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The project encompasses the framework and setup needed 

to run soccer behaviors on the NAO robot.  The behaviors 
are constructed using the NAOqi API provided by 
Aldebaran Robotics.  The framework is developed 
dynamically to accept any sort of working model for robot 
behavior that runs cyclically.  Along with the code and 
framework the project also gives developers a through 
walkthrough for setting up the software.   

Index Terms  —  Robotics, NAO, Webots, Artificial 
Intelligence. 

 

I. INTRODUCTION 

   Using soccer behaviors as a medium for robotics 
competition has now existed for more than a decade.  It is 
now an international competition with universities across 
the globe participating to develop the most robust working 
team.  Currently, however there exists no team for the 
University of Central Florida.  This project was a chance 
to kickstart interest in competition as well as Artificial 
Intelligence in general.  The project included simulation of 
code as it would appear on the robots with no physical 
robots present in the scope of the work. 
    The development touches on behavior via behavior-
trees as well as finite state machines.  Use of computer 
vision is discussed alongside locomotion control and 
modification.   

II. RELATED WORKS 

Preliminary research came from several sources.  First 
and foremost was the technical review of the CMUnited 
team performance in the 1998 Robocup competition[1].  
The article discussed behavior modeling and decision 
weighing as it pertained to Carnegie Mellon winning the 
RoboCup that year.  Also included is the Advanced 
Robotics with Artificial Intelligence for Ball 

Operation(ARAIBO) technical works[2].  The team is 
from Tokyo and discussed their dynamic programming 
approach to building a successful team.  Also included 
was a conference paper on Policy Gradient Reinforcement 
Learning for Optimizing Arm to Leg Coordination and 
Walking Speed.  This discussed machine learning and 
synchronization of multiple joints for movement 
optimization. 

III. SOFTWARE AND API 

The project utilized several key pieces of software.  For 
development Eclipse, and Sublime Text were used with 
NAOqi support for Python.  Simulation ran from Webots 
7.1.1. 

The NAOqi APi was provided via Aldebaran Robotics 
for use with their hardware-the NAO robot.  The API is 
available in several languages with the most prominent 
being C++ and Python.  The API works with brokers 
loading proxies for method calls onto the robot.  Each 
method call, either blocking or non-blocking, controls one 
of several proxies.  The most common proxies are for 
memory, locomotion, and posture.  Each proxy call is 
made by assigning the object the IP and Port of the robot 
the code is loaded on. 

Working with the API was done initially on Eclipse.  
Eclipse has a well-stocked list of plug-ins one of which is 
Pydev.  Pydev is for easy Python development within this 
IDE.  Other than the syntax and highlighting, Pydev also 
provides runtime support such as breakpoints.  Sublime 
worked as a fantastic editor for Python as well in Ubuntu, 
and running code from it was simple. 
    The Python interpreted scripting language was our 
language of choice due to the natural structure of the 
language. Python has various mechanisms that facilitate 
quick implementation of functionality. Dynamic typing in 
Python allows developers to create and then maintain 
short, readable code. This makes the developer’s job 
easier by placing the tasks of declaring, tracking, and, 
checking data types into the hands of the interpreter. Just 
this mechanism alone makes Python code shorter and 
more readable than other static typed languages such as 
Java and C++. In addition, the built in Python libraries are 
written with short symbol names to couple with the idea of  
shorter code bases without creating unreasonably 
obfuscated naming conventions.  
    Another mechanism, forced indentation, follows the 
idea of short but readable code. The indentation of nested 
expressions is important in producing readable Python 
scripts. The indentation requirement that Python enforces 
effectively reduces the room for error when a developer is 
working with any given code base. Further, the 



requirement makes code produced generally more 
readable and thus more maintainable.  

IV. FRAMEWORK 

 
   Taking advantage of Python’s clean-code mechanisms, 
the framework itself was designed with maintainability in 
mind. Due to the nature of this project, the requirements 
for soccer player behaviors are vast, and as with any 
artificial intelligence, functionality is key. Knowing this, 
our design choices consisted of those that would facilitate 
the addition of new functionality in future times.  
   We began the framework design process by analyzing 
the problem domain. Our scripts needed to be able to 
instruct a humanoid robot to play a game of soccer against 
other robots of the same type. Thus, the creation of the 
framework was driven by the existence of two main sub 
problems in the overall problem domain: One, how can 
the project be divided amongst the members of the team? 
And two, how can we logically implement the desired 
design functionality? 
   To answer the first problem we must look at what 
objects are present in the system and what responsibilities 
those objects have. A good place to begin is with the main 
agents in our soccer game, the players. A robot competitor 
is an obvious choice for encapsulation. The robot itself is 
a rather complex and general object. With the current sub 
problem in mind, is there a way to logically break down 
the robot into programmable modules? Now we can see 
that the sub problem reduces to one of design modularity 
when viewed in a problem-specific light.  
   The next step was to look at what the robots were 
logically composed of so that they could be more easily 
constructed in code. The robots are humanoid, and do 
have functioning vision and limb components. 
Coincidentally, those two components were crucial for 
carrying out a successful soccer game, virtual or not. We 
encapsulated the functionality of the legs and eyes of the 
robot and created modules to represent those function sets. 
Lastly, we ask, what drives these robot components? In 
the robot players, the scripted soccer behaviors had to be 
able to delegate commands to the robot’s hardware 
components, or in our case the simulated components. 
Upon encapsulating the logic models we noticed that the 
soccer behaviors themselves create has-a relationships 
with the robots. This discovery was critical in the 
furtherment of our design. The has-a relationship that each 
subcomponent makes with the robot guided our design 
when modeling the relationships between the objects 
identified for encapsulation and implementation during the 
initial design process.  
 

   Ultimately, the need for a modular design due to the 
nature of team based projects caused us to devise a 
domain model that reflected, and facilitated the 
development of programs that were to be created in a 
modular manner. Now that we had a solution to the first 
sub problem, and incidentally a feasible concept for an 
extensible, modular, and maintainable framework, we 
could begin to construct a solution to the second sub 
problem, how can we logically implement the desired 
design functionality?  
   Taking the natural relationship of the objects identified 
earlier into consideration, the most logical design pattern 
to use was the composite pattern. As the name suggests, it 
is largely based upon the concept of composition. The 
Composition Design Principle places the general concept 
of composition into the light of object-oriented design in 
software. Conceptualized by the authors of “Design 
Patterns: Elements of Reusable Object-Oriented 
Software”[3] the composition design principle attempts to 
address the question of when to model is-a relationships 
versus has-a relationships in code. 
   In our design, the robot is composed of RobotEyes, and 
RobotLegs classes. These objects contain methods for 
interfacing with the open computer vision libraries, and 
NAOqi libraries respectively. The complexities of the 
robot players are decoupled from the robot class itself 
which allows for multiple team members to implement the 
robot scripts at once. The robot behaviors were 
encapsulated into their own classes and each one extended 
the LogicFor class to implement specific soccer behaviors. 
The LogicFor functionality was uniformly controlled by 
the FSMWrapper class, which handled the lifetime state of 
the Threads used to execute the instructions of the 
behaviors. All of the components were unified under one 
centralized class called the TeamBuilder. This class 
provides the entry point to the program for the host 
computer and delegates the commands to start behavior 
threads on the physical or simulated robots via network 
communication methods implemented by the NAOqi 
framework. 
 

 

V. BEHAVIOR EVOLUTION 

The behaviors in the project built upon one another.  
Meaning that simpler ones were created and from them 
evolved more complex orderings.  More importantly the 
simpler behaviors became building blocks to be 
implemented in fuller working modules.  The following 
section describes the simple chasing module and then the 
implementation of a full working offensive behavior.  
Both of these utilize the framework described in section 4. 



   From the very beginning it was clear that giving a robot 
the same method call with no adjustment would result in 
unsatisfactory results.  The API includes more than 10 
methods just for walking.  These methods take in 
parameters as simple as the desired X and Y coordinate, as 
well as more complex lists of parameters to define all joint 
control.  After testing these methods we noticed that 
making several calls to moveTo()-a method we used to 
walk forward-resulted in the robot veering to a side from 
time to time.  The robot would also often lose balance and 
tip over.  The method did include a theta value which 
should control the curvature of the walk in the direction 
desired, as seen in the figure below.  

 
The robot views X as the forward axis and any movement 
sideways as on the Y axis. This angular change should be 
accounted for during every cycle of movement since slight 
differences will occur.  
   Another element added to every walk was arm-swing. 
The robots were naturally very stiff unless otherwise 
instructed.  This caused the torso to not move when the 
lower body did thus causing the robot to quite often tip to 
the side.  Although the behavior trees do account for the 
occurrence of falls it does slow down performance 
significantly to have to get up often. 
   The code below shows the fully parameterized version 
of the method call to walk along with a chart to illustrate 
what each value corresponds to. 

 
 
 
 
If any parameter is left blank it takes the default value. 
 The values set for this walk almost eliminated any tipping 
over and resulted in a smoother walk while tracking.  The 
walk was also slowed down to avoid any difficulties. 
   Having a method call that provides better results was not 
enough however.  To make the walk more optimal 
changes must be made every cycle to slightly adjust 
trajectory.  To do this the theta must have a relationship to 
whatever object is being tacked in the field of vision.  To 
illustrate this we will use the ball.  The view below shows 
the robots head camera with the ball in view 

 
 
The resolution of the image is 640 by 480 thus the middle 
line of the image is 320.  If the returned coordinates of the 



ball are below 320 then the value that will be theta is 
calculated from the bottom of the frame clockwise to the 
center, otherwise theta will correspond to the angle created 
from the bottom of the frame counter-clockwise to the 
center line.  Wherever the ball is results in where the angle 
stops.  This value is then negated if the robot must move 
clockwise and positive otherwise.  The angle is converted 
to radians. This value is then scaled down to twenty 
percent and passed in as the theta value.  The reason for 
the scaling is to not cause the robot to move too severely 
resulting in a smoother recalculation of the trajectory.   

 
 
This algorithm produced the most desired results.  The 
cycling of the walk trajectory must also take into account 
the wobble of the frame.  At any point the returned image 
might be tilted one way or another.  This is also a reason 
for scaling down the theta to a fraction of its true value.  In 
earlier implementations when the parameter was the true 
theta- with a ceiling of 1rad and a floor of -1 rad-the robot 
would start doing very sharp turns to correct the path, this 
would cause the ball to be lost as quickly as it was 
located. 
 
   The goals for having an all-around working offender 
was to have a behavior that would not interfere with other 
players’ behavior and also not need assistance to carry out 
its own tasks.  The logic behind the offensive player is 
based on the principle of having a way to get out of any 
un-ideal situation, in other words not getting stuck.  The 
complexity of the offender should also be mature but 
simple.  There should be no point in the code where the 
robot cannot get back out to an earlier level due to 
contradicting decision parameters.  Therefore every level 
must operate smoothly to avoid any sort of cyclical 
dependencies.  That being said the maturity should not 
only resolve trivial cases thrown at the robot but rather be 
dynamic and operate in a multitude of scenarios. 
 
The figure below illustrates the logic given to the 
offender.  Above all else the player is concerned with 

having the ball in view, and then having access to it.  It is 
important to note this applies to the robot when it is in a 
standing position.  The tree does account for falls every 
cycle. 

 
 
Starting from the top of the tree the robot must circle until 
it finds the ball. This rotation should only take seconds for 
a full scan of the field.  If at any cycle the ball becomes 
present in the head or the torso camera the rotation is 
killed and the ball is either approached or the goal is 
located.  For the former scenario the algorithm described 
in the walk section is used, with a new theta calculated 
each time.  The robot will in this case be facing the ball 
head-on as it disappears from the upper frame into the 
lower one.   During testing it was clear that if the ball was 
close enough to be in the lower frame the robot should 
start positioning to score or pass.  This gives a metric as to 
how far away the robot is from the ball and the threshold 
is always constant.   
   With the ball in the lower frame the robot would start to 
position themselves to align with the goal.  This motion 
keeps the ball in front of the robot until the goal comes 
into view.  The goal must be within a range of the center 
of the screen.  This range is quite wide since the goal itself 
accepts a spectrum of kicks.  Another reason for not 
having a small window is so that the robot will carry out 
an action without having to re-position due to a slight 
miscalculation.  A percentage of error is to be expected for 
the kick to the goal.  When testing with smaller range a 
robot make take hundreds of cycles before it is confident 
enough to kick and score a goal.  Although this previous 
method provides a more accurate end result, the chance of 
interception or other ball loss becomes increasingly 
higher. 
   After alignment the player will do a final approach to 
the ball.  This approach utilizes the same walk algorithm 
as before but uses a slower walk speed to keep the robot 
steadier.  Specifically the speed is 26% of the normal 
speed.  During every cycle at this point the robot makes 
sure that the goal is still also in an acceptable range and 



then moves forward.  This being so far down the behavior 
tree makes the behavior the most precise. 
   At the very end of this behavior tree the robot should be 
at the ball, ready to kick.  If the ball coordinate returned is 
more than 460(of a total of 480) pixels in the Y directions 
from the top, then the robot is close enough to attempt a 
kick.  This takes into account another aspect of the cycles. 
 More than likely the robot will finish the last step from 
the previous cycle in which they were already moving, 
bringing the ball even closer to the foot of the player.  The 
code calls a type of stop-movement that lets the previous 
call return to a steady state.  This allows for the player to 
be stable by the time the next call is made.  Otherwise the 
player may be on one foot, tilted, or even having fallen. 
After the kick the robot will once again chase the ball and 
complete the action again.  There is also a chance that the 
ball gets just close enough, but also out of range, in this 
case the robot will of course start to look for it again. 
   This behavior does not account for any saving of world 
states.  For example if the robot does loses sight of the ball 
in the right edge of the frame he will still rotate left-as is 
default.  By implementing a behavior tree rather than a 
finite state machine (FSM) the robot would not have a 
decent way of keeping track of other players and objects 
outside of the frame of vision. 

VII. CONCLUSION 

The project delivered several working behaviors that 
encompassed a complete team.  This code and the 
framework that goes alongside of it is available to Dr. 
Sukthankar as teaching material for future robotics 
classes, as well as any graduate level team development.  
With that is information regarding  

ACKNOWLEDGEMENT 

The authors wish to acknowledge Dr. Gita Sukthankar, 
Dr. Mark Heinrich and Astrid Jackson for their guidance 
and support of the project. 

REFERENCES 

[1]  Stone, Peter, Manuela Veloso, and Patrick Riley. "The 
CMUnited-98 champion simulator team." RoboCup-98: 
Robot soccer world cup II. Springer Berlin Heidelberg, 
1999. 61-76. 
 
[2]   Takeshita, Kazutaka, et al. Technical report of team 
araibo. Technical report, ARAIBO, 2007. 
 
[3] Gamma, Erich, et al. Design patterns: elements of 
reusable object-oriented software. Pearson Education, 
1994. 
  
 

 


