
Soccer Behaviors on Bi-pedal
NAO Robots.

Arumae Kristjan, Myhre Sarah, and Olschewski
Cassian.

School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,

Florida.

The project encompasses the framework and setup needed

to run soccer behaviors on the NAO robot. The behaviors
are constructed using the NAOqi API provided by
Aldebaran Robotics. The framework is developed
dynamically to accept any sort of working model for robot
behavior that runs cyclically. Along with the code and
framework the project also gives developers a through
walkthrough for setting up the software.

Index Terms — Robotics, NAO, Webots, Artificial
Intelligence.

I. INTRODUCTION

 Using soccer behaviors as a medium for robotics
competition has now existed for more than a decade. It is
now an international competition with universities across
the globe participating to develop the most robust working
team. Currently, however there exists no team for the
University of Central Florida. This project was a chance
to kickstart interest in competition as well as Artificial
Intelligence in general. The project included simulation of
code as it would appear on the robots with no physical
robots present in the scope of the work.
 The development touches on behavior via behavior-
trees as well as finite state machines. Use of computer
vision is discussed alongside locomotion control and
modification.

II. RELATED WORKS

Preliminary research came from several sources. First
and foremost was the technical review of the CMUnited
team performance in the 1998 Robocup competition[1].
The article discussed behavior modeling and decision
weighing as it pertained to Carnegie Mellon winning the
RoboCup that year. Also included is the Advanced
Robotics with Artificial Intelligence for Ball

Operation(ARAIBO) technical works[2]. The team is
from Tokyo and discussed their dynamic programming
approach to building a successful team. Also included
was a conference paper on Policy Gradient Reinforcement
Learning for Optimizing Arm to Leg Coordination and
Walking Speed. This discussed machine learning and
synchronization of multiple joints for movement
optimization.

III. SOFTWARE AND API

The project utilized several key pieces of software. For
development Eclipse, and Sublime Text were used with
NAOqi support for Python. Simulation ran from Webots
7.1.1.

The NAOqi APi was provided via Aldebaran Robotics
for use with their hardware-the NAO robot. The API is
available in several languages with the most prominent
being C++ and Python. The API works with brokers
loading proxies for method calls onto the robot. Each
method call, either blocking or non-blocking, controls one
of several proxies. The most common proxies are for
memory, locomotion, and posture. Each proxy call is
made by assigning the object the IP and Port of the robot
the code is loaded on.

Working with the API was done initially on Eclipse.
Eclipse has a well-stocked list of plug-ins one of which is
Pydev. Pydev is for easy Python development within this
IDE. Other than the syntax and highlighting, Pydev also
provides runtime support such as breakpoints. Sublime
worked as a fantastic editor for Python as well in Ubuntu,
and running code from it was simple.
 The Python interpreted scripting language was our
language of choice due to the natural structure of the
language. Python has various mechanisms that facilitate
quick implementation of functionality. Dynamic typing in
Python allows developers to create and then maintain
short, readable code. This makes the developer’s job
easier by placing the tasks of declaring, tracking, and,
checking data types into the hands of the interpreter. Just
this mechanism alone makes Python code shorter and
more readable than other static typed languages such as
Java and C++. In addition, the built in Python libraries are
written with short symbol names to couple with the idea of
shorter code bases without creating unreasonably
obfuscated naming conventions.
 Another mechanism, forced indentation, follows the
idea of short but readable code. The indentation of nested
expressions is important in producing readable Python
scripts. The indentation requirement that Python enforces
effectively reduces the room for error when a developer is
working with any given code base. Further, the

requirement makes code produced generally more
readable and thus more maintainable.

IV. FRAMEWORK

 Taking advantage of Python’s clean-code mechanisms,
the framework itself was designed with maintainability in
mind. Due to the nature of this project, the requirements
for soccer player behaviors are vast, and as with any
artificial intelligence, functionality is key. Knowing this,
our design choices consisted of those that would facilitate
the addition of new functionality in future times.
 We began the framework design process by analyzing
the problem domain. Our scripts needed to be able to
instruct a humanoid robot to play a game of soccer against
other robots of the same type. Thus, the creation of the
framework was driven by the existence of two main sub
problems in the overall problem domain: One, how can
the project be divided amongst the members of the team?
And two, how can we logically implement the desired
design functionality?
 To answer the first problem we must look at what
objects are present in the system and what responsibilities
those objects have. A good place to begin is with the main
agents in our soccer game, the players. A robot competitor
is an obvious choice for encapsulation. The robot itself is
a rather complex and general object. With the current sub
problem in mind, is there a way to logically break down
the robot into programmable modules? Now we can see
that the sub problem reduces to one of design modularity
when viewed in a problem-specific light.
 The next step was to look at what the robots were
logically composed of so that they could be more easily
constructed in code. The robots are humanoid, and do
have functioning vision and limb components.
Coincidentally, those two components were crucial for
carrying out a successful soccer game, virtual or not. We
encapsulated the functionality of the legs and eyes of the
robot and created modules to represent those function sets.
Lastly, we ask, what drives these robot components? In
the robot players, the scripted soccer behaviors had to be
able to delegate commands to the robot’s hardware
components, or in our case the simulated components.
Upon encapsulating the logic models we noticed that the
soccer behaviors themselves create has-a relationships
with the robots. This discovery was critical in the
furtherment of our design. The has-a relationship that each
subcomponent makes with the robot guided our design
when modeling the relationships between the objects
identified for encapsulation and implementation during the
initial design process.

 Ultimately, the need for a modular design due to the
nature of team based projects caused us to devise a
domain model that reflected, and facilitated the
development of programs that were to be created in a
modular manner. Now that we had a solution to the first
sub problem, and incidentally a feasible concept for an
extensible, modular, and maintainable framework, we
could begin to construct a solution to the second sub
problem, how can we logically implement the desired
design functionality?
 Taking the natural relationship of the objects identified
earlier into consideration, the most logical design pattern
to use was the composite pattern. As the name suggests, it
is largely based upon the concept of composition. The
Composition Design Principle places the general concept
of composition into the light of object-oriented design in
software. Conceptualized by the authors of “Design
Patterns: Elements of Reusable Object-Oriented
Software”[3] the composition design principle attempts to
address the question of when to model is-a relationships
versus has-a relationships in code.
 In our design, the robot is composed of RobotEyes, and
RobotLegs classes. These objects contain methods for
interfacing with the open computer vision libraries, and
NAOqi libraries respectively. The complexities of the
robot players are decoupled from the robot class itself
which allows for multiple team members to implement the
robot scripts at once. The robot behaviors were
encapsulated into their own classes and each one extended
the LogicFor class to implement specific soccer behaviors.
The LogicFor functionality was uniformly controlled by
the FSMWrapper class, which handled the lifetime state of
the Threads used to execute the instructions of the
behaviors. All of the components were unified under one
centralized class called the TeamBuilder. This class
provides the entry point to the program for the host
computer and delegates the commands to start behavior
threads on the physical or simulated robots via network
communication methods implemented by the NAOqi
framework.

V. BEHAVIOR EVOLUTION

The behaviors in the project built upon one another.
Meaning that simpler ones were created and from them
evolved more complex orderings. More importantly the
simpler behaviors became building blocks to be
implemented in fuller working modules. The following
section describes the simple chasing module and then the
implementation of a full working offensive behavior.
Both of these utilize the framework described in section 4.

 From the very beginning it was clear that giving a robot
the same method call with no adjustment would result in
unsatisfactory results. The API includes more than 10
methods just for walking. These methods take in
parameters as simple as the desired X and Y coordinate, as
well as more complex lists of parameters to define all joint
control. After testing these methods we noticed that
making several calls to moveTo()-a method we used to
walk forward-resulted in the robot veering to a side from
time to time. The robot would also often lose balance and
tip over. The method did include a theta value which
should control the curvature of the walk in the direction
desired, as seen in the figure below.

The robot views X as the forward axis and any movement
sideways as on the Y axis. This angular change should be
accounted for during every cycle of movement since slight
differences will occur.
 Another element added to every walk was arm-swing.
The robots were naturally very stiff unless otherwise
instructed. This caused the torso to not move when the
lower body did thus causing the robot to quite often tip to
the side. Although the behavior trees do account for the
occurrence of falls it does slow down performance
significantly to have to get up often.
 The code below shows the fully parameterized version
of the method call to walk along with a chart to illustrate
what each value corresponds to.

If any parameter is left blank it takes the default value.
 The values set for this walk almost eliminated any tipping
over and resulted in a smoother walk while tracking. The
walk was also slowed down to avoid any difficulties.
 Having a method call that provides better results was not
enough however. To make the walk more optimal
changes must be made every cycle to slightly adjust
trajectory. To do this the theta must have a relationship to
whatever object is being tacked in the field of vision. To
illustrate this we will use the ball. The view below shows
the robots head camera with the ball in view

The resolution of the image is 640 by 480 thus the middle
line of the image is 320. If the returned coordinates of the

ball are below 320 then the value that will be theta is
calculated from the bottom of the frame clockwise to the
center, otherwise theta will correspond to the angle created
from the bottom of the frame counter-clockwise to the
center line. Wherever the ball is results in where the angle
stops. This value is then negated if the robot must move
clockwise and positive otherwise. The angle is converted
to radians. This value is then scaled down to twenty
percent and passed in as the theta value. The reason for
the scaling is to not cause the robot to move too severely
resulting in a smoother recalculation of the trajectory.

This algorithm produced the most desired results. The
cycling of the walk trajectory must also take into account
the wobble of the frame. At any point the returned image
might be tilted one way or another. This is also a reason
for scaling down the theta to a fraction of its true value. In
earlier implementations when the parameter was the true
theta- with a ceiling of 1rad and a floor of -1 rad-the robot
would start doing very sharp turns to correct the path, this
would cause the ball to be lost as quickly as it was
located.

 The goals for having an all-around working offender
was to have a behavior that would not interfere with other
players’ behavior and also not need assistance to carry out
its own tasks. The logic behind the offensive player is
based on the principle of having a way to get out of any
un-ideal situation, in other words not getting stuck. The
complexity of the offender should also be mature but
simple. There should be no point in the code where the
robot cannot get back out to an earlier level due to
contradicting decision parameters. Therefore every level
must operate smoothly to avoid any sort of cyclical
dependencies. That being said the maturity should not
only resolve trivial cases thrown at the robot but rather be
dynamic and operate in a multitude of scenarios.

The figure below illustrates the logic given to the
offender. Above all else the player is concerned with

having the ball in view, and then having access to it. It is
important to note this applies to the robot when it is in a
standing position. The tree does account for falls every
cycle.

Starting from the top of the tree the robot must circle until
it finds the ball. This rotation should only take seconds for
a full scan of the field. If at any cycle the ball becomes
present in the head or the torso camera the rotation is
killed and the ball is either approached or the goal is
located. For the former scenario the algorithm described
in the walk section is used, with a new theta calculated
each time. The robot will in this case be facing the ball
head-on as it disappears from the upper frame into the
lower one. During testing it was clear that if the ball was
close enough to be in the lower frame the robot should
start positioning to score or pass. This gives a metric as to
how far away the robot is from the ball and the threshold
is always constant.
 With the ball in the lower frame the robot would start to
position themselves to align with the goal. This motion
keeps the ball in front of the robot until the goal comes
into view. The goal must be within a range of the center
of the screen. This range is quite wide since the goal itself
accepts a spectrum of kicks. Another reason for not
having a small window is so that the robot will carry out
an action without having to re-position due to a slight
miscalculation. A percentage of error is to be expected for
the kick to the goal. When testing with smaller range a
robot make take hundreds of cycles before it is confident
enough to kick and score a goal. Although this previous
method provides a more accurate end result, the chance of
interception or other ball loss becomes increasingly
higher.
 After alignment the player will do a final approach to
the ball. This approach utilizes the same walk algorithm
as before but uses a slower walk speed to keep the robot
steadier. Specifically the speed is 26% of the normal
speed. During every cycle at this point the robot makes
sure that the goal is still also in an acceptable range and

then moves forward. This being so far down the behavior
tree makes the behavior the most precise.
 At the very end of this behavior tree the robot should be
at the ball, ready to kick. If the ball coordinate returned is
more than 460(of a total of 480) pixels in the Y directions
from the top, then the robot is close enough to attempt a
kick. This takes into account another aspect of the cycles.
 More than likely the robot will finish the last step from
the previous cycle in which they were already moving,
bringing the ball even closer to the foot of the player. The
code calls a type of stop-movement that lets the previous
call return to a steady state. This allows for the player to
be stable by the time the next call is made. Otherwise the
player may be on one foot, tilted, or even having fallen.
After the kick the robot will once again chase the ball and
complete the action again. There is also a chance that the
ball gets just close enough, but also out of range, in this
case the robot will of course start to look for it again.
 This behavior does not account for any saving of world
states. For example if the robot does loses sight of the ball
in the right edge of the frame he will still rotate left-as is
default. By implementing a behavior tree rather than a
finite state machine (FSM) the robot would not have a
decent way of keeping track of other players and objects
outside of the frame of vision.

VII. CONCLUSION

The project delivered several working behaviors that
encompassed a complete team. This code and the
framework that goes alongside of it is available to Dr.
Sukthankar as teaching material for future robotics
classes, as well as any graduate level team development.
With that is information regarding

ACKNOWLEDGEMENT

The authors wish to acknowledge Dr. Gita Sukthankar,
Dr. Mark Heinrich and Astrid Jackson for their guidance
and support of the project.

REFERENCES

[1] Stone, Peter, Manuela Veloso, and Patrick Riley. "The
CMUnited-98 champion simulator team." RoboCup-98:
Robot soccer world cup II. Springer Berlin Heidelberg,
1999. 61-76.

[2] Takeshita, Kazutaka, et al. Technical report of team
araibo. Technical report, ARAIBO, 2007.

[3] Gamma, Erich, et al. Design patterns: elements of
reusable object-oriented software. Pearson Education,
1994.

