
On Data Forwarding in Deeply
Pipelined Soft Processors

H. Y. Cheah, S. A. Fahmy, N. Kapre
School of Computer Engineering

Nanyang Technological University

FPGA 2015

Introduction

• Hard macros allow us to build high frequency soft
processors (Octavo, iDEA, etc.)

• To achieve high frequency, deep pipelining is
required

• Results in significant idle cycles to resolve
dependencies

• Full data forwarding is too complex for a lean
processor

• Exploit loopback path in DSP block to provide
forwarding in iDEA soft processor

2

iDEA Soft Processor

• Fundamental novelty is exploiting DSP block
dynamic control signals

3

A1

B1

A2

B2

M P

D

A

B

C

= patterndetect

C

AD

D

P

30

25

18

48

48

18

48

48

25

INMODE ALUMODEOPMODE

iDEA Soft Processor

• A DSP-block based soft processor
• Maximises use of the DSP48E1 block
• 450MHz+ achievable frequency
• Architecture described in detail in FPT 2012 and

TRETS 2014

4

Fetch Decode Execute Write
Back

DSP

IMEM RF DMEM

loopback

iDEA Soft Processor

• We deeply pipeline iDEA by adding extra cycles to
the different processor stages

• DSP48E1 primitive requires 3 cycles to achieve
maximum speed

• Multiple ways of distributing extra cycles among
stages

5

Fetch Decode Execute Write
Back

DSP

IMEM RF DMEM

loopback

Deep Pipelining and NOPs

• High number of empty cycles required to pad
dependent instructions, increasing with depth

6

4 5 6 7 8 9 10 11 12 13 14 15
0

10 000

20 000

30 000

40 000

Pipeline Depth

N
u
m
b
er

of
N
O
P
s

crc fib fir
med mmul qsort

Padding for Dependencies

• Instruction cannot enter decode stage until its input
operand has been written back

• Insert empty instructions (NOPs) between
dependent instructions

7

Padding for Dependencies

• Instruction cannot enter decode stage until its input
operand has been written back

• Insert empty instructions (NOPs) between
dependent instructions

7

IF ID ID EX EX WB

IF ID ID EX EX WB4 NOPs

Padding for Dependencies

• Instruction cannot enter decode stage until its input
operand has been written back

• Insert empty instructions (NOPs) between
dependent instructions

7

IF IF ID ID EX EX EX WB

IF IF ID ID EX EX EX WB5 NOPs

IF ID ID EX EX WB

IF ID ID EX EX WB4 NOPs

Padding for Dependencies

• A few routes to overcoming this issue:
• Dynamic in hardware – cost
• Static in software

• External Loopback – add a forwarding path
around the execute stage

• Internal Loopback – proposed approach
using DSP block feature

• Hardware support through modified opcodes

8

Assembly with Loopback
• Original Assembly
li $1, x
li $2, a
li $3, b
li $4, c
mul $5, $1, $2
nop
nop
mul $6, $5, $1
mul $5, $1, $3
nop
nop
add $7, $5, $6
nop
nop
add $8, $7, $4
nop
nop
sw $8, 0($y)

9

• With loopback instructions
li $1, x
li $2, a
li $3, b
li $4, c
mul loop0, $1, $2
mul $6, loop0, $1
mul loop1, $1, $3
add loop2, loop1, $6
add $8, loop2, $4
nop
nop
sw $8, 0($y)

→ save 6 instructions

External Forwarding

• Add a path around the execute stage
• Allows a dependent instruction to start its

execute stage once the previous one has
completed

10

A

B

P

DSP Block

External Forwarding

• Add a path around the execute stage
• Allows a dependent instruction to start its

execute stage once the previous one has
completed

10

A

B

P

DSP Block

External Forwarding

• Add a path around the execute stage
• Allows a dependent instruction to start its

execute stage once the previous one has
completed

10

A

B

P

DSP Block

IF IF ID ID EX EX EX WB

IF IF ID ID EX EX EX WB2 NOPs

Internal Forwarding

• DSP block primarily used in filtering
• Multiply-accumulate is functional primitive
• Loopback path allows ALU output to be used for

accumulation
• Dynamic control signal  

determines whether 
this path is used

11

A

B

P

DSP Block

Internal Forwarding

• DSP block primarily used in filtering
• Multiply-accumulate is functional primitive
• Loopback path allows ALU output to be used for

accumulation
• Dynamic control signal  

determines whether 
this path is used

11

A

B

P

DSP Block

Internal Forwarding

• DSP block primarily used in filtering
• Multiply-accumulate is functional primitive
• Loopback path allows ALU output to be used for

accumulation
• Dynamic control signal  

determines whether 
this path is used

11

A

B

P

DSP Block

IF IF ID ID EX EX EX WB

IF IF ID ID EX EX EX WB

Loopback Analysis

• Identify loopback opportunities in assembly
• Loopback instruction — a subsequent dependent

arithmetic operation
• For external loopback: sufficient NOPs to pad the

execute stage
• For internal loopback: no NOPs required
• NOPs are inserted for dependencies that cannot

be resolved by this forwarding path

12

Parametric
Verilog

Constraints

Xilinx
ISE

Benchmark
C code

LLVM
MIPS

Area

Freq.

Cycles

Loopback
Analysis

Functional
Simulator

RTL
SimulatorAssembler

FPGA
Driver

ML605
Platform

In-System
Execution

Loopback Analysis

13

Processor Design Space

• First explore the impact of pipeline depth on area
and frequency

• Parameterised register stages in each processor
stage (1–5 cycles for Fetch, Decode, Execute)

• Overall pipeline depths of 4–15 cycles
• Multiple possible combinations for each overall

depth

14

Processor Design Space
• Consider all combinations of stage depths for each

overall processor depth
• Reach close to 500MHz from 10 stages onwards

15
4 5 6 7 8 9 10 11 12 13 14 15

200

250

300

350

400

450

500

Pipeline Depth

F
re
q
u
en

cy
(M

H
z)

Processor Design Space

• Clusters near where DSP block throughput limits
performance

• Significantly more registers than LUTs

16
150 200 250 300 350 400 450 500

200

400

600

800

1,000

Frequency (MHz)

A
re
a
U
n
it

Registers
LUTs

Processor Design Space

• Generally minimal impact for internal forwarding and
a little more for external forwarding

17

0

500

1,000

2
3
7 3
7
1

3
7
0

4
0
7 4
7
9 5
4
3

5
4
2 6
0
2

7
6
4

7
5
6

7
5
4

9
9
2

2
3
2 3
7
2

3
7
5

4
1
6 4
8
2 5
4
3

5
3
5 6
1
1

7
9
5 8
7
7

8
6
6 9
9
0

1
7
9

3
7
7

3
7
3

3
6
2 5

1
8 5
8
5

5
9
1 6
6
2

8
2
3

7
9
3

7
9
3

1
,0
0
0

R
eg
is
te
rs

None Internal Loopback External Forwarding

4 5 6 7 8 9 10 11 12 13 14 15

0

500

2
8
0

2
8
1

2
8
3

3
1
9

3
3
6

3
4
9

3
6
2

3
6
9

3
8
4

3
8
5

3
8
3

4
3
0

2
8
8

3
0
1

2
9
8

3
3
5

3
4
8

3
6
0

3
7
4

3
7
8

4
2
2

4
2
5

4
0
8

4
3
1

3
3
1

3
1
4

3
1
0 3
6
2

3
6
7

3
8
0

3
9
3

4
0
6

4
2
0

4
1
8

4
1
8

4
5
7

Pipeline Depth

L
U
T
s

IPC Improvement

• External Loopback
• Padding NOPs not

totally eliminated
• For depths of 4–6

(with 1-cycle EX), no
NOPs needed

• As EX depth
increases, savings are
curtailed due to need
for some NOPs

18

4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

Pipeline Depth

%
IP

C
S
av
in
gs

crc

fib fir

median mmult

qsort

IPC Improvement

• Internal Loopback
• Sustained savings

over no forwarding
• Benchmarks with long

dependency chains
• A 5–30%

improvement

19

4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

Pipeline Depth

%
IP

C
S
av
in
gs

crc

fib fir

median mmult

qsort

Execution Time

• Frequency and geomean wall clock time for all benchmarks
• Frequency of external loopback implementation lags initially
• At higher depths, differences disappear as the extra cycles

are added to stages other than execute
• A 25% improvement in runtime compared to no forwarding

20

14

16

18

20

22

24

26

28

30
T
im

e
(u
s)

4 5 6 7 8 9 10 11 12 13 14 15

200

250

300

350

400

450

500

Pipeline Depth

F
re
q
u
en

cy
(M

H
z)

Frequency (Int)

Frequency (Ext)

Internal Loopback

External Forwarding

Execution Time

• External loopback
• Depth 4 — 6 increase in execution time due to lower

operating frequency
• Gap is significant in shallower depths, but closes as depth

increases
• Reduced frequency is fundamental barrier 21

14

16

18

20

22

24

26

28

30
T
im

e
(u
s)

4 5 6 7 8 9 10 11 12 13 14 15

200

250

300

350

400

450

500

Pipeline Depth

F
re
q
u
en

cy
(M

H
z)

Frequency (Int)

Frequency (Ext)

Internal Loopback

External Forwarding

Execution Time

• Internal loopback
• Minimum runtime is at 10 cycle processor depth
• Anomalous peak at depth 9, due to a significant EX cycle

increase
• Results in 11–20% improvement at low depths

22

14

16

18

20

22

24

26

28

30
T
im

e
(u
s)

4 5 6 7 8 9 10 11 12 13 14 15

200

250

300

350

400

450

500

Pipeline Depth

F
re
q
u
en

cy
(M

H
z)

Frequency (Int)

Frequency (Ext)

Internal Loopback

External Forwarding

Limitations

• As a post-assembly step, limited by the instruction
order chosen by compiler

• Only ALU operations (add, subtract) can benefit
from internal forwarding

• Ideally, a compiler that could ensure such
instructions are kept together would improve results

23

Potential

• Aside from small benchmarks, explored potential for
CHStone benchmarks

24

Table 5: LLVM IR Profiling Results for CHStone

Bench
mark

Static Dynamic

Instr. Occur. % Instr. Occur. %

adpcm 1367 184 13 71,105 8,300 11
aes 2259 51 2 30,596 3,716 12
blowfish 1184 314 26 711,718 180,396 25
gsm 1205 82 6 27,141 1,660 6
jpeg 2388 95 4 1,903,085 131,092 6
mips 378 15 3 31,919 123 0.3
mpeg 782 80 10 17,032 60 0.3
sha 405 64 15 990,907 238,424 24

and just-in-time (JIT) compiler to obtain dynamic counts of
possible loopback occurrences. The results in Table 5 show
a mean occurrence of over 10% within these benchmarks.
We cannot currently support CHStone completely due to
missing support for 32b instructions and other development
issues.

Program Size Sensitivity: We also synthesized RTL
for iDEA with increased instruction memory sizes to hold
larger programs. We observed, that iDEA maintains its op-
timal frequency for up to 8 BRAMs. Beyond this, frequency
degrades by 10–30% to support routing delays and place-
ment e↵ects of these larger memories. However, we envi-
sion tiling multiple smaller soft processors with fewer than
8 BRAMs to retain frequency advantages for a larger multi-
processor system, and to reflect more closely the resource ra-
tio on modern FPGAs. Each processor in this system would
hold only a small portion of the complete system binary.

6. CONCLUSIONS AND FUTURE WORK
We have shown an e�cient way of incorporating data

forwarding in DSP block based soft processors like iDEA.
By taking advantage of the internal loopback path typically
used for multiply accumulate operations, it is possible to al-
low dependent ALU instructions to immediately follow each
other, eliminating the need for padding NOPs. The result
is an increase in e↵ective IPC, and 5– 30% (mean 25%) im-
provement in wall clock time for a series of benchmarks when
compared to no forwarding and a 5% improvement when
compared to external forwarding. We have also undertaken
an initial study to explore the potential for such forwarding
in more complex benchmarks by analysing LLVM interme-
diate representation, and found that such forwarding is sup-
ported in a significant proportion of dependent instructions.
We aim to finalise full support for the CHStone benchmark
suite as well as open-sourcing the updated version of iDEA
and the toolchain we have described.

7. REFERENCES
[1] Aeroflex Gaisler. GRLIB IP Library User’s Manual,

2012.
[2] Altera Corpration. Nios II Processor Design, 2011.
[3] G. M. Amdahl. Validity of the single processor

approach to achieving large scale computing
capabilities. In Proceedings of the Spring Joint
Computer Conference, pages 483–485, 1967.

[4] ARM Ltd. Cortex-M1 Processor, 2011.

[5] S. Beyer, C. Jacobi, D. Kröning, D. Leinenbach, and
W. J. Paul. Putting it all together - formal verification
of the VAMP. International Journal on Software Tools
for Technology Transfer, 8:411–430, 2006.

[6] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L.
Maskell. The iDEA DSP block based soft processor for
FPGAs. ACM Transactions on Reconfigurable
Technology and Systems, 7(3):19, 2014.

[7] H. Y. Cheah, S. A. Fahmy, and N. Kapre. Analysis
and optimization of a deeply pipelined FPGA soft
processor. In Proceedings of the International
Conference on Field Programmable Technology (FPT),
pages 235–238, 2014.

[8] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell. iDEA:
A DSP block based FPGA soft processor. In
Proceedings of the International Conference on Field
Programmable Technology (FPT), pages 151–158, Dec.
2012.

[9] P. G. Emma and E. S. Davidson. Characterization of
branch and data dependencies in programs for
evaluating pipeline performance. IEEE Transactions
on Computers, 36:859–875, 1987.

[10] Y. Hara, H. Tomiyama, S. Honda, and H. Takada.
Proposal and quantitative analysis of the CHStone
benchmark program suite for practical C-based
high-level synthesis. In Journal of Information
Processing, 2009.

[11] A. Hartstein and T. R. Puzak. The optimum pipeline
depth for a microprocessor. ACM Sigarch Computer
Architecture News, 30:7–13, 2002.

[12] R. Jayaseelan, H. Liu, and T. Mitra. Exploiting
forwarding to improve data bandwidth of
instruction-set extensions. In Proceedings of the
Design Automation Conference, pages 43–48, 2006.

[13] N. Kapre and A. DeHon. VLIW-SCORE: Beyond C
for sequential control of SPICE FPGA acceleration. In
Proceedings of the International Conference on Field
Programmable Technology (FPT), Dec. 2011.

[14] C. E. LaForest and J. G. Ste↵an. Octavo: an
FPGA-centric processor family. In Proceedings of the
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA), pages 219–228,
Feb. 2012.

[15] Lattice Semiconductor Corp. LatticeMico32 Processor
Reference Manual, 2009.

[16] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis and
transformation. In International Symposium on Code
Generation and Optimization, pages 75–86, 2004.

[17] M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and
R. Zafalom. Exploiting data forwarding to reduce the
power budget of VLIW embedded processors. In
Proceedings of Design, Automation and Test in
Europe, 2001, pages 252–257, 2001.

[18] K. Vipin, S. Shreejith, D. Gunasekara, S. A. Fahmy,
and N. Kapre. System-level FPGA device driver with
high-level synthesis support. In Proceedings of the
International Conference on Field Programmable
Technology (FPT), pages 128–135, Dec. 2013.

[19] Xilinx Inc. UG081: MicroBlaze Processor Reference
Guide, 2011.

Conclusion

• Exploiting low-level DSP block feature enabled
efficient data forwarding to overcome significant
number of padding NOPs

• Maintain frequency of iDEA at close to 500MHz
• Up to 25% improvement across range of

benchmarks
• Demonstrated applicability to larger programs

25

On Data Forwarding in Deeply
Pipelined Soft Processors

Thank You

