Part I True/False (15pts)

Let \(p, q, r, s, t \) denote arbitrary statements (propositions). Answer each of the following True/False questions:

YES \(\text{NO} \) \(p \land (\neg p \lor q) \) is equivalent to \(p \land q \).
True. \(p \land (\neg p \lor q) \equiv (p \land \neg p) \lor (p \land q) \equiv p \land q \).

YES \(\text{NO} \) If \(p \Rightarrow q \) is true, then \((p \land r) \Rightarrow (q \land r) \) is true.
True. If \((p \land r) \) is true, then both \(p \) and \(r \) are true. Thus, both \(q \) and \(r \) are true since \(p \) implies \(q \).

YES \(\text{NO} \) If \(p \Rightarrow q \) is false, then \(p \) is false and \(q \) is false.
False. When \((p \Rightarrow q) \) is false, we have \(p \) is true and \(q \) is false.

YES \(\text{NO} \) \((p \lor q) \Rightarrow (s \land t) \Leftrightarrow s \land t \land \neg p \land \neg q \)
FALSE De Morgan’s was applied incorrectly.

YES \(\text{NO} \) \((p \land q) \Rightarrow (q \lor r) \) is a tautology.
TRUE This is always true, because \(q \) will always imply \(q \) or \(r \).
Part II Shorter Questions (30pts)

1. (20 pts) Prove or disprove these statements for the universe of real numbers (R).
 Partial credit may be given for this question.
 (a) $\forall x \exists y \ [xy = 7]$
 Solution:
 DISPROVE
 Consider $x=0$, there exists no y to make the statement true for that value of x.

 (b) $\exists x \forall y \ [2x + 3y = 7]$
 Solution:
 DISPROVE
 The true statement is $\forall x \exists y \ [2x + 3y = 7]$ – no matter what value of x you pick, there will be
 at least one value(in fact, exactly one value) of y to make the statement true.
 BUT, there is no x, such that for ALL y, the statement will hold. In fact, there is no x for which
 two different values of y exist to make the statement true.

 (c) For the following 2 subproblems, we define $r(x): 2x + 1 = 5$ and $s(x): x^2 = 9$
 1. $\exists x [r(x) \land s(x)]$
 2. $[\exists x r(x) \land \exists x s(x)]$
 Solution:
 1. Disprove. Because there is no one real number x such that $2x + 1 = 5$ and $x^2 = 9$
 2. Prove. There is a real number $b (=2)$ such that $2b + 1 = 5$, and there is a second real number c
 (=3) such that $c^2 = 9$
2. (10pts) (From homework assignment) The Rule of the Destructive Dilema is denoted in tabular form as

\[p \rightarrow q \]
\[r \rightarrow s \]
\[\neg q \lor \neg s \]

\[\neg p \lor \neg r \]

Determine the related logical implication. Prove the validity of the Rule of the Destructive Dilema by showing that the related logical implication is a tautology (Please ONLY use the elementary laws to simplify the statement).

Solution:

Simply re-interpret the logics and we have \[r \rightarrow s \iff \neg s \rightarrow \neg r \] and \[\neg q \lor \neg s \iff q \rightarrow \neg s \]. (Idea: \[X \rightarrow Y \iff \neg X \lor Y \] and \[X \rightarrow Y \iff \neg Y \rightarrow \neg X \].)

To prove the tautology, we rearrange the rules as the following:

We get:

\[p \rightarrow q \quad (1) \]
\[q \rightarrow \neg s \quad (2) \]
\[\neg s \rightarrow \neg r \quad (3) \]

--------------- (use Law of Syllogism twice)

\[p \rightarrow \neg r \iff \neg p \lor \neg r \]

From (1) \rightarrow (2), we get \[p \rightarrow \neg s \] (Let's call this (2'))

From (2') \rightarrow (3), we get \[p \rightarrow \neg r \] then we are done.
Part III Longer Questions (30pts) (Justify each step of your proof.)

1. (15 pts.) Let p, q, r denote arbitrary statements (propositions). Use the truth table method to prove that

$$\neg(p \lor q) \lor r$$

is logically equivalent to

$$(p \rightarrow r) \land (q \rightarrow r).$$

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>$p \lor q$</th>
<th>$\neg(p \lor q)$</th>
<th>$\neg(p \lor q) \lor r$</th>
<th>$p \rightarrow r$</th>
<th>$q \rightarrow r$</th>
<th>$((p \rightarrow r) \land (q \rightarrow r))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Note that the column for $\neg(p \lor q) \lor r$ (column 6) and the column for $((p \rightarrow r) \land (q \rightarrow r))$ (column 9) are identical, which proves the equivalence of these two logical expressions.

2. (15pts) Prove that $(q \land (p \rightarrow \neg q)) \rightarrow \neg p$ is a tautology using the laws of logic. (Note: You are not allowed to use truth tables.)

$$(q \land (p \rightarrow \neg q)) \rightarrow \neg p \iff (q \land (\neg p \lor \neg q)) \rightarrow \neg p,$$

Defn of implication

$$\iff (q \land \neg(p \land q)) \rightarrow \neg p,$$

DeMorgan's Law
\[\iff \neg (q \land \neg(p \land q)) \lor \neg p, \quad \text{Defn of implication} \]

\[\iff (\neg q \lor \neg (p \land q)) \lor \neg p, \quad \text{DeMorgan's Law} \]

\[\iff (\neg q \lor (p \land q)) \lor \neg p, \quad \text{Double Negation} \]

\[\iff (\neg p \lor \neg q) \lor (p \land q), \quad \text{Commutative (or)} \]

\[\iff \neg(p \land q) \lor (p \land q), \quad \text{DeMorgan's Law} \]

\[\iff T \quad \text{Inverse Law} \]