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ABSTRACT: Most major simulation federations are designed and constructed based on the professional experience 
of one or a few experts with extensive experience in creating such federations. Organizations have a risk of losing 
their understanding of federation performance if one of their key people is no longer available. As very little objective 
data on federation performance exists, it is difficult for many facilities to create large federations in a manner that 
insures optimum performance. A detailed architecture and accompanying design guidelines or tools able to create 
viable interoperable implementations has not yet emerged which minimizes the amount of human intervention, 
tweaking, and custom software development. This paper proposes the creation of a simulation environment and the 
generation of initial simulations where data can be gathered that depicts some of the trade-offs needed to make 
intelligent decisions regarding the design and deployment of simulation federations.  The project applies the expertise 
of University of Central Florida (UCF) in simulation, computer network modeling and high performance computing. 
The test-bed and data generation/analysis activity was performed in collaboration with Team Orlando, a partnership 
among the military services, industry, and academia working to leverage resources and contribute to the overall 
security of the United States. We captured objective data on the performance of a number of very complex federations 
and created detailed OPNET models of the computers, networks, and software applications that make up large 
federations. As the communication models were complex and a large number of different federation configurations 
were needed to be studied, the simulations were run on the new high performance computer (HPC) facility at the 
UCF. The results of this study will allow the simulation community to design more efficient federations.  
 
 
1. Introduction 
 
There has been considerable activity in developing 
standards and demonstrating instances of connected 
simulators/simulations since interoperable simulation 
was first demonstrated in 1992. Additional 
functionality has been desired to allow interoperation 
between live, virtual, and constructive simulations and 
simulators.  Success has been achieved on a case by 
case basis, but what has not yet emerged is a detailed 
architecture and accompanying design guidelines or 
tools that are able to create viable interoperable 
implementations while minimizing the amount of 
human intervention, tweaking, and custom software 
development.  The Defense Department has 
commissioned a group of individuals to create an 

architecture for LVC simulation, known as the Live, 
Virtual, Constructive Architecture Roadmap (LVCAR) 
Study [1].  The LVCAR and other groups working in 
the area of simulator interoperability have a difficult 
task because little data is accumulated, published, and 
vetted about what works and what doesn’t. Their task 
is further complicated by the rapid advances in 
technology and development methods, a dispersed base 
of users and developers, and the need to quickly get the 
working prototypes to users.   
 
This paper reports on the creation of a simulation 
environment and the generation of initial simulations 
depicting some of the trade-offs needed to make 
intelligent architectural and design decisions for 
interoperable simulation systems. As part of the effort 



described in this paper, UCF has created the necessary 
infrastructure and expertise to simulate interactions 
between simulators using this simulation environment 
on an HPC (High Performance Computer [2]) where 
repeated runs can be made and analyzed.  
 
The main goal of this study is the creation of 
simulation models of various federations in order to 
characterize the network behavior of the federation and 
analyze data traffic generated and received by federates 
and the Runtime Infrastructure (RTI). Real-life 
component models are used for different network 
configurations and the WARSIM architecture is then 
modeled. The primary contributions of this work to 
date are: 

• Interpretation, design and partial 
implementation of WARSIM architecture in 
OPNET [3] 

• Parsing of available WARSIM exercise data 
to gain better understanding of network traffic 
characteristics. 

 
The paper is organized as follows. Section 2 presents 
characteristics of the WARSIM architecture modeled 
and details the various parsing methodologies adopted 
on the available data. The development and 
implementation of the WARSIM architecture in 
OPNET is given in Section 3 and we conclude in 
Section 4.
 
2. Model Selection 
 
In order to create a reliable simulation environment, an 
existing federation model for development was 
required.  
 
The first trial for this purpose was a visit to US Joint 
Forces Command’s Development and Integration 
Facility (JDIF) in Orlando, Florida. A simple Joint 
Theater Level Simulation/Joint Conflict and Tactical 
Simulation (JTLS/JCATS) interaction was observed, 
however no data was obtained from the JDIF visit due 
to technical problems encountered. 
 
Subsequently, data was requested from MITRE 
through Army PEO-STRI for a Verification 
Event/Operational Readiness Event (VE/ORE) testing 
exercise which used the WARSIM model. The 
WARSIM model was preferred to the JTLS/JACATS 
architecture since WARSIM contained more real life 
scenarios.  Approximately 1GB of WARSIM exercise 
data was provided to UCF by PEO-STRI in mid-
August, 2008. 
 
Through interactions with Subject Matter Experts 
(SMEs), we were able to gain a better insight of the 

model details. The resulting OPNET model has been 
developed in accordance with WARSIM architecture. 
 
2.1 WARSIM Architecture  
 
We discuss the highlights gleaned from the WARSIM 
architecture provided to UCF as follows: 
 
There are total of 11 federates in the WARSIM 
federation that interact through the RTI. 4 of the 11 
federates generate 90% of the data. These 4 federates 
represent the ground federate models. 
 
Figure 1 shows a representation of a WARSIM model 
we have used for developing our simulation models. 
The federates are connected through the RTI based on 
the High Level Architecture (HLA) and the 
communication between the different federates is 
managed by the RTI. The data is filtered from RTI 
gateway to Battle Station Work Station (BSWS) which 
receives the minimal data for display on the GUI. The 
remote gateway distributes the data to other networks.  
 
The WARSIM exercise data provided to us was 
generated by the data logger and consisted of time 
stamped data logs of interactions between the various 
objects and the attribute updates in the federation. The 
data source and destination federate for each 
interaction and update along with the data packet size 
was also logged. Interaction messages are sent across 
the federation denoting a particular event during the 
course of the simulation exercise. Object attribute 
updates are carried out to specifically change one or 
multiple object attributes due to a particular interaction 
which has already been sent out. As a result, object 
update messages are greater in number in comparison 
to interaction messages. 
 
2.2 Data parsing  
 
Based on the discussions with WARSIM experts and 
the WARSIM data discussed above, an initial model 
was built using the OPNET simulator.  This model is 
intended to represent the WARSIM architecture, 
federates and the RTI interactions. The model was 
populated by the data (1GB) obtained from the 
VE/ORE. Interaction with WARSIM SMEs gave us an 
understanding of the exercise data for parsing. After an 
analysis of the object, interaction and summary files, 
the data was mapped to the originating and destination 
federates. Some of the important aspects about the 
dataset identified were: all data messages are broadcast 
and the receiving federate filters the messages that it 
needs (receiver-side filtering), the communication is 
always reliable (not best-effort) and the communication 
cost is based on the number of messages sent. 



 

 
 

Figure 1. WARSIM Architecture (adapted from WARSIM model provided by MITRE Corp.) 
 
Based on the data analysis, different data components 
needed to develop a simulation model are extracted.  
The data sets extracted from the different files are 
correlated simulation time and include the total number 
of objects, total number of interactions from each 
object, number of updates from each object, different 
types of interactions and the size of each data message. 
 
The data of the WARSIM simulation runs is parsed 
using simple open source tools GNU-awk (Gawk) and 
the C programming language. Gawk enables reading 
data line by line and it has a simple interface to 
separate comma and/or tab separated values from the 
simulation log files. It works easily with Linux bash 
shell scripting, through which command line arguments 
are provided to the parsing script.  
 
Algorithm 1 represents the pseudo code for 
determining the total traffic generated due to 
interactions on the RTI at every time instant. For every 
interaction type, the interactions file is parsed and the 
net load size is updated. Since multiple interactions 
may be sent at the same time, if the time read from the 
file is different from the last read time, the total load at 
that time is printed out and the 

current load is reset back to zero. If the time read is the 
same as the previously read time, then the current load 
value is increased by the size of the interaction.  
 
Algorithm 1 Calculating total loads at every time 
instant 
 
while(read individual entry from blobFile)) {  
      while(from every entry in interactions file) { 
            read time and interaction type; 
            if (time does not equal current time) { 
                if (current load does not equal 0.0) { 
                    Output total load at current time 

   reset current load counter 
  } 

             } 
            if (interaction type from blobFile equals  
interaction type) { 
                 if (time read equals current time) 
                    increase current load by interaction size 
            } 
            set current time to read time 
      } 
        seek to start of file 
 } 
 
 



Using Gawk, the unique object types were parsed by 
checking each line of the data file. For example, in the 
following line: 

 
numberofUpdatesFromObject-LS0130555058=6 

 
Extracting text from the delimiters '-' and '=' we 
conveniently obtain the number of updates from the 
object LS0130555058, which is 6. 
 
 
2.3 Results obtained from VE/ORE data 
 
Table 1 below shows the resulting number of data 
objects, interactions and updates that are being sent out 
during the entire data logged interval from the 
VE/ORE simulation exercise for the duration of 54 
hours.   
 
Figure 2 shows a time history of the aggregate traffic 
load during the duration of the exercise event.  

 
 
Total number of objects found 36695 
Total number of updates obtained across 
simulation 

2656337 

Total unique interactions found 267 
Total number of objects found sending 
interactions 

520 

Total number of interactions being sent out 
across simulation 

196872 

Table 1. Source & destination models in VE/ORE data 
 

2.4 Differentiating between source and destination 
federates 

 
The interactions file provides information about the 
source and destination federates the interactions are 
sent across. A federate ID is a specific type with the 
first four characters representing the model to which 
the federate belongs. As an example federate ID 
LS0424977830 denotes that the federate belongs to 
federate LS04. Table 2 shows the distinct federate IDs 
that we obtained from the data parsing. The federate 
IDs starting with the letters “LS” denote the ground 
models in the architecture. While some federates act 
only as source (e.g., TC20) or destination (e.g., PS00, 

PS10), some others act as both (e.g., GS01, LS01, 
LS02, LS03, LS04). 
 
 Federates 
Source 
federates 

DUMM, GS01, IS01, JS01, LS01, LS02, 
LS03, LS04, TC20, TCs0, NULL 

Destination 
federates 

1/A/, FAFA, GS01, LS01, LS02, LS03, 
LS04, PS00, PS10, TAC, UNKN, NULL 

Table 2. Federate IDs in VE/ORE data 
 
Once every federate that generates or receives data has 
been identified we parsed the data to obtain individual 
interaction traffic loads from every federate to the other 
federates within the network. Algorithm 2 presents the 
pseudo code for the algorithm used to carry out this 
computation. For every source model, we read every 
destination model ID and then parse through the 
interactions file for this source destination pair. For 
every such pair, traffic loads are calculated similar to 
the previous algorithm for every time instant.  
 
 
 
Algorithm 2 Calculating total loads for every source 
destination pair at each time instant 
 
while (read individual entry from srcModel file) { 
    while (read individual entry from destModel file) { 
       Initialize load = 0 
              while (read each timestamped line from 
interactions file)  { 

Extract first four characters from src and 
dest  fields; 

                    Compare with variables read from files 
       If (comparison successful) { 

increase load by the size of 
interaction 
Compare current_time with last read 
time 

     If (times are different) { 
   Output loads at that time 

Initialize current time with 
last  read time 

   Initialize load = 0 
  } 
       }   

} 
} 
 
 

 



 
 

Figure 2. Traffic load vs. Time obtained from VE/ORE data 
 
Individual traffic loads from each federate to the other 
helps gain a better understanding of the network traffic 
load throughout the course of the exercise.  The load 
data obtained from this step can now be generalized to 
obtain specific statistical traffic distributions. 
 
3. Modeling WARSIM in OPNET 
 
3.1 Development environment 
 
Network simulator programs have grown in maturity 
since they first appeared as performance, management 
and prediction tools. There are a considerable number 
of simulation tools in the market. The main 
characteristics to classify them are accuracy, speed and 
ease of use.  
 
There are too many different parameter variations and 
different possible network scenarios to adequately 
determine the best simulator. The suitability of the 
simulators can be validated for the particular case of a 
project. There were two main simulators selected in the 
beginning of the project: NS-2 and OPNET. Both of 
these simulators are very-well known and widely used 
in academia and industry. 
 

We used the project editor of the OPNET simulator to 
build a star topology of a small network in an office 
building. We were able to choose statistics to collect 
such as delay, utilization and load on the links, and 
analyze the results. In addition, we tested multiple star 
topology networks to ensure that the added load by the 
additional networks should not cause network failure. 
This example project has similarities with the 
WARSIM model. The similarities included the network 
components and network traffic.  
 
The same project was also developed in NS-2. While 
the statistics and technical results were similar in both 
simulators, we chose OPNET due to its ease of use, 
friendly user interface, and the embedded tools for 
creating and testing networks in a timely manner. Even 
though NS-2 simulator has a good set of end-to-end 
network protocols, the OPNET simulator has a large 
database of network equipment models, including 
routers and switches from several network equipment 
vendors currently in use. Therefore, OPNET was 
chosen as the development environment for the 
simulation model. 
 
 
 
 



3.2 OPNET Model 

The main goal when modeling WARSIM is creation of 
a simulation environment for various federation 
configurations. In order to simulate the network 
behavior of the federation, we need to have a model for 
each federate and the data traffic generated and 
received by the individual federates and the RTI. To 
the best of our knowledge, there has been no readily 
available simulation model for federates and networks 
of federates (i.e., federations).  

The federate models in this study are iteratively created 
with increasing accuracy based on the interviews with 
the SMEs. Our goal is not packet level accuracy; rather 
the level of detail which is sufficient to allow for 
correct decisions regarding the network topology and 
simulation setup. However the created simulation 
environment also provides the ability to make design 
choices at the packet level if needed. OPNET 
Simulator offers a Packet Editor to edit the content of 
the packets. 

The high level view of the OPNET model created is 
shown in Error! Reference source not found. The 
OPNET simulation models are created for the federates 
in the OPNET simulator and these models have the 
ability to create and receive simulated traffic. The 
network components comprising the federates are 

represented using hardware models from the OPNET 
library.  
 
The interaction among federates is shown in Figure 3. 
The dashed line shows the data flow, which is 
generated in the ground models and transmitted to the 
Data persistence federate. Transport Control Protocol 
(TCP) is used as the traffic type since the simulated 
traffic is reliable. 
  
Figure 4 shows the ground models created in OPNET 
Simulator. Each Ground Model in this figure has a 
group of workstations to create or receive traffic and a 
server for creating server-client applications.
 
The OPNET architecture is designed with different 
levels of user selectability. The characteristics of 
individual components and links can be easily modified 
as per user requirements. For instance, although the 
chosen link type for all the links throughout the 
network was 10 Mbps Ethernet; we can vary the 
bandwidth of each link as defined by the user.  This is 
an excellent feature that OPNET offers when designing 
the network models.  
Figure 5 shows the user friendly node selection 
window of OPNET, which offers a very wide range of 
node types. 
 
 
 

 

 
 

Figure 3. OPNET model based on WARSIM architecture 
 



 
 

Figure 4. Ground Models created in OPNET Simulator 
  

Initial OPNET network simulations were executed on 
stand-alone workstations. The simulations were 
conducted on the UCF High Performance Computing 
System which greatly improved runtime efficiency. 
Therefore the number of runs that could be performed 
was also improved.
 

The Institute for Simulation and Training at the 
University of Central Florida operates a high 

performance computing cluster, called STOKES 
(see  

Figure 6) which consists of over 600 core processors 
with over 40 TB of storage, high speed inter-processor 
interconnects using Infiniband and the capability to 
perform 6.6 trillion floating point operations per second 
(TFLOPS). The Infiniband interconnects are capable of 
data transfers to a speed of 40 Giga bits/sec. 
 
3.2.1 Design Considerations 
 
Since there was no information about the individual 
components of the network supporting the federation, 
there are several design assumptions needed in creating 
the OPNET model. 
 
The first design assumption was the need to assign 
unknown federate ID’s to the federates in the OPNET 
model. The known federate IDs, including LS01, LS02, 
LS03, and LS04, are assigned to ground models. The 
unknown federate ID’s are assigned to federates 
randomly. Our assumption was to distribute the traffic 

throughout the network and create a realistic 
architecture. 
Due to lack of sufficient information on some of the 
data traffic we did not include them in the simulation 
network model. For example, even though traffic 
originating from a “NULL” source was a large portion 
in the total traffic load it was not modeled in the 
OPNET simulator. We expect that further meetings 
with SMEs we will be able to improve and refine these 
uncertainties in simulation in future iterations of the 
OPNET simulations and data parsing currently being 
formulated.    
 
Another design assumption used in simulating the 
network was that the non-HLA traffic was at a 
Constant Bit Rate (CBR) and does not flow through 
RTI switch\network. CBR specifies a fixed bit rate so 
that data is sent in a steady stream. SME feedback 
suggested that non-HLA CBR data also flows through 
the RTI and subsequently we revised our model to 
include this feature.  
 

 
 

Figure 5. OPNET Node Selection Menu 
 
3.2.2 OPNET Model Characteristics 
 
One of the main characteristics of the OPNET model is 
the capability to select levels for data flow. The traffic 
in the network can be defined either as a flow from an 
individual workstation in a federate to another or as a 
flow from a group of workstations in a federate to 
another group. These traffic flows can also be 
aggregated to simulate the flow between federates. 
Depending on the needs and goals of the analysis, this 
selection can be varied throughout the model. 
 



The OPNET model is designed to support reliable 
(WARSIM) communication. All the traffic created in 
the network is transmitted using TCP. However the 
architecture is also capable for best-effort 
communication and supports multiple network paths. 
The OPNET model of the WARSIM federation has the 
ability to measure network traffic load at any point on 
the network using packet sniffers. The OPNET model 
has the ability to use any type of traffic in the 
federation to stimulate the network. The actual data that 
was obtained from VE/ORE testing exercise is used in 
the model to demonstrate this ability as a proof-of-
concept. Any probability distribution function can also 
be usedas a substitute for traffic data. 

 
 
OPNET offers built in models for some COTS 
equipment. After the first few iterations of the 
WARSIM architecture were designed, some of these 
equipment models replaced the sample network 
components in the network. For instance, Dell 
Precision workstations replaced the OPNET Ethernet 
Workstation Node (LAN). These equipments used are 
the standard templates in the OPNET libraries. 
However, the user can also change the characteristics of 
these components to accommodate specific needs. For 
example, the model of a specific COTS router can be 
modified by adding one or more Ethernet ports for 
analysis. 
  

The equipment selection is based on the feedback from 
the subject matter experts. The default equipments used 
in creating the OPNET model are: 

• Dell Precision Workstation 
• 3Com SSII Switch 
• Cisco 2514 Series Router 
• 10 Base T links 

 
4. Conclusion 
 
There is still a need for a simulation tool where various 
large federations can be easily simulated to support 
studying the complex relationship between federates 
while maintaining optimum performance. In this paper, 
we have described the initial prototype of a simulation 
environment and the generation of initial simulations 
where data can be gathered that depicts some of the 
trade-offs needed to make intelligent decisions 
regarding the design and deployment of simulation 
federations. We have chosen the WARSIM architecture 
to model in OPNET simulator by feeding the parsed 
WARSIM exercise data into OPNET.  

 
 
 
 
 
 
 

 

 
 

Figure 6. UCF High Performance Computing Cluster STOKES 
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