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Introduction

• Hard macros allow us to build high frequency soft 
processors (Octavo, iDEA, etc.) 

• To achieve high frequency, deep pipelining is 
required 

• Results in significant idle cycles to resolve 
dependencies 

• Full data forwarding is too complex for a lean 
processor 

• Exploit loopback path in DSP block to provide 
forwarding in iDEA soft processor
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iDEA Soft Processor

• Fundamental novelty is exploiting DSP block 
dynamic control signals
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iDEA Soft Processor

• A DSP-block based soft processor 
• Maximises use of the DSP48E1 block 
• 450MHz+ achievable frequency 
• Architecture described in detail in FPT 2012 and 

TRETS 2014
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iDEA Soft Processor

• We deeply pipeline iDEA by adding extra cycles to 
the different processor stages 

• DSP48E1 primitive requires 3 cycles to achieve 
maximum speed 

• Multiple ways of distributing extra cycles among 
stages
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Deep Pipelining and NOPs

• High number of empty cycles required to pad 
dependent instructions, increasing with depth
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Padding for Dependencies

• Instruction cannot enter decode stage until its input 
operand has been written back 

• Insert empty instructions (NOPs) between 
dependent instructions
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Padding for Dependencies

• A few routes to overcoming this issue: 
• Dynamic in hardware – cost 
• Static in software 

• External Loopback – add a forwarding path 
around the execute stage 

• Internal Loopback – proposed approach 
using DSP block feature 

• Hardware support through modified opcodes
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Assembly with Loopback
• Original Assembly 
li $1, x 
li $2, a 
li $3, b 
li $4, c 
mul $5, $1, $2 
nop 
nop 
mul $6, $5, $1 
mul $5, $1, $3 
nop 
nop 
add $7, $5, $6 
nop 
nop 
add $8, $7, $4 
nop 
nop 
sw $8, 0($y) 
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• With loopback instructions 
li $1, x 
li $2, a 
li $3, b 
li $4, c 
mul loop0, $1, $2 
mul $6, loop0, $1 
mul loop1, $1, $3 
add loop2, loop1, $6 
add $8, loop2, $4 
nop  
nop 
sw $8, 0($y) 

→ save 6 instructions



External Forwarding

• Add a path around the execute stage 
• Allows a dependent instruction to start its 

execute stage once the previous one has 
completed
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External Forwarding
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Internal Forwarding

• DSP block primarily used in filtering 
• Multiply-accumulate is functional primitive 
• Loopback path allows ALU output to be used for 

accumulation 
• Dynamic control signal  

determines whether 
this path is used
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Loopback Analysis

• Identify loopback opportunities in assembly 
• Loopback instruction — a subsequent dependent 

arithmetic operation 
• For external loopback: sufficient NOPs to pad the 

execute stage 
• For internal loopback: no NOPs required 
• NOPs are inserted for dependencies that cannot 

be resolved by this forwarding path 
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Processor Design Space

• First explore the impact of pipeline depth on area 
and frequency 

• Parameterised register stages in each processor 
stage (1–5 cycles for Fetch, Decode, Execute) 

• Overall pipeline depths of 4–15 cycles 
• Multiple possible combinations for each overall 

depth
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Processor Design Space
• Consider all combinations of stage depths for each 

overall processor depth 
• Reach close to 500MHz from 10 stages onwards
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Processor Design Space

• Clusters near where DSP block throughput limits 
performance 

• Significantly more registers than LUTs
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Processor Design Space

• Generally minimal impact for internal forwarding and 
a little more for external forwarding
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IPC Improvement

• External Loopback 
• Padding NOPs not 

totally eliminated 
• For depths of 4–6 

(with 1-cycle EX), no 
NOPs needed 

• As EX depth 
increases, savings are 
curtailed due to need 
for some NOPs
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IPC Improvement

• Internal Loopback 
• Sustained savings 

over no forwarding 
• Benchmarks with long 

dependency chains 
• A 5–30% 

improvement 
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Execution Time

• Frequency and geomean wall clock time for all benchmarks 
• Frequency of external loopback implementation lags initially 
• At higher depths, differences disappear as the extra cycles 

are added to stages other than execute 
• A 25% improvement in runtime compared to no forwarding
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Execution Time

• External loopback 
• Depth 4 — 6 increase in execution time due to lower 

operating frequency 
• Gap is significant in shallower depths, but closes as depth 

increases 
• Reduced frequency is fundamental barrier 21
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Execution Time

• Internal loopback 
• Minimum runtime is at 10 cycle processor depth 
• Anomalous peak at depth 9, due to a significant EX cycle 

increase 
• Results in 11–20% improvement at low depths
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Limitations

• As a post-assembly step, limited by the instruction 
order chosen by compiler 

• Only ALU operations (add, subtract) can benefit 
from internal forwarding 

• Ideally, a compiler that could ensure such 
instructions are kept together would improve results
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Potential

• Aside from small benchmarks, explored potential for 
CHStone benchmarks
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Table 5: LLVM IR Profiling Results for CHStone

Bench
mark

Static Dynamic

Instr. Occur. % Instr. Occur. %

adpcm 1367 184 13 71,105 8,300 11
aes 2259 51 2 30,596 3,716 12
blowfish 1184 314 26 711,718 180,396 25
gsm 1205 82 6 27,141 1,660 6
jpeg 2388 95 4 1,903,085 131,092 6
mips 378 15 3 31,919 123 0.3
mpeg 782 80 10 17,032 60 0.3
sha 405 64 15 990,907 238,424 24

and just-in-time (JIT) compiler to obtain dynamic counts of
possible loopback occurrences. The results in Table 5 show
a mean occurrence of over 10% within these benchmarks.
We cannot currently support CHStone completely due to
missing support for 32b instructions and other development
issues.

Program Size Sensitivity: We also synthesized RTL
for iDEA with increased instruction memory sizes to hold
larger programs. We observed, that iDEA maintains its op-
timal frequency for up to 8 BRAMs. Beyond this, frequency
degrades by 10–30% to support routing delays and place-
ment e↵ects of these larger memories. However, we envi-
sion tiling multiple smaller soft processors with fewer than
8 BRAMs to retain frequency advantages for a larger multi-
processor system, and to reflect more closely the resource ra-
tio on modern FPGAs. Each processor in this system would
hold only a small portion of the complete system binary.

6. CONCLUSIONS AND FUTURE WORK
We have shown an e�cient way of incorporating data

forwarding in DSP block based soft processors like iDEA.
By taking advantage of the internal loopback path typically
used for multiply accumulate operations, it is possible to al-
low dependent ALU instructions to immediately follow each
other, eliminating the need for padding NOPs. The result
is an increase in e↵ective IPC, and 5– 30% (mean 25%) im-
provement in wall clock time for a series of benchmarks when
compared to no forwarding and a 5% improvement when
compared to external forwarding. We have also undertaken
an initial study to explore the potential for such forwarding
in more complex benchmarks by analysing LLVM interme-
diate representation, and found that such forwarding is sup-
ported in a significant proportion of dependent instructions.
We aim to finalise full support for the CHStone benchmark
suite as well as open-sourcing the updated version of iDEA
and the toolchain we have described.
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Conclusion

• Exploiting low-level DSP block feature enabled 
efficient data forwarding to overcome significant 
number of padding NOPs 

• Maintain frequency of iDEA at close to 500MHz 
• Up to 25% improvement across range of 

benchmarks 
• Demonstrated applicability to larger programs
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