
Design and development of a simulation environment in OPNET using
High Performance Computing

Mohammad Z. Ahmad, Mustafa I. Akbas, Damla Turgut

School of EECS
University of Central Florida

Email: {zubair, miakbas, turgut}@eecs.ucf.edu

Brian Goldiez, Ravi Palaniappan
Institute for Simulation and Training

University of Central Florida
Email: {bgoldiez, rpalania}@ist.ucf.edu

Troy Dere

RDECOM-STTC
Email: Troy.Dere@us.army.mil

Keywords:

OPNET, WARSIM, Constructive simulation

ABSTRACT: Most major simulation federations are designed and constructed based on the professional experience
of one or a few experts with extensive experience in creating such federations. Organizations have a risk of losing
their understanding of federation performance if one of their key people is no longer available. As very little objective
data on federation performance exists, it is difficult for many facilities to create large federations in a manner that
insures optimum performance. A detailed architecture and accompanying design guidelines or tools able to create
viable interoperable implementations has not yet emerged which minimizes the amount of human intervention,
tweaking, and custom software development. This paper proposes the creation of a simulation environment and the
generation of initial simulations where data can be gathered that depicts some of the trade-offs needed to make
intelligent decisions regarding the design and deployment of simulation federations. The project applies the expertise
of University of Central Florida (UCF) in simulation, computer network modeling and high performance computing.
The test-bed and data generation/analysis activity was performed in collaboration with Team Orlando, a partnership
among the military services, industry, and academia working to leverage resources and contribute to the overall
security of the United States. We captured objective data on the performance of a number of very complex federations
and created detailed OPNET models of the computers, networks, and software applications that make up large
federations. As the communication models were complex and a large number of different federation configurations
were needed to be studied, the simulations were run on the new high performance computer (HPC) facility at the
UCF. The results of this study will allow the simulation community to design more efficient federations.

1. Introduction

There has been considerable activity in developing
standards and demonstrating instances of connected
simulators/simulations since interoperable simulation
was first demonstrated in 1992. Additional
functionality has been desired to allow interoperation
between live, virtual, and constructive simulations and
simulators. Success has been achieved on a case by
case basis, but what has not yet emerged is a detailed
architecture and accompanying design guidelines or
tools that are able to create viable interoperable
implementations while minimizing the amount of
human intervention, tweaking, and custom software
development. The Defense Department has
commissioned a group of individuals to create an

architecture for LVC simulation, known as the Live,
Virtual, Constructive Architecture Roadmap (LVCAR)
Study [1]. The LVCAR and other groups working in
the area of simulator interoperability have a difficult
task because little data is accumulated, published, and
vetted about what works and what doesn’t. Their task
is further complicated by the rapid advances in
technology and development methods, a dispersed base
of users and developers, and the need to quickly get the
working prototypes to users.

This paper reports on the creation of a simulation
environment and the generation of initial simulations
depicting some of the trade-offs needed to make
intelligent architectural and design decisions for
interoperable simulation systems. As part of the effort

described in this paper, UCF has created the necessary
infrastructure and expertise to simulate interactions
between simulators using this simulation environment
on an HPC (High Performance Computer [2]) where
repeated runs can be made and analyzed.

The main goal of this study is the creation of
simulation models of various federations in order to
characterize the network behavior of the federation and
analyze data traffic generated and received by federates
and the Runtime Infrastructure (RTI). Real-life
component models are used for different network
configurations and the WARSIM architecture is then
modeled. The primary contributions of this work to
date are:

• Interpretation, design and partial
implementation of WARSIM architecture in
OPNET [3]

• Parsing of available WARSIM exercise data
to gain better understanding of network traffic
characteristics.

The paper is organized as follows. Section 2 presents
characteristics of the WARSIM architecture modeled
and details the various parsing methodologies adopted
on the available data. The development and
implementation of the WARSIM architecture in
OPNET is given in Section 3 and we conclude in
Section 4.

2. Model Selection

In order to create a reliable simulation environment, an
existing federation model for development was
required.

The first trial for this purpose was a visit to US Joint
Forces Command’s Development and Integration
Facility (JDIF) in Orlando, Florida. A simple Joint
Theater Level Simulation/Joint Conflict and Tactical
Simulation (JTLS/JCATS) interaction was observed,
however no data was obtained from the JDIF visit due
to technical problems encountered.

Subsequently, data was requested from MITRE
through Army PEO-STRI for a Verification
Event/Operational Readiness Event (VE/ORE) testing
exercise which used the WARSIM model. The
WARSIM model was preferred to the JTLS/JACATS
architecture since WARSIM contained more real life
scenarios. Approximately 1GB of WARSIM exercise
data was provided to UCF by PEO-STRI in mid-
August, 2008.

Through interactions with Subject Matter Experts
(SMEs), we were able to gain a better insight of the

model details. The resulting OPNET model has been
developed in accordance with WARSIM architecture.

2.1 WARSIM Architecture

We discuss the highlights gleaned from the WARSIM
architecture provided to UCF as follows:

There are total of 11 federates in the WARSIM
federation that interact through the RTI. 4 of the 11
federates generate 90% of the data. These 4 federates
represent the ground federate models.

Figure 1 shows a representation of a WARSIM model
we have used for developing our simulation models.
The federates are connected through the RTI based on
the High Level Architecture (HLA) and the
communication between the different federates is
managed by the RTI. The data is filtered from RTI
gateway to Battle Station Work Station (BSWS) which
receives the minimal data for display on the GUI. The
remote gateway distributes the data to other networks.

The WARSIM exercise data provided to us was
generated by the data logger and consisted of time
stamped data logs of interactions between the various
objects and the attribute updates in the federation. The
data source and destination federate for each
interaction and update along with the data packet size
was also logged. Interaction messages are sent across
the federation denoting a particular event during the
course of the simulation exercise. Object attribute
updates are carried out to specifically change one or
multiple object attributes due to a particular interaction
which has already been sent out. As a result, object
update messages are greater in number in comparison
to interaction messages.

2.2 Data parsing

Based on the discussions with WARSIM experts and
the WARSIM data discussed above, an initial model
was built using the OPNET simulator. This model is
intended to represent the WARSIM architecture,
federates and the RTI interactions. The model was
populated by the data (1GB) obtained from the
VE/ORE. Interaction with WARSIM SMEs gave us an
understanding of the exercise data for parsing. After an
analysis of the object, interaction and summary files,
the data was mapped to the originating and destination
federates. Some of the important aspects about the
dataset identified were: all data messages are broadcast
and the receiving federate filters the messages that it
needs (receiver-side filtering), the communication is
always reliable (not best-effort) and the communication
cost is based on the number of messages sent.

Figure 1. WARSIM Architecture (adapted from WARSIM model provided by MITRE Corp.)

Based on the data analysis, different data components
needed to develop a simulation model are extracted.
The data sets extracted from the different files are
correlated simulation time and include the total number
of objects, total number of interactions from each
object, number of updates from each object, different
types of interactions and the size of each data message.

The data of the WARSIM simulation runs is parsed
using simple open source tools GNU-awk (Gawk) and
the C programming language. Gawk enables reading
data line by line and it has a simple interface to
separate comma and/or tab separated values from the
simulation log files. It works easily with Linux bash
shell scripting, through which command line arguments
are provided to the parsing script.

Algorithm 1 represents the pseudo code for
determining the total traffic generated due to
interactions on the RTI at every time instant. For every
interaction type, the interactions file is parsed and the
net load size is updated. Since multiple interactions
may be sent at the same time, if the time read from the
file is different from the last read time, the total load at
that time is printed out and the

current load is reset back to zero. If the time read is the
same as the previously read time, then the current load
value is increased by the size of the interaction.

Algorithm 1 Calculating total loads at every time
instant

while(read individual entry from blobFile)) {
 while(from every entry in interactions file) {
 read time and interaction type;
 if (time does not equal current time) {
 if (current load does not equal 0.0) {
 Output total load at current time

 reset current load counter
 }

 }
 if (interaction type from blobFile equals
interaction type) {
 if (time read equals current time)
 increase current load by interaction size
 }
 set current time to read time
 }
 seek to start of file
 }

Using Gawk, the unique object types were parsed by
checking each line of the data file. For example, in the
following line:

numberofUpdatesFromObject-LS0130555058=6

Extracting text from the delimiters '-' and '=' we
conveniently obtain the number of updates from the
object LS0130555058, which is 6.

2.3 Results obtained from VE/ORE data

Table 1 below shows the resulting number of data
objects, interactions and updates that are being sent out
during the entire data logged interval from the
VE/ORE simulation exercise for the duration of 54
hours.

Figure 2 shows a time history of the aggregate traffic
load during the duration of the exercise event.

Total number of objects found 36695
Total number of updates obtained across
simulation

2656337

Total unique interactions found 267
Total number of objects found sending
interactions

520

Total number of interactions being sent out
across simulation

196872

Table 1. Source & destination models in VE/ORE data

2.4 Differentiating between source and destination
federates

The interactions file provides information about the
source and destination federates the interactions are
sent across. A federate ID is a specific type with the
first four characters representing the model to which
the federate belongs. As an example federate ID
LS0424977830 denotes that the federate belongs to
federate LS04. Table 2 shows the distinct federate IDs
that we obtained from the data parsing. The federate
IDs starting with the letters “LS” denote the ground
models in the architecture. While some federates act
only as source (e.g., TC20) or destination (e.g., PS00,

PS10), some others act as both (e.g., GS01, LS01,
LS02, LS03, LS04).

 Federates
Source
federates

DUMM, GS01, IS01, JS01, LS01, LS02,
LS03, LS04, TC20, TCs0, NULL

Destination
federates

1/A/, FAFA, GS01, LS01, LS02, LS03,
LS04, PS00, PS10, TAC, UNKN, NULL

Table 2. Federate IDs in VE/ORE data

Once every federate that generates or receives data has
been identified we parsed the data to obtain individual
interaction traffic loads from every federate to the other
federates within the network. Algorithm 2 presents the
pseudo code for the algorithm used to carry out this
computation. For every source model, we read every
destination model ID and then parse through the
interactions file for this source destination pair. For
every such pair, traffic loads are calculated similar to
the previous algorithm for every time instant.

Algorithm 2 Calculating total loads for every source
destination pair at each time instant

while (read individual entry from srcModel file) {
 while (read individual entry from destModel file) {
 Initialize load = 0
 while (read each timestamped line from
interactions file) {

Extract first four characters from src and
dest fields;

 Compare with variables read from files
 If (comparison successful) {

increase load by the size of
interaction
Compare current_time with last read
time

 If (times are different) {
 Output loads at that time

Initialize current time with
last read time

 Initialize load = 0
 }
 }

}
}

Figure 2. Traffic load vs. Time obtained from VE/ORE data

Individual traffic loads from each federate to the other
helps gain a better understanding of the network traffic
load throughout the course of the exercise. The load
data obtained from this step can now be generalized to
obtain specific statistical traffic distributions.

3. Modeling WARSIM in OPNET

3.1 Development environment

Network simulator programs have grown in maturity
since they first appeared as performance, management
and prediction tools. There are a considerable number
of simulation tools in the market. The main
characteristics to classify them are accuracy, speed and
ease of use.

There are too many different parameter variations and
different possible network scenarios to adequately
determine the best simulator. The suitability of the
simulators can be validated for the particular case of a
project. There were two main simulators selected in the
beginning of the project: NS-2 and OPNET. Both of
these simulators are very-well known and widely used
in academia and industry.

We used the project editor of the OPNET simulator to
build a star topology of a small network in an office
building. We were able to choose statistics to collect
such as delay, utilization and load on the links, and
analyze the results. In addition, we tested multiple star
topology networks to ensure that the added load by the
additional networks should not cause network failure.
This example project has similarities with the
WARSIM model. The similarities included the network
components and network traffic.

The same project was also developed in NS-2. While
the statistics and technical results were similar in both
simulators, we chose OPNET due to its ease of use,
friendly user interface, and the embedded tools for
creating and testing networks in a timely manner. Even
though NS-2 simulator has a good set of end-to-end
network protocols, the OPNET simulator has a large
database of network equipment models, including
routers and switches from several network equipment
vendors currently in use. Therefore, OPNET was
chosen as the development environment for the
simulation model.

3.2 OPNET Model

The main goal when modeling WARSIM is creation of
a simulation environment for various federation
configurations. In order to simulate the network
behavior of the federation, we need to have a model for
each federate and the data traffic generated and
received by the individual federates and the RTI. To
the best of our knowledge, there has been no readily
available simulation model for federates and networks
of federates (i.e., federations).

The federate models in this study are iteratively created
with increasing accuracy based on the interviews with
the SMEs. Our goal is not packet level accuracy; rather
the level of detail which is sufficient to allow for
correct decisions regarding the network topology and
simulation setup. However the created simulation
environment also provides the ability to make design
choices at the packet level if needed. OPNET
Simulator offers a Packet Editor to edit the content of
the packets.

The high level view of the OPNET model created is
shown in Error! Reference source not found. The
OPNET simulation models are created for the federates
in the OPNET simulator and these models have the
ability to create and receive simulated traffic. The
network components comprising the federates are

represented using hardware models from the OPNET
library.

The interaction among federates is shown in Figure 3.
The dashed line shows the data flow, which is
generated in the ground models and transmitted to the
Data persistence federate. Transport Control Protocol
(TCP) is used as the traffic type since the simulated
traffic is reliable.

Figure 4 shows the ground models created in OPNET
Simulator. Each Ground Model in this figure has a
group of workstations to create or receive traffic and a
server for creating server-client applications.

The OPNET architecture is designed with different
levels of user selectability. The characteristics of
individual components and links can be easily modified
as per user requirements. For instance, although the
chosen link type for all the links throughout the
network was 10 Mbps Ethernet; we can vary the
bandwidth of each link as defined by the user. This is
an excellent feature that OPNET offers when designing
the network models.
Figure 5 shows the user friendly node selection
window of OPNET, which offers a very wide range of
node types.

Figure 3. OPNET model based on WARSIM architecture

Figure 4. Ground Models created in OPNET Simulator

Initial OPNET network simulations were executed on
stand-alone workstations. The simulations were
conducted on the UCF High Performance Computing
System which greatly improved runtime efficiency.
Therefore the number of runs that could be performed
was also improved.

The Institute for Simulation and Training at the
University of Central Florida operates a high

performance computing cluster, called STOKES
(see

Figure 6) which consists of over 600 core processors
with over 40 TB of storage, high speed inter-processor
interconnects using Infiniband and the capability to
perform 6.6 trillion floating point operations per second
(TFLOPS). The Infiniband interconnects are capable of
data transfers to a speed of 40 Giga bits/sec.

3.2.1 Design Considerations

Since there was no information about the individual
components of the network supporting the federation,
there are several design assumptions needed in creating
the OPNET model.

The first design assumption was the need to assign
unknown federate ID’s to the federates in the OPNET
model. The known federate IDs, including LS01, LS02,
LS03, and LS04, are assigned to ground models. The
unknown federate ID’s are assigned to federates
randomly. Our assumption was to distribute the traffic

throughout the network and create a realistic
architecture.
Due to lack of sufficient information on some of the
data traffic we did not include them in the simulation
network model. For example, even though traffic
originating from a “NULL” source was a large portion
in the total traffic load it was not modeled in the
OPNET simulator. We expect that further meetings
with SMEs we will be able to improve and refine these
uncertainties in simulation in future iterations of the
OPNET simulations and data parsing currently being
formulated.

Another design assumption used in simulating the
network was that the non-HLA traffic was at a
Constant Bit Rate (CBR) and does not flow through
RTI switch\network. CBR specifies a fixed bit rate so
that data is sent in a steady stream. SME feedback
suggested that non-HLA CBR data also flows through
the RTI and subsequently we revised our model to
include this feature.

Figure 5. OPNET Node Selection Menu

3.2.2 OPNET Model Characteristics

One of the main characteristics of the OPNET model is
the capability to select levels for data flow. The traffic
in the network can be defined either as a flow from an
individual workstation in a federate to another or as a
flow from a group of workstations in a federate to
another group. These traffic flows can also be
aggregated to simulate the flow between federates.
Depending on the needs and goals of the analysis, this
selection can be varied throughout the model.

The OPNET model is designed to support reliable
(WARSIM) communication. All the traffic created in
the network is transmitted using TCP. However the
architecture is also capable for best-effort
communication and supports multiple network paths.
The OPNET model of the WARSIM federation has the
ability to measure network traffic load at any point on
the network using packet sniffers. The OPNET model
has the ability to use any type of traffic in the
federation to stimulate the network. The actual data that
was obtained from VE/ORE testing exercise is used in
the model to demonstrate this ability as a proof-of-
concept. Any probability distribution function can also
be usedas a substitute for traffic data.

OPNET offers built in models for some COTS
equipment. After the first few iterations of the
WARSIM architecture were designed, some of these
equipment models replaced the sample network
components in the network. For instance, Dell
Precision workstations replaced the OPNET Ethernet
Workstation Node (LAN). These equipments used are
the standard templates in the OPNET libraries.
However, the user can also change the characteristics of
these components to accommodate specific needs. For
example, the model of a specific COTS router can be
modified by adding one or more Ethernet ports for
analysis.

The equipment selection is based on the feedback from
the subject matter experts. The default equipments used
in creating the OPNET model are:

• Dell Precision Workstation
• 3Com SSII Switch
• Cisco 2514 Series Router
• 10 Base T links

4. Conclusion

There is still a need for a simulation tool where various
large federations can be easily simulated to support
studying the complex relationship between federates
while maintaining optimum performance. In this paper,
we have described the initial prototype of a simulation
environment and the generation of initial simulations
where data can be gathered that depicts some of the
trade-offs needed to make intelligent decisions
regarding the design and deployment of simulation
federations. We have chosen the WARSIM architecture
to model in OPNET simulator by feeding the parsed
WARSIM exercise data into OPNET.

Figure 6. UCF High Performance Computing Cluster STOKES

5. References

[1] www.discussions.sisostds.org
[2] Stokes HPC at UCF.
 http://www.ist.ucf.edu/hpc/main_page.html
[3] www.opnet.com

Acknowledgements
This work is funded in part by the Joint Forces
Command, JTIEC through the US Army RDECOM
W91CRB-08-D-0015. The work contained herein
represents the views of the authors and should not be
construed as an official position of any of the
sponsoring agencies. The authors acknowledge with
thanks the support of OPNET Technologies Inc. in
using OPNET.

The authors would also like to acknowledge the help of
Dr. Roger Smith, Sterling Hall, Richard Crutchfield,
Anita Zabek, Mike Wright, Karen Williams, Sergio
Tafur, Ola Batarseh and Ed Carmona.

Author Biographies

MOHAMMAD Z. AHMAD is pursuing his PhD in
Computer Engineering at University of Central Florida
(UCF). He received his BS degree in Information
Science and Engineering at VTU in July 2005 and MS
degree in Computer Engineering at UCF in 2007. His
research interests include wireless sensor and ad hoc
networks.

MUSTAFA I. AKBAS is pursuing his PhD in
the Computer Engineering at University of Central
Florida. He received his BS and MS degrees from the
Department of Electrical and Electronics
Engineering, Middle East Technical University,
Ankara, Turkey. His research interests include wireless
sensor networks.

DAMLA TURGUT is an Associate Professor with the
School of Electrical Engineering and Computer Science
at the University of Central Florida. She received her
BS, MS, and PhD degrees from the Computer Science
and Engineering Department of University of Texas at
Arlington in 1994, 1996, and 2002 respectively. She
has been included in the WHO's WHO among students
in American Universities and Colleges in 2002. She has
been awarded outstanding research award and has been
recipient of the Texas Telecommunication Engineering
Consortium (TxTEC) fellowship. She is a member of
IEEE, member of the ACM, and the Upsilon Pi Epsilon
honorary society. Her research interests include
wireless networking, ubiquitous and mobile computing,

distributed systems, embodied agents and teamwork
collaboration in agents.

BRIAN GOLDIEZ has over 30 years of modeling and
simulation experience in industry, government, and
academia. As Deputy Director, Dr. Goldiez is involved
in strategic planning, organizational matters, outreach,
and organizing large, multi-discipline research
programs. As Principal Investigator, Dr. Goldiez has
been involved in various initiatives including, human
and systems performance measurement, computer
graphics, interoperability, data base research, and
augmented and virtual reality systems. Dr. Goldiez
publishes extensively in his areas of research and
consults to industry and government (US and foreign)
in his areas of expertise. He also teaches and advises
modeling and simulation graduate students. Goldiez
has a BS in Aerospace Engineering, an MS in
Computer Engineering, and was UCF’s first recipient
of a Ph.D. in Modeling and Simulation. He is also a
Certified Modeling and Simulation Professional
(Charter Member) and Senior Member of the IEEE.

RAVI PALANIAPPAN is a Research Associate at the
Institute for Simulation & Training, University of
Central Florida. He received his MS degree in
Electrical Engineering from UCF and currently
pursuing his PhD in Modeling and Simulation. His
areas of interest include wireless communication and
High Performance Computing.

TROY DERE is a Program Manager at the Research
Development and Engineering Command - SFC Paul
Ray Smith Simulation & Technology Training Center
(RDECOM – STTC). His areas of interest include High
Performance Computing and LVC Simulation.

http://www.ucf.edu/
http://vtu.ac.in/
http://www.eecs.ucf.edu/
http://www.ucf.edu/
http://www.ucf.edu/
http://www.eee.metu.edu.tr/
http://www.eee.metu.edu.tr/
http://www.metu.edu.tr/
http://www.eecs.ucf.edu/
http://www.ucf.edu/
http://www.cse.uta.edu/
http://www.cse.uta.edu/
http://www.uta.edu/
http://www.uta.edu/

