CRITICAL DESIGN REVIEW: Automated Plant Growth System

Group 04

Douglas Cooper
Desmond Persaud
Samael Reyna

5/22/2009
Introduction

- This system utilizes a *hydroponic environment* which offers a solution to automatically monitor and regulate basic and critical elements that can optimize growth of plants. System will *provide feedback* for key environmental conditions surrounding the plant.
Objectives and Goals

- Minimize user interaction – “Set it and forget it!”
- Allow for automated feeding portions & times
- Control chemical and water level
- Control lighting cycles and distance from plant
- Provide environmental measurements
- Provide a web-based GUI
Requirements

- The system shall utilize a soilless hydroponic environment
- The system shall be designed for small plants
- The system shall be able to regulate the pH level of the feeding solution
- The system shall be able to regulate the nutrient level of the feeding solution
- The system shall be able to regulate the water level of the feeding solution
- The system shall be able to regulate the day and night lighting cycles
- The system shall regulate the height of the light source from the plant
- The system shall implement a web-based interface of user interaction
- The system will utilize an onboard data server with the capability of hosting a web interface that displays: real time display of all measurements, predefined database and user defined growth characteristics, data log of plant growth history
Specifications

- The structure shall allow for a maximum of 10 gallons and a minimum of 0 gallons.
- The humidity sensor shall have a range of 0 to 100% RH and a precision of 3%.
- The temperature sensor shall allow for a range of 0 to 80°C and a precision of 1°C.
- The liquid level sensor shall have a minimum range of 0 to 40 centimeters with a precision of at least 1 millimeter.
- The pH sensor shall have a range of 0 to 14.
- The CO₂ sensor shall allow for 0-1000 ppm with a precision of 1 ppm.
- The day and night lighting cycles shall allow for a user defined interval for cycles.
- The pumps shall allow for a minimum output of 1 mL.
System Overview

Diagram:
- Web Interface
- Network
- Controls
- Sensors
- Regulation
- Plant Feeder

The diagram illustrates the flow of information and control between these components.
Plant Feeder Structure

- Considerations:
 A. Plant Reservoir
 B. Optional Clean Water Reservoir
 C. Drain Reservoirs
 D. Chemical Reservoirs
 E. Wood Frame
 F. Piping/Tubing
 G. Main Electronics Encasement
Sensors

- **8 Sensors**
 - pH
 - Nutrient
 - Liquid Level
 - Temperature (Environment)
 - Humidity
 - CO₂
 - Optical Sensor
 - Contact Sensor

<table>
<thead>
<tr>
<th>INTERNAL ENVIRONMENT</th>
<th>EXTERNAL ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIGHTING
Sensors: Internal Environment

- pH Electrode
 - Range: 0 – 14 pH
 - Accuracy: .01 pH
 - Cost: $17
 - BNC Connector (Analog)
 - Currently on order
 - Provides internal voltage based on pH of solution
 - Will need to do voltage testing in order to design a circuit for A/D interface
Sensors: Internal Environment

- Nutrient
 - Range:
 - 0 – 2000 ppm
 - -5 to 50 °C
 - Accuracy: .5 ppm
- DIN Connector (Analog)

CURRENT ISSUES:
- Test Probe and meter is costly generally over $150 for a simple system
- Measured voltages may not match up to other probes that are less expensive
- Too much RISK!!
- Need to focus more on timed dispensing based on user input
- Meter obtained from Biology Department
Sensors: Internal Environment

- Liquid Level
 - Differential pressure sensor
 - Range:
 - 0 to 100 cm
 - 0 to 10 kPa
 - Accuracy: 1 mm
 - Response time: 1 ms
 - Cost: Free
Possibly insert analysis of accuracy
Doug Cooper, 5/31/2009
Sensors: Internal Environment

- Liquid Level: Application Diagram
 - Measurement range:
 - 0 to 40 cm
 - 0 to 4 kPa

\[h = \frac{P}{d \cdot g} \]

- \(h \) - height of the liquid
- \(P \) - measured pressure
- \(d \) - density of the liquid
- \(g \) - force due to gravity
Sensors: Internal Environment

- Liquid Level: Connection Diagram
 - Provides output of 2.5 to 5 V over 40 cm range
Sensors: External Environment

- Temperature and Humidity
 - Combined in single module
 - Range:
 - 0 – 100% RH
 - -40 to 85 °C
 - Accuracy:
 - +/- 3% RH
 - +/- 1 °C
- Cost: $25
- PWM Out (RH)
- Analog Out (°C)
Sensors: External Environment

- Humidity: Curve Fitting (based on Manufacturer data)

\[
y = 2E^{-0.05x^2} - 0.4166x + 1741.9
\]

\[
y = -0.0886x + 642.08
\]
Sensors: External Environment

- Temp: Curve Fitting (based on Manufacturer data)

\[
y = 0.0009 + 0.00025 \ln(x) + 1.9588 \times 10^{-7} \ln(x)^3
\]

\[
y = -28.08 \ln(x) + 289.74
\]
Sensors: External Environment

- RH output is directly connected to PWM input on MCU
- Because the Thermistor resistance changes with Temp:
 - Voltage at + terminal of op-amp is varied from 24 mV to 500 mV
 - Output is amplified between 0.24 V and 5 V range for A/D
 - (Gain of 10)

\[V_{out} = V_{cc} \left(\frac{R_p}{R + R_p} \right) \left(1 + \frac{R_1}{R_2} \right) \]

- **Vcc** - Supply Voltage
- **Vout** - Output Voltage
- **R** - Thermistor Resistance
Sensors: External Environment

- **CO₂**
 - Range: 0 – 1000 ppm
 - Accuracy: 1 ppm
 - Cost: Free
 - Linear Analog Output
 - 0 to 5 V
 - No additional circuitry required
 - No calibration required due to onboard algorithms
Regulation

- 2 Main Systems:
 - Lighting System
 - Automated height adjustment
 - Day/Night Cycling
 - Feeding System
 - Nutrient Dispensing
 - pH Up/Down Dispensing
 - Timed Feeding capabilities
 - Water Level adjustment
Lighting System

- Automated height adjustment
 - Allows the light to maintain a fixed height during growth
 - LED Light Source
 - Stepper Motor (change)
 - Driver Circuit (change)
 - Optical Sensor
 - Contact Sensor
 - MCU I/O
Lighting System

- LED Light Source
 - Provides correct spectrum of light used by most plants
 - Voltage: 110/120 VAC
 - Current: 115 mA
- Dim: 12.25 x 12.25 x 1.25 in (34.115 x 34.115 x 3.481 cm)
- Min. Distance from Plant: 3 in (8.354 cm)
- Cost: $43.00
Lighting System

- Stepper Motor + Worm Gear Assembly → DC Motor w/ Worm Gear Assembly
 - ISSUE: Finding a worm gear assembly separate from the motor
- Specs:
 - High Torque (value not avail)
 - made for car windows
 - ≈.5 rev/s @ 3 VDC, 1 A
Lighting System

- Worm Gear Assembly
Discuss the advantage to using a worm gear over the typical gear

Doug Cooper, 5/31/2009
Lighting System

- Stepper Driver Circuit → DC Motor H-Bridge
 - ISSUE: Need a new design for a different type motor
- Fwd/Rev control
- On/off functionality
- Shottky diodes needed to protect against kickback from the motor
Lighting System

- Optical Sensor
 - Purpose: Detect when the plant has reached the minimum level of the light source distance
 - Infrared detection
 - Range: 3 – 40 cm
 - Cost: $14
 - Analog output used as a digital input
Lighting System

- Top view of Optical Sensor configuration
- Provides a reference voltage at a fixed distance
Lighting System

- Side view of Optical sensor configuration
Lighting System

- Optical sensor connection diagram
 - V_{ref} is 1.1 times the voltage measured at the other end of the light source. Provides buffer for small fluctuations.
 - When breached, $V_{out}>V_{ref}$, signals MCU to move motor
Lighting System

- Contact Sensor
 - Purpose: Detect when the light source has reached max. height
 - On/Off output
 - Normally Open (contact)
 - Cost: Free
Lighting System

- Contact sensor connection diagram
 - $V_{ref} = 1\, \text{V}$
 - With no contact, V_{out} goes high and connects MCU input to GND
 - On contact, $V_{out} = 0$, input on MCU goes High
Lighting System

- Day/Night Cycling
 - Provide the ABSENCE of light needed for the plant to grow properly
 - Relay
 - MCU Output
Lighting System

- Atmel 168 (8-bit) MCU
 - Inputs: Optical, Contact Sensor
 - Outputs: Motor control, Lighting Relay
 - Reason for use: obtained free development board
Feeding System

- Nutrient and pH regulation
 - 3 Peristaltic Pumps
 - Nutrients
 - pH up
 - pH down
 - Each 45° rotation will give 1 mL output of chemical solution
 - 25 steps are needed for a full 45° rotation
Feeding System

- Peristaltic Pumps
 - Spacing between the screws on the wheel should be approx 1.24 inches apart which has been calculated to provide 1 mL/rotation with a ¼” ID tubing.
Feeding System

- Stepper Motor
 - Nema 17 – 1.8° Step Motor
 - High Torque
 - 2 Amp Rating
 - Low Cost: $7
Feeding System

- Stepper Motor Connection Diagram
Feeding System

- Stepper Motor Circuit Diagram
Feeding System

- Air pump
 - On the side of the solution reservoir we would have two air stones to mix the solution when chemicals are added.
 - Possibly leave them on to both continuously mix and stop water from getting stagnant
 - Circuit for air pump will only require on/off output
Feeding System

- Timed Feeding
 - Pump located at bottom of tank.
 - Will be turned on for specified amount of time as determined by the size, and stage of growth of the plant.
 - Needs only on/off function.
Feeding System

- **Water Level**
 - By controlling the two main valves in our system we can adjust the volume of water
 - System would be flushed generally once every two weeks through plants life cycle.
 - The response time of the water level sensor and valves will give a generally accurate volume of water. Accuracy to be determined through testing
Feeding System

- **Valves**
 - **Drain Valve**
 - Needs 24 VAC to open and allow water to drain to bottom container. No minimum pressure required to function properly.
 - **Inlet Valve**
 - Same specifications as Drain Valve. Supplying voltage will input water to system. In combination with water level sensor will give an accurate volume of water. ¾” input is available on unit to connect a hose.
- **Inlet Pump (Optional)**
 - If a hose is not available a pump and an additional reservoir can be added to the system.
Controls

- 2 Atmel 168 MCU’s
 - Lighting
 - Sensors
 - Pumps
- Usages:
 - Serial Interface
 - A/D inputs
 - PWM I/O’s
 - Digital I/O’s
Wiring of Control System

- Demultiplexer allows for more outputs from fewer inputs
- Rx and Tx lines are for use of web interface (UART connection)
- Sensors on A/D and PWM inputs
Web Interface

- Lantronix 802.11 Data Server
 - Hosts custom web pages
 - Wireless to Serial Interface
 - Ad-hoc, LAN or WAN connection
 - Final connection type TBD
Web Interface

- 2 Serial ports
- No RF fabrication required
 - Antenna connects directly to the ufl connector on rear of unit
- Ethernet capabilities (if needed)
- Module Cost: Free
- Eval kit: Free
Web Interface: GUI

- Main interaction with the user
- HTML & JAVA based coding
- Passes data to control system over serial interface
- Regulates user inputs
 - Ensures the inputs are within expected values
 - Lets user know anticipated input values
 - Will not update unless specific actions are taken (i.e. button click)
- Displays current values from control system
External Storage Device

- Secure Digital interface
 - Used for data logging
 - Wires directly into the control system
 - Uses MOSI, MISO, SS, SCK on control device
 - Will store sensor values for selected time intervals
 - Values will be retrievable through the website by the user if requested
- Cost: $11
Power

- Overview
 - Not the focus of the project
 - Basic power strip will be used to distribute power to the system
Power

- **AC/DC & AC/AC Conversion**
 - Supplied through off-the-shelf power converters that are suited for the various pumps and valves
- **Relays**
 - 5 VDC, 40 mA control (from MCU)
 - 240 VAC, 5A operation
 - Cost: $1/unit
- **Power distribution to motors**
 - Tests will be performed to determine exact voltage for each motor
 - A low voltage (5V) will be used and increased accordingly
- Possible to use a computer power supply to power the electronics
Budget

- Approximate values
- Some costs have increased and some have decreased
- On target

<table>
<thead>
<tr>
<th></th>
<th>Budget</th>
<th>Retail Cost</th>
<th>Actual Cost</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>$900</td>
<td>$1057</td>
<td>$660</td>
<td>$397</td>
</tr>
<tr>
<td>Total/Person</td>
<td>$300</td>
<td>$352</td>
<td>$220</td>
<td>$132</td>
</tr>
</tbody>
</table>
Current Status

- Successfully connected to a simple web page via ad-hoc
- Coding for communication between web interface and controller determined
- Simple code written for A/D and digital input/output processes
- Materials for structure obtained
- Build/Test for stepper motor circuit in progress
- Obtained/ordered all major components
Possible Issues

- Keeping focus on the Electrical Engineering aspect of the project and not the Plant Growing processes
- Mechanical Aspects (i.e. fluids, motors, gears)
- Water-proofing electronics
- Keeping cost down (i.e. Conductivity sensor)