Problem #1: (20pts)
Consider the following relation R defined over the set of positive integers:

$$R = \{(x,y) \mid x/y = 4 \lor y/x = 4\}$$

Determine if the relation R is

(i) reflexive, (ii) irreflexive, (iii) symmetric, (iv) anti-symmetric, and (v) transitive.

Answer:
(i) No, because $(1,1) \notin R$.
(ii) Yes, it is impossible for $(a,a) \in R$ since we know that $a/a \neq 4$.
(iii) Yes, this relation is symmetric. We must prove:
if $(a,b) \in R$, then $(b,a) \in R$. If $(a,b) \in R$, then we know that either $a/b = 4$, or $b/a = 4$.
In the first case we have $a/b = 4$ which means $b/a = 1/4$, but we will still have $(b,a) \in R$, since $a/b = 4$.
In the second case we have $b/a = 4$, which means that $a/b = 1/4$, but we will still have $(b,a) \in R$, since $b/a = 4$.
(iv) The relation is NOT anti-symmetric since both $(1,4) \in R$ and $(4,1) \in R$.
(v) The relation is NOT transitive. We have $(1,4) \in R$, $(4,1) \in R$, but $(1,1) \notin R$.

Problem #2: (10pts)
Prove or disprove: Let R be a relation over $A \times A$. If $R \circ R$ is transitive, then R is also transitive.

Answer:
This is false. Let R be defined over $A \times A$, where $A = \{1,2,3\}$. Let $R = \{(1,2), (2,3)\}$. Now, we have that $R \circ R = \{(1,3)\}$, which is transitive, while R is not.
Problem 3: (15pts)

Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \) denote two functions. If both \(f \) and \(g \) are surjective, prove that the composition \(g \circ f : A \rightarrow C \) is a surjection as well.

Answer:

To prove \(g \circ f \) is surjective, we need to prove that for all elements \(c \in C \), there exists an element \(a \) such that \(g \circ f (a) = c \).

Let \(c \) be an arbitrary element from the set \(C \).
Since \(g \) is surjective, we know there exists an element \(b \) such that \(g(b) = c \).
Similarly, for this element \(b \), since \(f \) is surjective, there exists an element \(a \) such that \(f(a) = b \).
Substituting, we have \(g(f(a)) = c \).
Thus, we have shown that for an arbitrarily chosen element \(c \), we can always find an element \(a \) such that \(g \circ f (a) = c \).

Problem 4: (15pts)

Let \(g : A \rightarrow A \) be a bijection. For \(n \geq 2 \), define \(g^n = g \circ g \circ \ldots \circ g \), where \(g \) is composed with itself \(n \) times. Prove that for \(n \geq 2 \), that \((g^n)^{-1} = (g^{-1})^n \).

Answer:

Base case: \(n=2 \). LHS = \((g^2)^{-1} = (g \circ g)^{-1} = g^{-1} \circ g^{-1} = g^2 \)

RHS = \((g^{-1})^2 = g^2 \), Hence, RHS = LHS when \(n = 2 \)

Inductive hypothesis: Assume for an arbitrary value of \(n=k \) that \((g^k)^{-1} = (g^{-1})^k \).

Inductive step: Under this assumption we must show that \((g^{k+1})^{-1} = (g^{-1})^{k+1} \).

\[
(g^{k+1})^{-1} = (g \circ g^k)^{-1}
\]

\[= (g^k)^{-1} \circ g^{-1}, \text{ by the rule for the inverse of a function composition.} \]

\[= (g^{-1})^k \circ g^{-1}, \text{ by the inductive hypothesis} \]

\[= (g^{-1})^{k+1}, \text{ by the definition of function composition.} \]

This proves the inductive step so we can conclude that \((g^n)^{-1} = (g^{-1})^n \) is true for all \(n \geq 2 \).