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Introduction

e Hard macros allow us to build high frequency soft
processors (Octavo, IDEA, etc.)

e [0 achieve high frequency, deep pipelining is
required

e Results in significant idle cycles to resolve
dependencies

e Full data forwarding is too complex for a lean
Processor

e Exploit loopback path in DSP block to provide
forwarding in IDEA soft processor



iDEA Soft Processor

e Fundamental novelty is exploiting DSP block

dynamic control signals
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iDEA Soft Processor

e A DSP-block based soft processor
e Maximises use of the DSP48E1 block
e 4150MHz+ achievable frequency

e Architecture described in detail in FPT 2012 and
TRETS 2014
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IDEA Soft Processor

¢ \\e deeply pipeline IDEA by adding extra cycles to
the different processor stages

e DSP48E1 primitive requires 3 cycles to achieve
Mmaximum speed

e Multiple ways of distributing extra cycles among

.
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Deep Pipelining and NOPs

e High number of empty cycles required to pad
dependent instructions, increasing with depth
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Padding for Dependencies

¢ |nstruction cannot enter decode stage until its input
operand has been written back

e [nsert empty instructions (NOPSs) between
dependent instructions
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Padding for Dependencies

¢ |nstruction cannot enter decode stage until its input

e [nsert empty instructions (NOPSs) between
dependent instructions
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Padding for Dependencies

e A few routes to overcoming this issue:
e Dynamic in hardware — cost
e Static in software

e External Loopback —add a forwarding path
around the execute stage

e |nternal Loopback — proposed approach
using DSP block feature

e Hardware support through modified opcodes



Assembly with Loopback

e Original Assembly
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mul
nop
nop
mul
mul
nop
nop
add
nop
nop
add
nop
nop
sw

$1, X
$2, a
$3, b
$4, c
$5, $1, $2

$6, $5, $1
$5, $1, $3

$7, $5, $6
$8, $7, $4

$8, 0(Sy)

¢ \Vith loopback instructions

1i $1, x

1i $2, a

1i 83, b

1i $4, c

mul loop®, $1, $2
mul $6, loopod, $1
mul loopl, $1, $3
add loop2, loopl, $6
add $8, loop2, $4
nop

nop

sw $8, 0(Sy)

— save 6 instructions



External Forwarding

e Add a path around the execute stage

e Allows a dependent instruction to start its
execute stage once the previous one has

completed
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External Forwarding

e Add a path around the execute stage

e Allows a dependent instruction to start its
execute stage once the previous one has
completed
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Internal Forwarding

e DSP block primarily used in filtering
e Multiply-accumulate is functional primitive

e | oopback path allows ALU output to be used for
accumulation
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Internal Forwarding

e DSP block primarily used in filtering
e Multiply-accumulate is functional primitive
e | oopback path allows ALU output to be used for

accumulation
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Internal Forwarding

e DSP block primarily used in filtering
e Multiply-accumulate is functional primitive
e | oopback path allows ALU output to be used for

accumulation
. . A L&
e Dynamic control signal
determines whether Q’?
this path is used i’ a
B - DSP Block
IF IF ID ID EX EX EX | WB

IF IF ID ID EX EX EX wB




Loopback Analysis

¢ |dentify loopback opportunities in assembly

¢ | oopback instruction — a subsequent dependent
arithmetic operation

e [For external loopback: sufficient NOPs to pad the
execute stage

e [For internal loopback: no NOPs required

e NOPs are inserted for dependencies that cannot
be resolved by this forwarding path
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Loopback Analysis
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Processor Design Space

e [irst explore the impact of pipeline depth on area
and frequency

e Parameterised register stages in each processor
stage (1-5 cycles for Fetch, Decode, Execute)

e Overall pipeline depths of 4-15 cycles

e Multiple possible combinations for each overall
depth
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Processor Design Space

e (Consider all combinations of stage depths for each

overall processor depth

e Reach close to 500MHz from 10 stages onwards
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Processor Design Space

e Clusters near where DSP block throughput limits
performance

e Significantly more registers than LUTs

o Registers
1,000 |x LUTs
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Processor Design Space

e Generally minimal impact for internal forwarding and

a little more for external forwarding
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IPC Improvement

e External Loopback

median —8— mmult —A— gsort
\ \ \

e Padding NOPs not
totally eliminated

e [For depths of 4-6
(with 1-cycle EX), no
NOPs needed

e As EX depth S B R T
Increases, savings are
curtailled due to need
for some NOPs

% IPC Savings
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IPC Improvement

e |nternal Loopback

—— cr¢ —w— fib —— fir
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e Sustained savings
over no forwarding

e Benchmarks with long
dependency chains

e A 5-30% ‘
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Execution Time
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* Frequency and geomean wall clock time for all benchmarks
* Frequency of external loopback implementation lags initially

e At higher depths, differences disappear as the extra cycles
are added to stages other than execute

e A 25% improvement in runtime compared to no forwarding



Execution Time
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e External loopback

e Depth 4 — 6 increase in execution time due to lower
operating frequency

e (Gap is significant in shallower depths, but closes as depth
Increases

e Reduced frequency is fundamental barrier



Execution Time
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Internal loopback
e Minimum runtime is at 10 cycle processor depth

e Anomalous peak at depth 9, due to a significant EX cycle
Increase

e Results in 11-20% improvement at low depths

Frequency (MHz)
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Limitations

e As a post-assembly step, limited by the instruction
order chosen by compiler

e Only ALU operations (add, subtract) can benefit
from internal forwarding

¢ |deally, a compiler that could ensure such
instructions are kept together would improve results
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Potential

¢ Aside from small benchmarks, explored potential for
CHStone benchmarks

Bench Static Dynamic

mark Instr. Occur. % Instr. Occur. %
adpcm 1367 184 13 71,105 8,300 11
aes 2259 51 2 30,596 3,716 12
blowfish 1184 314 26 711,718 180,396 25
gsm 1205 82 6 27,141 1,660 6
jpeg 2388 95 4 1,903,085 131,092 6
mips 378 15 3 31,919 123 0.3
mpeg 782 80 10 17,032 60 0.3

sha 405 64 15 990,907 238,424 24




Conclusion

e Exploiting low-level DSP block feature enabled
efficient data forwarding to overcome significant
number of padding NOPs

e Maintain frequency of IDEA at close to 500MHz

e Up to 25% improvement across range of
benchmarks

e Demonstrated applicability to larger programs
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