Delay-Bounded Routing
for Shadow Registers

Eddie Hung, Josh Levine, Ed Stott,
George Constantinides, Wayne Luk

{e.hung, josh.levine, ed.stott,
g.constantinides,w.luk}@ic.ac.uk

Department of Computing
Department of Electrical and Electronic Engineering
Imperial College London, UK

FPGA15 :: 23 Feb '15

In a nutshell, this Is about...

 More accurate on-chip timing measurements
- By Inserting instruments precisely

A~

/ 7777\\/\ \\‘
User _~ Logic& User
Reg ~ Routing " ~ Reg
N \\ — \\V/,//“\ - N\

clk

In a nutshell, this Is about...

 More accurate on-chip timing measurements
- By Inserting instruments precisely

A~

/ 777\\/\ \\
User |~ Logic& ____ | User
Reg ~ Routing ~ Reg
A ~\ ,7,;\7//* — A

clk

Instrument

In a nutshell, this Is about...

 More accurate on-chip timing measurements

- By Inserting instruments precisely

clk

e

User _ Logic&
Reg Routing \1_/
VAN \""\\ — \\777/,//“\ -

Us

Instrument

In particular,
we want to
bound this
routing delay

In a nutshell, this Is about...

 More accurate on-chip timing measurements

- By Inserting instruments precisely

Ty In parti Cu Iar,

et L we want to

Cr O e bound this

- - Logic& L1 | User .
) f— = Rouing T Reg routing delay
gl EaWGPRCiSE.
clk 4 -L et] across 1000s
Instrument of instruments

In a nutshell, this Is about...

 More accurate on-chip timing measurements

- By Inserting instruments precisely

=

P—

-/ Logic& E_

*‘-; Routing
clk S =
clk N ~ A A ! I

_| User
Reg

=

{
]

nt

In particular,
we want to
bound this
routing delay

across 1000s

Instrument

'

of Instruments

- Most CAD focusses on minimising (or maximising)
« \We place and route instruments with bounded delay

* Key result: Insertion within 200ps avg. error

6

Introduction

 Why do we care about on-chip timing?

- Because of variation, vendors forced to
provision for all possible scenarios

- Fmax Is worst-case path, at worst-case
timing corner

- Can we safely operate better than worst-case?

* “Why operate at the worst corner if silicon is rarely
that slow, and if critical-path is rarely (never) exercised?”

Main Contributions

* Proposal for inserting shadow registers
post place-and-route, using spare resources

— Does not disrupt original circuit timing

* Modification to Dijkstra's algorithm for
minimum cost (delay) bounds

* Experimental evaluation on commercial
architecture

- Achieve average bound error of 200ps

Introduction

 How can on-chip timing instruments help?

- Failure prediction
* “Is my FPGA showing signs of being close to failing?”

— Error detection
« “Safe” overclocking (e.g. Razor)

- Slack measurement
* “How much leeway do | have before failing?”

- All possible using shadow registers

Background: Shadow Registers

clk

User
Reg

_/" Logic &

Critical Path

 Routing /
L

. I/
NNy

User
Reg

—>

User circuit
(compiled using
regular tools,
and locked down)

10

Background: Shadow Registers

Critical Path _
TN User circuit
User | ~ Logic& User ' '
- T Commediong
A \7/\7//\7/ A ,
ok and locked down)
Shad. [P
0 Reg Timing instruments
’ FAN

7t (built out of spare
resources only)

Duplicates a critical path endpoint, but with a
phase-shifted clock .

Background: Shadow Registers

_Critical Path _
| ol ; | Mismatch
ser _ Logic& / ser ST
Reg [=~ Routing \/ ® Reg >h ||.’]d!CateS. a
. " timing failure
clk
Shad. PP
Reg
Q A

Duplicates a critical path endpoint, but with a
phase-shifted clock

12

Background: Shadow Registers

Critical Path

Ny aand
TN
User | / Logic& User

Reg e Routing \1/ Reg »
. A
clk

LShad. —pp Focus:

k Reg controlling
. this delay

L
llllllll

Duplicates a critical path endpoint, but with a
phase-shifted clock

13

Challenge: Consistent Skew

Tuser Tskew
€ -----=--=-- —
Y
x/ ‘\‘\
User |~ Logic& /___ | User
Re ~ Routing N Re
0 < -/ / ?
A ~ AL A
clk Shad.
- --------------- » Reg
Tshadow
N\
bl

t For one shadow reg, we can cancel
out any path skew using a phase offset

14

Challenge: Consistent Skew

= = = - Tskewz
= = = = = P Tskenz
Logic &

Routing Shad.
Reg

N
Shad
Routing) '
Reg

clk
sclk

Pskew = { T skews, Tskewz}

15

Challenge: Consistent Skew

clk

YT
ah N ! |
f‘/ : Tw |
User ___/ Logic& : User :
Reg ‘\”* ROUting \\)/’J | Reg I Shad
\\,,, J‘ //‘ | | R e g
A T I A |
N A
2 N
User /i‘ Logic & K User
Reg — Routing ~T—| Reg SRt‘ad-
\) €g
N \\;7)\\ //\——' A
- A
Dol

= = — — > Tskew
= = = = P Tskew

Pskew = T skew

By placing and routing these
shadow registers carefully,
target consistent skew

16

Existing Work

» Existing CAD tools already do bounded routing

- Minimum delay: Hold time minus Clock-to-Q

- Maximum delay: Clock period minus Setup time

- Algorithms target a relatively big landing window:

User Signal

clk

-

Tcrit

e

Hold

>

XXXXXXXXXXXXX

_ XXXXX

M

—
Setup

Acceptable

17

Challenge: Consistent Skew

* We desire a very narrow window (ideally, 1ps)

clk

- Hard problem, but aided by two characteristics:

* Freedom to place shadow register on any spare site
* Freedom to route to any site using any spare resources

- Solved simultaneously by routing to all sites

User
Reg

o~
e N

_ Logic &

 Routing

4
N)\\,,,, Yy,

User
Reg

I Free | T T

:Site: | Free | - -
— 2o — | Sjte 1 o __
| (| Free 1 | |
- =L - 1 Sjtel | Freel
I .
A Pl sSite

I I
— A —

18

Problem

« FPGA routing Is a case of graph search
- Finding shortest path has long been solved: Dijkstra

one é?gl]go(%lre) ‘ 'Q /__,@
i "i:@ ot
Edge cost =1

unless labelled 19

Problem

« FPGA routing Is a case of graph search
- Finding shortest path has long been solved: Dijkstra

': :~
.’ ~ Q
- “n
Phe ~ .”

s ~ .

Py ~ -
P o Pid
. ~ -

* -
- ~ -
- ~ .
~
" “
S
-
T ~. PR T
~
1 ~. .* 1
] ~ ‘,']
[} “n . [}
! ~‘ - '
L} L}
1 1
1 1
~ .
1 s [] .*
1 P4 1 Sel 1 .
] P] ~ 1 .
.’ ' ~ e’
- b i
-] S ’
Phe [} .‘ .’
Phe .’
- ' -
1
~
.. !
#
~
. ‘o'
-~ .
. . ~ .
Visited Vertex ’

(@) Queued Vertex
(u) Unseen Vertex

O

20

Problem

« FPGA routing Is a case of graph search
- Finding shortest path has long been solved: Dijkstra

O
2 ::
~~'~‘ v ""o"
(V) Visited Vertex Aé

(@) Queued Vertex

(u) Unseen Vertex
21

Problem

« FPGA routing Is a case of graph search
- Finding shortest path has long been solved: Dijkstra

V) Visited Vertex
(@) Queued Vertex

(u) Unseen Vertex
22

Problem

« FPGA routing Is a case of graph search
- Finding shortest path has long been solved: Dijkstra

@ Visited Vertex A @
@ Queued Vertex

(u) Unseen Vertex
23

Problem

« FPGA routing Is a case of graph search
- Finding shortest path has long been solved: Dijkstra

- But how can we find not-so-short paths?

24

Proposal: Dijkstra with Rollback

« Summary: If path found is too short, undo
search and rerun as if a prior edge did not exist

@ Visited Vertex A @
(@) Queued Vertex

(u) Unseen Vertex
25

Proposal: Dijkstra with Rollback

« Summary: If path found is too short, undo
search and rerun as if a prior edge did not exist

Heuristic decides
to erase this edge y@

@ Visited Vertex A @
(@) Queued Vertex

(u) Unseen Vertex
26

Proposal: Dijkstra with Rollback

« Summary: If path found is too short, undo
search and rerun as if a prior edge did not exist

1. Invalidate all children

of this edge /®\:@

(V) Visited Vertex

(@) Queued Vertex
(u) Unseen Vertex

27

Proposal: Dijkstra with Rollback

« Summary: If path found is too short, undo
search and rerun as if a prior edge did not exist

1. Invalidate all children
of this edge

(v) Visited Vertex w ()
(@) Queued Vertex
(u) Unseen Vertex

28

Proposal: Dijkstra with Rollback

« Summary: If path found is too short, undo
search and rerun as if a prior edge did not exist

(v) Visited Vertex . Y

«(" 2. Repair priority queue
(fix costs of those nodes
that would have been
visited by another edge) *

(@) Queued Vertex
(u) Unseen Vertex

Proposal: Dijkstra with Rollback

« Summary: If path found is too short, undo
search and rerun as if a prior edge did not exist

(V) Visited Vertex

(@ Queued Vertex Cg Old Cost = 4
(u) Unseen Vertex New Cost = 6

30

Proposal: Dijkstra with Rollback

* Big picture: disjoint paths from each s to any t

Millions of %
hodes)
> and edges | t

1000s of 10s of thousands
endpoints of spare registers

31

Proposal: Dijkstra with Rollback

* Not dissimilar to Yen's K-shortest path algorithm

- Guaranteed to find the shortest, and K-1 next
shortest, paths

- Essence: remove edge(s) of prior shortest paths,
restart Dijkstra, then replace edge(s) and retry

— Qur heuristic:

 Removes each edge permanently
* Repair and continue, instead of restarting Dijkstra
* No guarantee of finding next shortest, but much faster

32

Proposal: Dijkstra with Rollback

* We propose three different algorithms:

For each net

-

v

Route to
closest site

!

No

Meets min
bound?

Yes

One-Closest

For each net For all nets <«
- Route_ to - Route_ to
any site any site
Meets min Meets min
NO bound? Yes NO bound? Yes
One-All All-All

33

Proposal: Dijkstra with Rollback

* We propose three different algorithms:

For each net

-

v

Route to
closest site

v

No

Meets min
bound?

Yes

One-Closest

For each net < For all nets -
! X!
- Route_ to - Route_ to
any site any site
Meets min Meets min
NO bound? Yes NO bound? Yes
One-All All-All

Full detalls are in our paper!

34

Experimental Flow

« Evaluated on Xilinx, but applicable to others

- Place and route using ISE, apply our shadow
register tool, then re-analyse using vendor STA

* Experimented on three large benchmarks:

- LEONS: an 8-core system-on-chip
- AES-x3: a chain of 3 encoders then 3 decoders

- JPEG-x2: two parallel instances of CHStone JPEG
synthesised using Vivado HLS

— All occupying ~90% of mid-range Virtex6

35

Delay (ns)

Results — LEON3
 Critical endpoints with <10% slack (1424)

16

M Baseline (STA)
15

14

13
12
11

Critical Paths (by ascending slack)

36

Delay (ns)

Results — LEONS3

 Critical endpoints with <109% slack (1424)
- With 1417 shadow registers at >1ns skew target

16

15

14

13

12

B Shadow (STA)

M Baseline (STA)

Critical Paths (by ascending slack)

37

Delay (ns)

Skew (ns)

Results — LEONS3

 Critical endpoints with <109% slack (1424)

16

15

14

13

12

- With 1417 shadow registers at >1ns skew target

B Shadow (STA)

M Baseline (STA)

M Skew (STA)

Delay (ns)

Skew (ns)

Results — LEONS3

 Critical endpoints with <109% slack (1424)
- With 1417 shadow registers at >1ns skew target

16

15

14

13

12

B Shadow (STA)

M Baseline (STA)

M Skew (STA)

|

Avg. Err

|

I I B L A I T A A

|

I
|

Ik

IR LA AT

L T A R A T T e T e I
H! I ‘ }

Results — LEONS3

* Average skew error of 200ps (from Xilinx STA)

- Due to iIncomplete timing information
- Based on our delay model, we achieve <1ps error!

40

Results — LEONS3

* Average skew error of 200ps (from Xilinx STA)

- Due to iIncomplete timing information
- Based on our delay model, we achieve <1ps error!

- Why so good?
e Many spare registers (total: 300K, used: 62K, spare: 78K)

« Millions of wires (nodes), 10s of millions of switches (edges)

e ... compounding with up to 7 ways (with differing delays)
to get to each:

Al:A6

41

AX

More In the paper...

* Experimental results for:

- Three different algorithms on three benchmarks
- Different number of steps to roll back
- Different values for skew target

* Analysis on why not all nets could be shadowed

42

More In the paper...

* Experimental results for:

- Three different algorithms on three benchmarks
- Different number of steps to roll back
- Different values for skew target

* Analysis on why not all nets could be shadowed

e Future work: insert downstream infrastructure

- Comparators, counters, recovery logic, etc.
- Opportunities: latency-insensitive, reduction operation

43

Conclusion

« Shadow registers can help detect, measure and
react to physical imperfections

- But need to be inserted precisely: consistent skew

44

Conclusion

« Shadow registers can help detect, measure and
react to physical imperfections

- But need to be inserted precisely: consistent skew

* Our proposal: insert post place and route,
with a minimum delay bound

- Using just leftover resources = no timing impact
- Bounding achieved by Dijkstra with Rollback

» Key result: achieve 200ps average skew error

- With more timing information, may do even better!

45

Backup

46

Introduction

« Shadow register clock phase @

<+— Tcrit —»

_ XXXXXX

sl __XRXXXX
Signal ——
clk

Failure sclki R >

prediction: ©<0

:,,"
Shorter period-, ‘
p .'c,' N

47

Introduction

« Shadow register clock phase @

<+— Tcrit —»

anal ___ XXXXXX
Signal —
clk
. Shorter period".,_"" - ‘
Failure sclka g
prediction: ©<0
Error sclkz

detection: ©>0

nnnu.,,."
l,'
e,
O,"
'0
0"
'0
2,
2,
‘
o,
0"
,
“,
()
. “
Longer period “,
2
e,
L)
4,
Il'll.,"'

48

Introduction

« Shadow register clock phase @

<+— Tcrit —»

User =—
signal — XXXXXX X XXXXX

clk
. Shorter period".,_"" - ‘
Failure sclki i
prediction: ©<0
Longer period
Error sclkz

detection: ©>0

Slack mea- sclks
surement: sweep @

Case for Post Place and Route

* We insert shadow instruments entirely post P&R

- By locking down all parts of existing user circuit ...
- ... and using spare, leftover, resources only

— This preserves timing of original user circuit
« Barring one extra switch load: ~3ps

50

Case for Post Place and Route

Compile e TiMiNng | _ List of critical
Analysis endpoints

51

Case for Post Place and Route

Compile

Timing
Analysis

Instrument
at RTL

_ _, Listofcritical

endpoints

52

Case for Post Place and Route

Timing Different
Re-compile m=——w> alysis | " > |ist of Cr{tICal
A endpoints
\
\
S < Instrument

at RTL

53

Case for Post Place and Route

 For LEONS3, shadowing top 10% critical nets:

1500

1000

M Total
M Shadowed

Critical Signals

Baseline Source Post P&R

Instrument critical nets at
source-level, then recomplle

= Of what was critical initially,
only ~50% remains critical after recompiling! >

Case for Post Place and Route

For LEONS3, shadowing top 10% critical nets:

1500

1000

M Total

500 M Shadowed

Critical Signals

0
Baseline Source Post P&R

Instrument critical nets
post place and route,
using spare resources only =

Skew

Dijkstra with Rollback Profile

1200
+1ns target
800
400
0
1000 2000 3000 4000

-400

—f =1 =0

—3 e 2

-800

Rollback Count

56

Yen's K-shortest Profile

Skew

1200
+1ns target
800
400 ﬁ
0
0 1000 2000 3000 4000
-400
— A] —(
800 =32

K-th Shortest Path

57

Skew

Yen's K-shortest Profile

1200
+1ns target

800
400

0

1000 2000 3000 4000 5000 6000 7000 8000 900010000
-400
— A] —)

800 =8 =2

K-th Shortest Path

58

Benchmark Summary

xcbv1x240t

LEON3 AES-x3 JPEG-x2 capacity

Slices 35217 32809 32733 37680
LUTs 95766 107685 91741 150720
Registers 60562 32025 125642 301440
RAMs 688 - 124 832
DSPs 32 - 172 768
Tcrit (ns) 13.329 6.055 13.936 -
Wirelength 2.1M 1.1M 1.6M 6.3M

59

Experimental Flow

» Evaluated on Xilinx, but applicable to any vendor

Xilinx ISE

xst — Synthesis

map — Pack & Place

par — Route

trce — STA

.ncd

60

Regular FPGA flow

Experimental Flow

« Evaluated on Xilinx, but applicable to any vendor

I Delay Bound Taskew
LT Maximum Slack
| S [w |
Xilinx ISE e i
. | X! | T |
xst — Synthesis | g = - A ~
= | O®
g |5
map — Pack & Place I = 2 | Delay-Bounded
| R~ Routing Tool
par — Route | fg Simple Wire
ned @ Delay Modelj
. t O
SU ncd2xdl

61

Regular FPGA flow Shadow Register Extension

Experimental Flow

« Evaluated on Xilinx, but applicable to any vendor

I Delay Bound Taskew
T Maximum Slack
I S [|
Xilinx ISE o |2 5
I Q@ <) :
xst — Synthesis | > | o y
£ ¢ (h
map — Pack & Place I = 2 | Delay-Bounded
| | Routing Tool
par — Route | | fg Simple Wire
ned | @ Delay Model
t | O
| xdl | Q. .xd1l
--------------------------- ncd2xdl xdI2ncd (with DRC)
I .ncd
trce — STA [--| par — Clock Route Only
I
\ £ bit I 6
Regular FPGA flow ! Shadow Register Extension

Experimental Results

* Unbounded (place closest reg, Xilinx PAR):

Delay (ns)

Skew (ns)

16
W Shadow (STA)

M Baseline (STA)
15

W4
13

12

11

Critical Paths (by ascending slack)

2 Clock skew (STA) M Data skew (STA)

.u“NM“ﬂlnl M ﬂ”ﬂh”ihl‘h“WMN“' |‘1 |lhn1|n l’lll i“m I{ rlHl f I‘ M “Hl]H | MI h l”“ MIMHI ml’l nh i 1““ ““

Lk A kbt w A S i

Experimental Results

e >1ns on LEONS:

Shadow Method

Base | Source Post P&R

(this work)

Slice util. 93.5% | 88.9% 94.5%
LUT util. 63.5% | 56.6% 64.0%
Register util. 20.1% | 20.6% 20.6%
Tcrit (ns) 13.329 | 13.331 13.333
Num. critical nets 1436 1222 1436
Common to Base 100% | 41.0% 100%
Shad. coverage - | 41.0% 98.7%
Pack & Place time (s) 1875 1974 -
Routing runtime (s) 1281 1241 183

(a) LEONS3 (all critical nets within 10% of Tcrit)

64

Experimental Results

e >1ns on LEONS:

Unbounded Delay-bounded
(ns) One-Closest | One-Closest All-All
Nets shad. 1424 1051 1418
Max. |Err| 1.942 1.779 0.928
Mean |Err]| 0.867 0.329 0.249
StdDev Err 0.367 0.187 0.107
Range Err 2.771 1.744 0.956

(a) From Xilinx trce STA

Unbounded Delaytbounded
(ns) One-Closest | One-Closest [One-All JAII-All
Max. [Err| - 1.636 0.114 0.114
Mean |Err| - 0.089 | <0.001 0.001
StdDev Err - 0.165 0.004 0.004
Range Err - 1.636 0.114 0.114

(c) From our delay model, omitting clock skew.

Experimental Results

e >1ns on AES-x3:

Shadow Method

Base | Source Post P& R

(this work)

Slice util. 87.0% | 86.9% 89.8%
LUT util. 71.4% | T1.7% 72.7%
Register util. 10.6% | 12.4% 12.3%
Tcrit (ns) 6.055 5.865 6.055
Num. critical nets 5362 7400 5362
Common to Base 100% | 53.1% 100%
Shad. coverage - | 53.1% 94.2%
Pack & Place time (s) 1014 1408 -
Routing runtime (s) 479 486 224

(b) AES-x3 (within 40% of Tcrit)

66

Experimental Results

e >1ns on JPEG-X2:

Shadow Method
Base | Source Post P& R
(this work)
Slice util. 86.8% | 88.8% 90.1%
LUT util. 60.9% | 61.3% 61.8%
Register util. 11.7% | 42.7% 42.6%
Tcrit (ns) 13.936 | 15.611 13.939
Num. critical nets 3290 3335 3295
Common to Base 100% | 46.7% 99.8%
Shad. coverage - | 46.7% 84.0%
Pack & Place time (s) 871 911 -
Routing runtime (s) 748 3658 276

(c) JPEG-x2 (within 40% of Tcrit)

67

Experimental Results

e Reasons behind failure

LEON3 AES-x3 JPEG-x2

Num. critical nets 1436 H362 3290
Nets shadowed 1417 5049 2769
1) Blocked in LE 10 313 468
ii) Blocked out LE 4 - 23
iii) Path search failed 5 - 30

— 1) and 1i) require user circuit to be ripped up
— Only 1ii) could be solved by better algorithms

68

