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In a nutshell, this is about...
● More accurate on-chip timing measurements

– By inserting instruments precisely
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In a nutshell, this is about...
● More accurate on-chip timing measurements

– By inserting instruments precisely

– Most CAD focusses on minimising (or maximising)
● We place and route instruments with bounded delay

● Key result: Insertion within 200ps avg. error

In particular, 
we want to 
bound this 
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Introduction

● Why do we care about on-chip timing?
– Because of variation, vendors forced to 

provision for all possible scenarios

– Fmax is worst-case path, at worst-case 
timing corner

– Can we safely operate better than worst-case?
● “Why operate at the worst corner if silicon is rarely 

that slow, and if critical-path is rarely (never) exercised?”
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Main Contributions

● Proposal for inserting shadow registers 
post place-and-route, using spare resources
– Does not disrupt original circuit timing

● Modification to Dijkstra's algorithm for 
minimum cost (delay) bounds

● Experimental evaluation on commercial 
architecture
– Achieve average bound error of 200ps
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Introduction

● How can on-chip timing instruments help?
– Failure prediction

● “Is my FPGA showing signs of being close to failing?”

– Error detection
● “Safe” overclocking (e.g. Razor)

– Slack measurement
● “How much leeway do I have before failing?”

– All possible using shadow registers
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Background: Shadow Registers
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Background: Shadow Registers

Duplicates a critical path endpoint, but with a 
phase-shifted clock
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Background: Shadow Registers

Duplicates a critical path endpoint, but with a 
phase-shifted clock
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Background: Shadow Registers

Duplicates a critical path endpoint, but with a 
phase-shifted clock
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Challenge: Consistent Skew
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Challenge: Consistent Skew
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Challenge: Consistent Skew
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Existing Work

● Existing CAD tools already do bounded routing
– Minimum delay: Hold time minus Clock-to-Q

– Maximum delay: Clock period minus Setup time

– Algorithms target a relatively big landing window:
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 Challenge: Consistent Skew

● We desire a very narrow window (ideally, 1ps)
– Hard problem, but aided by two characteristics:

● Freedom to place shadow register on any spare site
● Freedom to route to any site using any spare resources

– Solved simultaneously by routing to all sites
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Problem

● FPGA routing is a case of graph search
– Finding shortest path has long been solved: Dijkstra
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Problem

● FPGA routing is a case of graph search
– Finding shortest path has long been solved: Dijkstra
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Problem

● FPGA routing is a case of graph search
– Finding shortest path has long been solved: Dijkstra

– But how can we find not-so-short paths?
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Proposal: Dijkstra with Rollback

● Summary: if path found is too short, undo 
search and rerun as if a prior edge did not exist
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Proposal: Dijkstra with Rollback

● Summary: if path found is too short, undo 
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Proposal: Dijkstra with Rollback

● Summary: if path found is too short, undo 
search and rerun as if a prior edge did not exist
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Proposal: Dijkstra with Rollback

● Summary: if path found is too short, undo 
search and rerun as if a prior edge did not exist
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Proposal: Dijkstra with Rollback

● Summary: if path found is too short, undo 
search and rerun as if a prior edge did not exist

2. Repair priority queue
(fix costs of those nodes
that would have been
visited by another edge)
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Proposal: Dijkstra with Rollback

● Summary: if path found is too short, undo 
search and rerun as if a prior edge did not exist
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Proposal: Dijkstra with Rollback

● Big picture: disjoint paths from each s to any t
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Proposal: Dijkstra with Rollback

● Not dissimilar to Yen's K-shortest path algorithm
– Guaranteed to find the shortest, and K-1 next 

shortest, paths

– Essence: remove edge(s) of prior shortest paths, 
restart Dijkstra, then replace edge(s) and retry

– Our heuristic: 
● Removes each edge permanently
● Repair and continue, instead of restarting Dijkstra
● No guarantee of finding next shortest, but much faster
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Proposal: Dijkstra with Rollback

● We propose three different algorithms:

For each net

Route to
closest site

Meets min
bound? YesNo

For each net

Route to
any site

Meets min
bound? YesNo

For all nets

Route to
any site

Meets min
bound? YesNo

One-Closest One-All All-All
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Proposal: Dijkstra with Rollback

● We propose three different algorithms:

Full details are in our paper!

Meets min
bound? YesNo

Meets min
bound? YesNo

Meets min
bound? YesNo

One-Closest One-All All-All

For each net

Route to
closest site

For each net

Route to
any site

For all nets

Route to
any site
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Experimental Flow

● Evaluated on Xilinx, but applicable to others
– Place and route using ISE, apply our shadow 

register tool, then re-analyse using vendor STA

● Experimented on three large benchmarks:
– LEON3: an 8-core system-on-chip

– AES-x3: a chain of 3 encoders then 3 decoders

– JPEG-x2: two parallel instances of CHStone JPEG 
synthesised using Vivado HLS

– All occupying ~90% of mid-range Virtex6
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Results – LEON3

● Critical endpoints with <10% slack (1424)
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Results – LEON3
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● Critical endpoints with <10% slack (1424)
– With 1417 shadow registers at >1ns skew target
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Results – LEON3
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Results – LEON3

● Average skew error of 200ps (from Xilinx STA)
– Due to incomplete timing information

– Based on our delay model, we achieve <1ps error!
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Results – LEON3

● Average skew error of 200ps (from Xilinx STA)
– Due to incomplete timing information

– Based on our delay model, we achieve <1ps error!

– Why so good?
● Many spare registers (total: 300K, used: 62K, spare: 78K)
● Millions of wires (nodes), 10s of millions of switches (edges)
● … compounding with up to 7 ways (with differing delays) 

to get to each:

6LUT
5LUT5LUT FF

FF
A1:A6

AX
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More in the paper...

● Experimental results for:
– Three different algorithms on three benchmarks

– Different number of steps to roll back

– Different values for skew target

● Analysis on why not all nets could be shadowed
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More in the paper...

● Experimental results for:
– Three different algorithms on three benchmarks

– Different number of steps to roll back

– Different values for skew target

● Analysis on why not all nets could be shadowed

● Future work: insert downstream infrastructure
– Comparators, counters, recovery logic, etc.

– Opportunities: latency-insensitive, reduction operation
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Conclusion

● Shadow registers can help detect, measure and 
react to physical imperfections
– But need to be inserted precisely: consistent skew
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Conclusion

● Shadow registers can help detect, measure and 
react to physical imperfections
– But need to be inserted precisely: consistent skew

● Our proposal: insert post place and route, 
with a minimum delay bound
– Using just leftover resources  no timing impact⇒
– Bounding achieved by Dijkstra with Rollback

● Key result: achieve 200ps average skew error
– With more timing information, may do even better!
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Backup
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Introduction

● Shadow register clock phase φ
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Introduction

● Shadow register clock phase φ
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Case for Post Place and Route

● We insert shadow instruments entirely post P&R
– By locking down all parts of existing user circuit ...

– … and using spare, leftover, resources only

– This preserves timing of original user circuit
● Barring one extra switch load: ~3ps
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Case for Post Place and Route
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Case for Post Place and Route
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Case for Post Place and Route

● For LEON3, shadowing top 10% critical nets:
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 ⇒ Of what was critical initially, 
only ~50% remains critical after recompiling!
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Case for Post Place and Route

● For LEON3, shadowing top 10% critical nets:
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Dijkstra with Rollback Profile
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Yen's K-shortest Profile
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Yen's K-shortest Profile
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Benchmark Summary
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Experimental Flow

● Evaluated on Xilinx, but applicable to any vendor
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Experimental Flow

● Evaluated on Xilinx, but applicable to any vendor
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Experimental Results

● Unbounded (place closest reg, Xilinx PAR):
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Experimental Results

● >1ns on LEON3:
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Experimental Results

● >1ns on LEON3:
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Experimental Results

● >1ns on AES-x3:
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Experimental Results

● >1ns on JPEG-x2:
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Experimental Results

● Reasons behind failure

– i) and ii) require user circuit to be ripped up

– Only iii) could be solved by better algorithms


