Delay-Bounded Routing
for Shadow Registers

Eddie Hung, Josh Levine, Ed Stott,
George Constantinides, Wayne Luk

{e.hung, josh.levine, ed.stott,
g.constantinides,w.luk}@ic.ac.uk

Department of Computing
Department of Electrical and Electronic Engineering
Imperial College London, UK

FPGA15 :: 23 Feb '15



In a nutshell, this Is about...

 More accurate on-chip timing measurements
- By Inserting instruments precisely
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In a nutshell, this Is about...

 More accurate on-chip timing measurements

- By Inserting instruments precisely
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- Most CAD focusses on minimising (or maximising)
« \We place and route instruments with bounded delay

* Key result: Insertion within 200ps avg. error
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Introduction

 Why do we care about on-chip timing?

- Because of variation, vendors forced to
provision for all possible scenarios

- Fmax Is worst-case path, at worst-case
timing corner

- Can we safely operate better than worst-case?

* “Why operate at the worst corner if silicon is rarely
that slow, and if critical-path is rarely (never) exercised?”



Main Contributions

* Proposal for inserting shadow registers
post place-and-route, using spare resources

— Does not disrupt original circuit timing

* Modification to Dijkstra's algorithm for
minimum cost (delay) bounds

* Experimental evaluation on commercial
architecture

- Achieve average bound error of 200ps



Introduction

 How can on-chip timing instruments help?

- Failure prediction
* “Is my FPGA showing signs of being close to failing?”

— Error detection
« “Safe” overclocking (e.g. Razor)

- Slack measurement
* “How much leeway do | have before failing?”

- All possible using shadow registers



Background: Shadow Registers
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Background: Shadow Registers
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Background: Shadow Registers

Critical Path

Ny aand
TN
User | / Logic& User

Reg e Routing \1/ Reg »
. A
clk

LShad. —pp Focus:

k Reg controlling
. this delay

L
llllllll

Duplicates a critical path endpoint, but with a
phase-shifted clock

13



Challenge: Consistent Skew
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Challenge: Consistent Skew
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Existing Work

» Existing CAD tools already do bounded routing

- Minimum delay: Hold time minus Clock-to-Q

- Maximum delay: Clock period minus Setup time

- Algorithms target a relatively big landing window:
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Challenge: Consistent Skew

* We desire a very narrow window (ideally, 1ps)

clk

- Hard problem, but aided by two characteristics:

* Freedom to place shadow register on any spare site
* Freedom to route to any site using any spare resources

- Solved simultaneously by routing to all sites
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Problem

« FPGA routing Is a case of graph search
- Finding shortest path has long been solved: Dijkstra
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Problem

« FPGA routing Is a case of graph search
- Finding shortest path has long been solved: Dijkstra
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Problem

« FPGA routing Is a case of graph search
- Finding shortest path has long been solved: Dijkstra
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Problem

« FPGA routing Is a case of graph search
- Finding shortest path has long been solved: Dijkstra
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Problem

« FPGA routing Is a case of graph search
- Finding shortest path has long been solved: Dijkstra

- But how can we find not-so-short paths?
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Proposal: Dijkstra with Rollback

« Summary: If path found is too short, undo
search and rerun as if a prior edge did not exist

@ Visited Vertex A @
(@) Queued Vertex

(u) Unseen Vertex
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Proposal: Dijkstra with Rollback

« Summary: If path found is too short, undo
search and rerun as if a prior edge did not exist

Heuristic decides
to erase this edge y@

@ Visited Vertex A @
(@) Queued Vertex

(u) Unseen Vertex
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Proposal: Dijkstra with Rollback

« Summary: If path found is too short, undo
search and rerun as if a prior edge did not exist

1. Invalidate all children

of this edge /®\:@

(V) Visited Vertex

(@) Queued Vertex
(u) Unseen Vertex
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Proposal: Dijkstra with Rollback

« Summary: If path found is too short, undo
search and rerun as if a prior edge did not exist

1. Invalidate all children
of this edge

(v) Visited Vertex w ()
(@) Queued Vertex
(u) Unseen Vertex
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Proposal: Dijkstra with Rollback

« Summary: If path found is too short, undo
search and rerun as if a prior edge did not exist

(v) Visited Vertex . Y

«(" 2. Repair priority queue
(fix costs of those nodes
that would have been
visited by another edge) *

(@) Queued Vertex
(u) Unseen Vertex



Proposal: Dijkstra with Rollback

« Summary: If path found is too short, undo
search and rerun as if a prior edge did not exist

(V) Visited Vertex

(@ Queued Vertex Cg Old Cost = 4
(u) Unseen Vertex New Cost = 6
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Proposal: Dijkstra with Rollback

* Big picture: disjoint paths from each s to any t

Millions of %
hodes )
> and edges | t

1000s of 10s of thousands
endpoints of spare registers
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Proposal: Dijkstra with Rollback

* Not dissimilar to Yen's K-shortest path algorithm

- Guaranteed to find the shortest, and K-1 next
shortest, paths

- Essence: remove edge(s) of prior shortest paths,
restart Dijkstra, then replace edge(s) and retry

— Qur heuristic:

 Removes each edge permanently
* Repair and continue, instead of restarting Dijkstra
* No guarantee of finding next shortest, but much faster
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Proposal: Dijkstra with Rollback

* We propose three different algorithms:

For each net

-

v

Route to
closest site

!

No

Meets min
bound?

Yes

One-Closest

For each net For all nets <«
- Route_ to - Route_ to
any site any site
Meets min Meets min
NO bound? Yes NO bound? Yes
One-All All-All
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Proposal: Dijkstra with Rollback

* We propose three different algorithms:

For each net

-

v

Route to
closest site

v

No

Meets min
bound?

Yes

One-Closest

For each net < For all nets -
! X!
- Route_ to - Route_ to
any site any site
Meets min Meets min
NO bound? Yes NO bound? Yes
One-All All-All

Full detalls are in our paper!
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Experimental Flow

« Evaluated on Xilinx, but applicable to others

- Place and route using ISE, apply our shadow
register tool, then re-analyse using vendor STA

* Experimented on three large benchmarks:

- LEONS: an 8-core system-on-chip
- AES-x3: a chain of 3 encoders then 3 decoders

- JPEG-x2: two parallel instances of CHStone JPEG
synthesised using Vivado HLS

— All occupying ~90% of mid-range Virtex6
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Results — LEON3
 Critical endpoints with <10% slack (1424)
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Delay (ns)

Results — LEONS3

 Critical endpoints with <109% slack (1424)
- With 1417 shadow registers at >1ns skew target
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Delay (ns)

Skew (ns)

Results — LEONS3

 Critical endpoints with <109% slack (1424)
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Delay (ns)

Skew (ns)

Results — LEONS3

 Critical endpoints with <109% slack (1424)
- With 1417 shadow registers at >1ns skew target
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Results — LEONS3

* Average skew error of 200ps (from Xilinx STA)

- Due to iIncomplete timing information
- Based on our delay model, we achieve <1ps error!
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Results — LEONS3

* Average skew error of 200ps (from Xilinx STA)

- Due to iIncomplete timing information
- Based on our delay model, we achieve <1ps error!

- Why so good?
e Many spare registers (total: 300K, used: 62K, spare: 78K)

« Millions of wires (nodes), 10s of millions of switches (edges)

e ... compounding with up to 7 ways (with differing delays)
to get to each:

Al:A6
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More In the paper...

* Experimental results for:

- Three different algorithms on three benchmarks
- Different number of steps to roll back
- Different values for skew target

* Analysis on why not all nets could be shadowed
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More In the paper...

* Experimental results for:

- Three different algorithms on three benchmarks
- Different number of steps to roll back
- Different values for skew target

* Analysis on why not all nets could be shadowed

e Future work: insert downstream infrastructure

- Comparators, counters, recovery logic, etc.
- Opportunities: latency-insensitive, reduction operation
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Conclusion

« Shadow registers can help detect, measure and
react to physical imperfections

- But need to be inserted precisely: consistent skew
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Conclusion

« Shadow registers can help detect, measure and
react to physical imperfections

- But need to be inserted precisely: consistent skew

* Our proposal: insert post place and route,
with a minimum delay bound

- Using just leftover resources = no timing impact
- Bounding achieved by Dijkstra with Rollback

» Key result: achieve 200ps average skew error

- With more timing information, may do even better!
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Backup
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Introduction

« Shadow register clock phase @
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Introduction
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Introduction

« Shadow register clock phase @
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Case for Post Place and Route

* We insert shadow instruments entirely post P&R

- By locking down all parts of existing user circuit ...
- ... and using spare, leftover, resources only

— This preserves timing of original user circuit
« Barring one extra switch load: ~3ps
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Case for Post Place and Route
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Case for Post Place and Route
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Case for Post Place and Route
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Case for Post Place and Route

 For LEONS3, shadowing top 10% critical nets:

1500

1000

M Total
M Shadowed

Critical Signals

Baseline Source Post P&R

Instrument critical nets at
source-level, then recomplle

= Of what was critical initially,
only ~50% remains critical after recompiling! >



Case for Post Place and Route

For LEONS3, shadowing top 10% critical nets:

1500

1000

M Total

500 M Shadowed

Critical Signals

0
Baseline Source Post P&R

Instrument critical nets
post place and route,
using spare resources only =



Skew

Dijkstra with Rollback Profile
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Yen's K-shortest Profile
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Skew

Yen's K-shortest Profile
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Benchmark Summary

xcbv1x240t

LEON3 AES-x3 JPEG-x2 capacity

Slices 35217 32809 32733 37680
LUTs 95766 107685 91741 150720
Registers 60562 32025 125642 301440
RAMs 688 - 124 832
DSPs 32 - 172 768
Tcrit (ns) 13.329 6.055 13.936 -
Wirelength 2.1M 1.1M 1.6M 6.3M
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Experimental Flow

» Evaluated on Xilinx, but applicable to any vendor

Xilinx ISE

xst — Synthesis

map — Pack & Place

par — Route

trce — STA

.ncd
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Experimental Flow

« Evaluated on Xilinx, but applicable to any vendor
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Experimental Flow

« Evaluated on Xilinx, but applicable to any vendor
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Experimental Results

* Unbounded (place closest reg, Xilinx PAR):
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Experimental Results

e >1ns on LEONS:

Shadow Method

Base | Source Post P&R

(this work)

Slice util. 93.5% | 88.9% 94.5%
LUT util. 63.5% | 56.6% 64.0%
Register util. 20.1% | 20.6% 20.6%
Tcrit (ns) 13.329 | 13.331 13.333
Num. critical nets 1436 1222 1436
Common to Base 100% | 41.0% 100%
Shad. coverage - | 41.0% 98.7%
Pack & Place time (s) 1875 1974 -
Routing runtime (s) 1281 1241 183

(a) LEONS3 (all critical nets within 10% of Tcrit)
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Experimental Results

e >1ns on LEONS:

Unbounded Delay-bounded
(ns) One-Closest | One-Closest All-All
Nets shad. 1424 1051 1418
Max. |Err| 1.942 1.779 0.928
Mean |Err]| 0.867 0.329 0.249
StdDev Err 0.367 0.187 0.107
Range Err 2.771 1.744 0.956

(a) From Xilinx trce STA

Unbounded Delaytbounded
(ns) One-Closest | One-Closest [One-All  JAII-All
Max. [Err| - 1.636 0.114 0.114
Mean |Err| - 0.089 | <0.001 0.001
StdDev Err - 0.165 0.004 0.004
Range Err - 1.636 0.114 0.114

(c) From our delay model, omitting clock skew.



Experimental Results

e >1ns on AES-x3:

Shadow Method

Base | Source Post P& R

(this work)

Slice util. 87.0% | 86.9% 89.8%
LUT util. 71.4% | T1.7% 72.7%
Register util. 10.6% | 12.4% 12.3%
Tcrit (ns) 6.055 5.865 6.055
Num. critical nets 5362 7400 5362
Common to Base 100% | 53.1% 100%
Shad. coverage - | 53.1% 94.2%
Pack & Place time (s) 1014 1408 -
Routing runtime (s) 479 486 224

(b) AES-x3 (within 40% of Tcrit)
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Experimental Results

e >1ns on JPEG-X2:

Shadow Method
Base | Source Post P& R
(this work)
Slice util. 86.8% | 88.8% 90.1%
LUT util. 60.9% | 61.3% 61.8%
Register util. 11.7% | 42.7% 42.6%
Tcrit (ns) 13.936 | 15.611 13.939
Num. critical nets 3290 3335 3295
Common to Base 100% | 46.7% 99.8%
Shad. coverage - | 46.7% 84.0%
Pack & Place time (s) 871 911 -
Routing runtime (s) 748 3658 276

(c) JPEG-x2 (within 40% of Tcrit)
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Experimental Results

e Reasons behind failure

LEON3 AES-x3 JPEG-x2

Num. critical nets 1436 H362 3290
Nets shadowed 1417 5049 2769
1) Blocked in LE 10 313 468
ii) Blocked out LE 4 - 23
iii) Path search failed 5 - 30

— 1) and 1i) require user circuit to be ripped up
— Only 1ii) could be solved by better algorithms
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