Fine-Grained Interconnect Synthesis

Alex Rodionov, David Biancolin, Jonathan Rose
Department of Electrical & Computer Engineering
University of Toronto

Making Hardware Design Easier

B [nterconnect: important part of hardware design
B Allows functional units to communicate

ready

data

B Observation: it’s difficult to design properly

» Our focus: automatic design and synthesis of

interconnect ’

Existing Tools: Coarse-Grained Design

B Commercial: Altera Qsys, Xilinx IPI
B Academic: Networks-on-Chip (ex: CONNECT)

B Generally connect big things: processors and IP blocks

O—

B [nterfaces: memory-mapped, streaming
® Variable-latency-tolerant = “plug and play”
B What about inside IP blocks? ?

Fine-Grained Interconnect Design

B smaller functional modules

B coordinate data transfer more closely
— depend on specific interconnect latencies
— Area is at a premium in fine-grained systems

B unicast, but also broadcast/multicast
» Existing tools aren’t good at this

Unicast:

——
——

Multicast:

\ Broadcast:

GENIE: Generic Interconnect Engine

B Grand vision wants both: Fine & Coarse Grain

B Input:
— functional modules
— logical connectivity
— performance specifications

B Output:

— instantiated functional modules
— Fine or coarse interconnect optimized to meet constraints

B Focus of this work: automatic generation of fine-grained
iInterconnect and some optimization

(5)

Inputs/Outputs

|

Component Implementations Inputs (Lua script code):
= Written by designer lua = Component definitions
SV = Untouched/unreferenced) = Component instantiations
= Logical E2E connectivity
= Topology choice
Primitives Library
w| ™
Outputs (SystemVerilog):
= Components
SV . = |nterconnect
—

(6) %

nnnnn

GENIE Flow: Input Specification

foo

bar

(7)

GENIE Flow: Input Specification

System

Linkpoints
Instances

(8)

GENIE Flow: bygthakComegéctevdgnnect

System

B1

A1

N\

B2

C1

Links{lagidal)

)

GENIE Flow: Design Space Exploration

System

() B1

A1

©
()
(&)

() B2

C1

Optimization Features

(11)

Removing Unnecessary Arbitration

AL
4}
B-

B Designer: “A and B will never try to send to C
simultaneously”

B No competition - No arbitration - Simpler circuit

data in [N] data out data in [N]
ata out

valid in [N] /(> o A
round-robin valid out valid in [N] (1-hot)

arbiter E) -/
Merge Node Simplified Merge Node

data ou£

valid out

Smart Clock Domain Crossing

B Applications can use more than one clock domain
— Need to insert clock crossers where domains meet
— Typically FIFOs

B There can be many choices of where to put the crossers
— Some choices more expensive than others
— Cost = f(#crossers, data width)

(clk B)

(clk A)

» Optimization problem: given any topology, where are the
crossing points?

Latency Introspection

B Recall: Fine-grained design scenario

B Area/complexity at a premium: don’'t want overhead of
flow control or latency insensitivity

B Component must know exact interconnect latency

» »
- >

> "EEm >

\ J

Results

(15)

Measurement and Comparison

B Recall Goals:
— Easy to design hardware
— Produce interconnect with good performance, low area

B Will Compare GENIE with:
1. Manual hand-optimized RTL
 Human engineer
2. Altera Qsys
« Commercial Coarse-Grain System Interconnect Tool

Metrics

1. Ease-of-use: source code line counts
— Manual: all Verilog

— Qsys: Verilog for functional modules + TCL for spec
— GENIE: Verilog for functional modules + Lua for spec

2. Area

3. Clock Frequency

(17)

Design Example

B Application: Blocked Matrix LU Decomposition
— Given: matrix A
— Find: lower/upper-triangular matrices L,U, s.t. LU=A

B Parallelized among N Compute Elements (CE)
B Fine-grained system: CE interior

| |
MEM

[

CE Control
N-1 Node

CE Architecture

Clock B Clock A

4 : ~
"\ read req
write — o Caches
read resp LeftO Cur0
< :
_|read res Marshaller L cog Top
write Left1 curl
A ' B d TOLO T COLO
| \évglrfg gce)?\g cin e resh ey t:1 L1
' do A A
| write . read req write
do column[do block
o...done Control Pipeline
<lread reg done)

B 5 caches: 2x(2 double-buffered) + 1

B Data Marshaller: fills/empties caches

B Compute pipeline: operates on data in caches
B Control block

Connections To and From Caches

rd req

Read Paths

Caches

rd resp

Wr req

Write Paths

= Clock A
= Clock B

Connections To and From Caches

Caches
rd req rd resp

pipeline assumes :
fixed rd latency >

Read Paths _
clock domain mutually-
crossings _\ / exclusive access

Wr req = Clock A

multicast = Clock B
Write Paths B

(21)

Experimental Setup

B Create three variants of the CE design
1. Manual
2. Altera Qsys
» Avalon-MM for cache links
* Avalon-ST for other, misc. point-to-point links
3. GENIE

B Compile with Quartus 14.0 for Stratix V (6 seeds)

B Measure
— Source code line counts
— Area
— Clock frequency

Results: Lines of Code

2500 M Functional ™ Interconnect

2352

o 2000

=

o 1500

(Vo)

©

«» 1000

Q

k=

= 500

0
Manual GENIE Qsys
_ Total| Functional| _Interconnect

GENIE vs. Manual -33% -2.6% -72%

GENIE vs. Qsys -15% -8.6% -34%

(23)

Results: Clock Frequencies

600
500

Fmax (MHz)

- N w &

O © © O

o © & o O

® Manual

W GENIE Qsys

406 400

Clock A Clock B

Clock A Clock B
GENIE vs. Manual -1% +9%
GENIE vs. Qsys +25% +27%

(24)

Results: Area Usage

® Manual m GENIE Qsys

10000

38000 — —

6000 -

ALM

4000 -

2000 -

O _

GENIE vs. Manual +3.7% +0%
GENIE vs. Qsys -17% -57%

(25)

Results: Observations

> sync_fif

2 -_cur_t 2 g cmd_demux_0 E,,,,,,,,,,,,,,,,J | cur0_s_wr_ag cur0_s_wr_tra

2c.wr, Iator + router_001 01 o cmd_mux » ! » nelat 0.s_wr
| ync_fifo_001
1 ag 1 t
| 1
" | L —»f =P
i pipe_wr_cur_tr pipe_wr_cur_a I cmd_mux_001 t lat
EES=cL anslator |~ Tgent |) router | . 741
9 | cmd_demux /

B RAM block usage: Clock Crossings
— Qsys inserts too many crossings -2 High RAM usage
— GENIE intelligently inserts crossings to reduce area

(26)

Qualitative Ease-of-Use Advantage

Recall: Pipeline’s cache reads require known fixed latency

B With Qsys

— had to determine interconnect’s contribution by simulation and
then modify Verilog source code by hand

m With GENIE

— Used latency introspection to tell pipeline what the latencies are

Conclusions

1. For our (single, representative) fine-grained example:
— Similar to hand-made: +4% area
* 72% lines of interconnect code
— Better than Qsys: 25% faster 17% smaller
» 34% fewer lines of interconnect code

2. Qualitative design flow improvements (fixed latency)

Future Work

1. Move towards Grand Vision
— Explore/exploit topology communication ability
— Allow performance spec
— Automatic topology based on communication patterns

2. Evaluate full LU system, and others (coarse-grained),
rapid design-space exploration of different topologies

3. Build higher-level memory-mapped protocols on top of
existing GENIE infrastructure

Software Release

B Available at:
http://www.eecq.toronto.edu/~jayar/software/GENIE

(30)

GenlE Flow

current
Performance

Func. Mod. Logical Predefined/Custom
(verilog) Connectivity Topology

Constraints

Genie Phases

Instantiated Components
+ Full Design of
Interconnect
(verilog)

Some Details on the Input

® Data, flow control, and “where to go/where it came from”

B Signals:
— data: zero or more (tagged), arbitrary width
— valid
— ready
— sop (start of packet)
— eop (end of packet)
— Ip_id (linkpoint ID, selects/informs linkpoint on interface)

B Not all need to be present

Example Input: Component Spec (Lua)

component('A', 'ver_module name')

clock sink('InClk', 'in_clk sig name')

interface('mysend’', 'rs', ‘'out', "InClk')
signal('valid', 'valid sig name')
signal('ready’, 'ready sig name')
signal('data', 'data_sig name x', 8, 'x')
signal('data', 'data_sig name y', 13, 'y')
signal('lp _id', 'lpid sig name', 2)
linkpoint('P', "2'bo0")
linkpoint('Q', "2'bo1")
linkpoint('R', "2'ble")

A

(33)

Interconnect Architecture

B Split/Merge (Y. Huan et al., FPT 2012)
B Lightweight, composable switching primitives
B Split: one to many

O,

B Merge: many to one

(w)

B Misc. conversion/utility blocks

(34)

Split Node

payload is
broadcast @
payload in \ payload out [Nl
valid in valid out [N]
.+ |flow ID -
flow_id in
= lookup efagﬁr >
or
Leady out /
r—ready in [N]

FlowlD - which
output(s!) to send to

state tracking

(35)

Optimization: Smart Clock Domain X-ing

Create graph: color = clock domain
Edge weight = link width (bits)

Find min-weight cut = crossing points
Assign domains, insert clock converters

N \/‘y.mk A
Clk B A
16 9
16

w0

21

s W=

Latency Introspection

> H AN >
/-‘ \ Y J
L X=2 ' LX+2+LY
L Y=1

T egme

Y
2 2 1

