Homework 4

1- Given \(F_1 = \sum m(0,2,5,7,9) \) and \(F_1 = \sum m(2,3,4,7,8) \) find the minterm expression for \(F_1 + F_2 \). State a general rule for finding the expression for \(F_1 + F_2 \) given the minterm expansions for \(F_1 \) and \(F_2 \). Prove your answer by using the general form of the minterm expansion.

2- Given: \(F(a,b,c,d) = (a + b + c' + d')(a' + b' + c')(a + b + d)(a' + c) \)

 (a) Express \(F \) as a minterm expansion. (use m-notation)
 (b) Express \(F \) as a maxterm expansion. (use M-notation)
 (c) Express \(F' \) as a minterm expansion. (use m-notation)
 (d) Express \(F' \) as a maxterm expansion. (use M-notation)

3- Find the minterm expansion of \(f(a,b,c,d) = a'(b' + d) + acd' \) and then design the result.

4- Design a combinational logic circuit which has one output \(Z \) and a 4-bit input \(ABCD \) representing a binary number. \(Z \) should be 1 if the input is at least 5, but is no greater than 11. Use one OR gate (three input), and three AND gates.

5- A half adder is a circuit that adds two bits to give a sum and a carry. Give the truth table for a half adder, and design the circuit using only two gates. Then design a circuit which will find the 2’s complement of a 4-bit binary number. Use four half adders and any additional gates. (Hint: recall that one way to find the 2’s complement of a binary number is to complement all bits, and then add 1)

6- Find the minimum sum of products for each function using a Karnaugh map.
 (a) \(f_1(a, b, c) = m_0 + m_2 + m_5 + m_6 \)
 (b) \(f_2(d, e, f) = \Sigma m(0, 1, 2, 4) \)
 (c) \(f_3(x, y, z) = xz' + x'y' + x'y \)
 (d) \(f_4(r, s, t) = M_0 \cdot M_5 \)

7- (a) Plot the following function on a Karnaugh map. (Do not expand to minterm form before plotting.)
 (b) \(F(A, B, C, D) = BC' + B'CD + ABC + ABCD + B'D' \)
 (c) Find the minimum sum of products.
 (d) Find the minimum product of sums.

8- Find the minimum product of sums for the following.
 (a) \(\Pi M(0, 2, 4, 6, 7, 9, 14) \cdot \Pi D(10, 11) \)
 (b) \(\Sigma m(1, 3, 7, 8, 15) + \Sigma d(5, 12) \)
9- A logic circuit realizes the function \(F(a, b, c, d) = ab'd' + a'b' + a'cd + ac'd \). Assuming that \(a = c \) never occurs when \(b = d = 1 \), find a simplified expression for \(F \).

10- Given \(F = AB'D' + A'B + A'C + CD \).
 (a) Use a Karnaugh map to find the maxterm expression for \(F \) (express your answer in both decimal and algebraic notation).
 (b) Use a Karnaugh map to find the minimum sum-of-products form for \(F' \).
 (c) Find the minimum product of sums for \(F \).

11- Assuming that the inputs \(ABCD = 0101, ABCD = 1001, ABCD = 1011 \) never occur, find a simplified expression for
 \[F = AB'C'D + A'B'D + A'CD + ABD + ABC \]