. Talmor, J. Herzig, N. Lourie, J. Berant, CommonsenseQA: A question answering challenge targeting commonsense knowledge, in: Proc. of the

Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), 2019, pp. 4149–4158.

[25] R. Zellers, Y. Bisk, A. Farhadi, Y. Choi, From recognition to cognition: Visual commonsense reasoning, in: The IEEE Conf. on Computer Vision
and Pattern Recognition, CVPR, 2019,

[26] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735–1780.
[27] T.G. Dietterich, Ensemble methods in machine learning, in: Proc. of the Int’l Workshop on Multiple Classifier Systems, 2000, pp. 1–15.
[28] Y. Guan, T. Plötz, Ensembles of deep LSTM learners for activity recognition using wearables, Proc. ACM Interact. Mob. Wearable Ubiquitous

Technol. 1 (2) (2017) 11.
15

http://refhub.elsevier.com/S1574-1192(21)00009-2/sb9
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb9
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb9
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb10
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb10
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb10
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb11
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb12
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb12
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb12
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb13
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb13
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb13
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb19
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb19
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb19
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb20
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb20
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb20
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb21
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb22
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb23
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb26
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb28
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb28
http://refhub.elsevier.com/S1574-1192(21)00009-2/sb28

	Modeling an intelligent controller for predictive caching in AR/VR-enabled home scenarios
	Introduction
	Prior work
	User modeling
	Networking requirement in AR/VR
	Caching strategies for AR/VR

	User modeling
	Problem statement
	Modeling the users' interaction with AR/VR devices
	Real world and simulated datasets of user activities in homes
	Real-world datasets
	Simulated dataset: Open Smart-Home simulated (OpenSHS)

	Creating synthetic datasets using common-sense association

	Methods
	Predictive caching algorithms
	Probability-based caching
	LSTM-based caching
	Majority vote-based caching

	Baseline caching algorithms
	Oracle
	Cache everything
	Random caching


	Experimental approach
	Prediction accuracy
	Long-short term memory network
	Experimental results of the overall predictive caching agent


	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


