
Delay-Bounded Routing
for Shadow Registers

Eddie Hung, Josh Levine, Ed Stott,
George Constantinides, Wayne Luk

{e.hung,josh.levine,ed.stott,
g.constantinides,w.luk}@ic.ac.uk

Department of Computing
Department of Electrical and Electronic Engineering

Imperial College London, UK

FPGA15 :: 23 Feb '15

2

In a nutshell, this is about...
● More accurate on-chip timing measurements

– By inserting instruments precisely

Logic &
Routing

User
Reg

^

User
Reg

^
clk

3

In a nutshell, this is about...
● More accurate on-chip timing measurements

– By inserting instruments precisely

Logic &
Routing

Instrument

clk

User
Reg

^

User
Reg

^

4

In a nutshell, this is about...
● More accurate on-chip timing measurements

– By inserting instruments precisely

Logic &
Routing

Instrument

clk

In particular,
we want to
bound this
routing delay

User
Reg

^

User
Reg

^

5

In a nutshell, this is about...
● More accurate on-chip timing measurements

– By inserting instruments precisely

In particular,
we want to
bound this
routing delay

across 1000s
of instruments

Logic &
Routing

User
Reg

^

Instrument

clk

User
Reg

^

6

In a nutshell, this is about...
● More accurate on-chip timing measurements

– By inserting instruments precisely

– Most CAD focusses on minimising (or maximising)
● We place and route instruments with bounded delay

● Key result: Insertion within 200ps avg. error

In particular,
we want to
bound this
routing delay

across 1000s
of instruments

Logic &
Routing

User
Reg

^

Instrument

clk

User
Reg

^

7

Introduction

● Why do we care about on-chip timing?
– Because of variation, vendors forced to

provision for all possible scenarios

– Fmax is worst-case path, at worst-case
timing corner

– Can we safely operate better than worst-case?
● “Why operate at the worst corner if silicon is rarely

that slow, and if critical-path is rarely (never) exercised?”

8

Main Contributions

● Proposal for inserting shadow registers
post place-and-route, using spare resources
– Does not disrupt original circuit timing

● Modification to Dijkstra's algorithm for
minimum cost (delay) bounds

● Experimental evaluation on commercial
architecture
– Achieve average bound error of 200ps

9

Introduction

● How can on-chip timing instruments help?
– Failure prediction

● “Is my FPGA showing signs of being close to failing?”

– Error detection
● “Safe” overclocking (e.g. Razor)

– Slack measurement
● “How much leeway do I have before failing?”

– All possible using shadow registers

10

Background: Shadow Registers

Logic &
Routing

clk

Critical Path

User
Reg

^

User
Reg

^

User circuit
(compiled using
regular tools,

and locked down)

11

Background: Shadow Registers

Duplicates a critical path endpoint, but with a
phase-shifted clock

clk

sclk

Critical Path

φ

User
Reg

^

Shad.
Reg

^

User circuit
(compiled using
regular tools,

and locked down)

Timing instruments
(built out of spare
resources only)

Logic &
Routing

User
Reg

^

12

Background: Shadow Registers

Duplicates a critical path endpoint, but with a
phase-shifted clock

Logic &
Routing

clk

sclk

Critical Path

φ

User
Reg

^

Shad.
Reg

^

Mismatch
indicates a
timing failure

User
Reg

^

13

Background: Shadow Registers

Duplicates a critical path endpoint, but with a
phase-shifted clock

Logic &
Routing

clk

sclk

Critical Path

φ

User
Reg

^

Shad.
Reg

^

Focus:
controlling
this delay

User
Reg

^

14

Challenge: Consistent Skew

Logic &
Routing

Tuser

Tshadow

Shad.
Reg

^

Tskew

clk

sclk

User
Reg

^

User
Reg

^

For one shadow reg, we can cancel
out any path skew using a phase offset

15

Challenge: Consistent Skew

Logic &
Routing

User
Reg

^

clk

φskew = {Tskew1,Tskew2}

Logic &
Routing

User
Reg

^

User
Reg

^

Shad.
Reg

^

Tskew1

User
Reg

^

Tskew2

Shad.
Reg

^

sclk

16

Challenge: Consistent Skew

Shad.
Reg

^

φskew = Tskew

Tskew

Tskew

Logic &
Routing

Logic &
Routing

Shad.
Reg

^

sclk
clk

User
Reg

^

User
Reg

^

User
Reg

^

User
Reg

^

By placing and routing these
shadow registers carefully,
target consistent skew

17

Existing Work

● Existing CAD tools already do bounded routing
– Minimum delay: Hold time minus Clock-to-Q

– Maximum delay: Clock period minus Setup time

– Algorithms target a relatively big landing window:

Tcrit

User Signal

clk

Hold Setup

Acceptable

18

 Challenge: Consistent Skew

● We desire a very narrow window (ideally, 1ps)
– Hard problem, but aided by two characteristics:

● Freedom to place shadow register on any spare site
● Freedom to route to any site using any spare resources

– Solved simultaneously by routing to all sites

Logic &
Routing

User
Reg

^

Free
Site

^User
Reg

^clk

Free
Site

^
Free
Site

^

Free
Site

^

19

Problem

● FPGA routing is a case of graph search
– Finding shortest path has long been solved: Dijkstra

s t

2

3

2

Delay cost
of edge (wire)

Edge cost = 1
unless labelled

s t

20

Problem

● FPGA routing is a case of graph search
– Finding shortest path has long been solved: Dijkstra

s t

2

3

2

u

v

q
Visited Vertex

Queued Vertex
Unseen Vertex

q

s

v

t

21

Problem

● FPGA routing is a case of graph search
– Finding shortest path has long been solved: Dijkstra

s t

2

3

2

u

v

q
Visited Vertex

Queued Vertex
Unseen Vertex

q

q

q

s

v

v

t

22

Problem

● FPGA routing is a case of graph search
– Finding shortest path has long been solved: Dijkstra

s t

2

3

2

u

v

q
Visited Vertex

Queued Vertex
Unseen Vertex

q

qq

q

q

s

v

v

v

t

23

Problem

● FPGA routing is a case of graph search
– Finding shortest path has long been solved: Dijkstra

s t

v

v

v

v

v

q

q

u

u

v

q
Visited Vertex

Queued Vertex
Unseen Vertex

Cost = 4

s t

v

v

v

v

v

v

24

Problem

● FPGA routing is a case of graph search
– Finding shortest path has long been solved: Dijkstra

– But how can we find not-so-short paths?

25

Proposal: Dijkstra with Rollback

● Summary: if path found is too short, undo
search and rerun as if a prior edge did not exist

s t

v

v

v

v

v

q

q

u

u

v

q
Visited Vertex

Queued Vertex
Unseen Vertex

Cost = 4

s t

v

v

v

v

v

v

26

Proposal: Dijkstra with Rollback

● Summary: if path found is too short, undo
search and rerun as if a prior edge did not exist

s t

v

v

v

v

v

q

q

u

u

v

q
Visited Vertex

Queued Vertex
Unseen Vertex

Cost = 4

Heuristic decides
to erase this edge

s

v

v

v

v

v

v

t

27

Proposal: Dijkstra with Rollback

● Summary: if path found is too short, undo
search and rerun as if a prior edge did not exist

s t

v

v

v

v

v

q

q

u

u

v

q
Visited Vertex

Queued Vertex
Unseen Vertex

Cost = 4

1. Invalidate all children
of this edge

s t

v

v

v

v

v

v

28

Proposal: Dijkstra with Rollback

● Summary: if path found is too short, undo
search and rerun as if a prior edge did not exist

s t

2

3

2

u

v

q
Visited Vertex

Queued Vertex
Unseen Vertex

v

q

q

1. Invalidate all children
of this edge

s t

v

v

v q

29

Proposal: Dijkstra with Rollback

● Summary: if path found is too short, undo
search and rerun as if a prior edge did not exist

2. Repair priority queue
(fix costs of those nodes
that would have been
visited by another edge)

s t

2

3

2

u

v

q
Visited Vertex

Queued Vertex
Unseen Vertex

v

q

q

s

v

v

v

t

q

30

Proposal: Dijkstra with Rollback

● Summary: if path found is too short, undo
search and rerun as if a prior edge did not exist

s t

2

3

2

u

v

q
Visited Vertex

Queued Vertex
Unseen Vertex

q

q

v

Old Cost = 4
New Cost = 6

s

v v

vv

v

t

31

Proposal: Dijkstra with Rollback

● Big picture: disjoint paths from each s to any t

s t

2

3

2v

q

q

s

s

s
s

s

tttt

tttt tttt
vMillions of

nodes
and edges

1000s of
endpoints

10s of thousands
of spare registers

32

Proposal: Dijkstra with Rollback

● Not dissimilar to Yen's K-shortest path algorithm
– Guaranteed to find the shortest, and K-1 next

shortest, paths

– Essence: remove edge(s) of prior shortest paths,
restart Dijkstra, then replace edge(s) and retry

– Our heuristic:
● Removes each edge permanently
● Repair and continue, instead of restarting Dijkstra
● No guarantee of finding next shortest, but much faster

33

Proposal: Dijkstra with Rollback

● We propose three different algorithms:

For each net

Route to
closest site

Meets min
bound? YesNo

For each net

Route to
any site

Meets min
bound? YesNo

For all nets

Route to
any site

Meets min
bound? YesNo

One-Closest One-All All-All

34

Proposal: Dijkstra with Rollback

● We propose three different algorithms:

Full details are in our paper!

Meets min
bound? YesNo

Meets min
bound? YesNo

Meets min
bound? YesNo

One-Closest One-All All-All

For each net

Route to
closest site

For each net

Route to
any site

For all nets

Route to
any site

35

Experimental Flow

● Evaluated on Xilinx, but applicable to others
– Place and route using ISE, apply our shadow

register tool, then re-analyse using vendor STA

● Experimented on three large benchmarks:
– LEON3: an 8-core system-on-chip

– AES-x3: a chain of 3 encoders then 3 decoders

– JPEG-x2: two parallel instances of CHStone JPEG
synthesised using Vivado HLS

– All occupying ~90% of mid-range Virtex6

36

Results – LEON3

● Critical endpoints with <10% slack (1424)

11

12

13

14

15

16

Baseline (STA)

Critical Paths (by ascending slack)

D
e

la
y

(n
s)

37

Results – LEON3

11

12

13

14

15

16
Shadow (STA)
Baseline (STA)

Critical Paths (by ascending slack)

D
e

la
y

(n
s)

● Critical endpoints with <10% slack (1424)
– With 1417 shadow registers at >1ns skew target

38

Results – LEON3

11

12

13

14

15

16
Shadow (STA)
Baseline (STA)

Critical Paths (by ascending slack)

D
e

la
y

(n
s)

0

1

2

3
Skew (STA)

S
ke

w
 (

ns
)

● Critical endpoints with <10% slack (1424)
– With 1417 shadow registers at >1ns skew target

39

Results – LEON3

11

12

13

14

15

16
Shadow (STA)
Baseline (STA)

Critical Paths (by ascending slack)

D
e

la
y

(n
s)

0

1

2

3
Skew (STA)

S
ke

w
 (

ns
)

● Critical endpoints with <10% slack (1424)
– With 1417 shadow registers at >1ns skew target

Avg. Error

40

Results – LEON3

● Average skew error of 200ps (from Xilinx STA)
– Due to incomplete timing information

– Based on our delay model, we achieve <1ps error!

41

Results – LEON3

● Average skew error of 200ps (from Xilinx STA)
– Due to incomplete timing information

– Based on our delay model, we achieve <1ps error!

– Why so good?
● Many spare registers (total: 300K, used: 62K, spare: 78K)
● Millions of wires (nodes), 10s of millions of switches (edges)
● … compounding with up to 7 ways (with differing delays)

to get to each:

6LUT
5LUT5LUT FF

FF
A1:A6

AX

42

More in the paper...

● Experimental results for:
– Three different algorithms on three benchmarks

– Different number of steps to roll back

– Different values for skew target

● Analysis on why not all nets could be shadowed

43

More in the paper...

● Experimental results for:
– Three different algorithms on three benchmarks

– Different number of steps to roll back

– Different values for skew target

● Analysis on why not all nets could be shadowed

● Future work: insert downstream infrastructure
– Comparators, counters, recovery logic, etc.

– Opportunities: latency-insensitive, reduction operation

44

Conclusion

● Shadow registers can help detect, measure and
react to physical imperfections
– But need to be inserted precisely: consistent skew

45

Conclusion

● Shadow registers can help detect, measure and
react to physical imperfections
– But need to be inserted precisely: consistent skew

● Our proposal: insert post place and route,
with a minimum delay bound
– Using just leftover resources no timing impact⇒
– Bounding achieved by Dijkstra with Rollback

● Key result: achieve 200ps average skew error
– With more timing information, may do even better!

46

Backup

47

Introduction

● Shadow register clock phase φ

Tcrit
User

Signal

clk

sclk1

φ<0

Shorter period

Failure
prediction:

48

Introduction

● Shadow register clock phase φ

Tcrit
User

Signal

clk

sclk1

φ<0

sclk2

φ>0

Shorter period

Longer period

Failure
prediction:

Error
detection:

49

Introduction

● Shadow register clock phase φ

Tcrit
User

Signal

clk

sclk1

φ<0

sclk2

φ>0

sclk3

sweep φ

Shorter period

Longer period

Failure
prediction:

Error
detection:

Slack mea-
surement:

50

Case for Post Place and Route

● We insert shadow instruments entirely post P&R
– By locking down all parts of existing user circuit ...

– … and using spare, leftover, resources only

– This preserves timing of original user circuit
● Barring one extra switch load: ~3ps

51

Case for Post Place and Route

Compile Timing
Analysis

List of critical
endpoints

52

Case for Post Place and Route

Compile Timing
Analysis

List of critical
endpoints

Instrument
at RTL

53

Case for Post Place and Route

Re-compile Timing
Analysis

Different
list of critical

endpoints

Instrument
at RTL

54

Case for Post Place and Route

● For LEON3, shadowing top 10% critical nets:

Baseline Source Post P&R
0

500

1000

1500

Total
Shadowed

C
rit

ic
al

 S
ig

n
al

s

Instrument critical nets at
source-level, then recompile

 ⇒ Of what was critical initially,
only ~50% remains critical after recompiling!

55

Case for Post Place and Route

● For LEON3, shadowing top 10% critical nets:

Baseline Source Post P&R
0

500

1000

1500

Total
Shadowed

C
rit

ic
al

 S
ig

n
al

s

Instrument critical nets
post place and route,
using spare resources only

56

Dijkstra with Rollback Profile

0 1000 2000 3000 4000

-800

-400

0

400

800

1200

4 1 0
3 2

Rollback Count

S
ke

w

+1ns target

57

Yen's K-shortest Profile

0 1000 2000 3000 4000

-800

-400

0

400

800

1200

4 1 0

3 2

K-th Shortest Path

S
ke

w

+1ns target

58

Yen's K-shortest Profile

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-800

-400

0

400

800

1200

4 1 0

3 2

K-th Shortest Path

S
ke

w

+1ns target

59

Benchmark Summary

60

Experimental Flow

● Evaluated on Xilinx, but applicable to any vendor

Xilinx ISE

.bit

xst – Synthesis

map – Pack & Place

par – Route

bitgen

.ncd

Regular FPGA flow

HDL

trce – STA

61

Experimental Flow

● Evaluated on Xilinx, but applicable to any vendor

Delay-Bounded
Routing Tool

Xilinx ISE

.bit

xst – Synthesis

map – Pack & Place

par – Route

bitgen

.xdl

.twr.ncd

.xdl

ncd2xdl

T
im

in
g

R
ep

or
t

P
la

ce
d

-a
n

d
-r

ou
te

d
 n

e
tli

st

Regular FPGA flow Shadow Register Extension

Simple Wire
Delay Model

HDL *

trce – STA

62

Experimental Flow

● Evaluated on Xilinx, but applicable to any vendor

Delay-Bounded
Routing Tool

Xilinx ISE

.bit

xst – Synthesis

map – Pack & Place

par – Route

bitgen

.xdl

.twr

par – Clock Route Only

xdl2ncd (with DRC)

.ncd

.ncd

.xdl

ncd2xdl

T
im

in
g

R
ep

or
t

P
la

ce
d

-a
n

d
-r

ou
te

d
 n

e
tli

st

Regular FPGA flow Shadow Register Extension

Simple Wire
Delay Model

HDL *

trce – STA

trce – STA

63

Experimental Results

● Unbounded (place closest reg, Xilinx PAR):

11

12

13

14

15

16
Shadow (STA)

Baseline (STA)

Critical Paths (by ascending slack)

D
el

a
y

(n
s)

-1

0

1

2
Clock skew (STA) Data skew (STA)

S
ke

w
 (

ns
)

64

Experimental Results

● >1ns on LEON3:

65

Experimental Results

● >1ns on LEON3:

66

Experimental Results

● >1ns on AES-x3:

67

Experimental Results

● >1ns on JPEG-x2:

68

Experimental Results

● Reasons behind failure

– i) and ii) require user circuit to be ripped up

– Only iii) could be solved by better algorithms

