TECHNOLOGICAL
UNIVERSITY

On Data Forwarding in Deeply
Pipelined Soft Processors

H. Y. Cheah, S. A. Fahmy, N. Kapre

School of Computer Engineering
Nanyang Technological University

FPGA 2015

Introduction

e Hard macros allow us to build high frequency soft
processors (Octavo, IDEA, etc.)

e [0 achieve high frequency, deep pipelining is
required

e Results in significant idle cycles to resolve
dependencies

e Full data forwarding is too complex for a lean
Processor

e Exploit loopback path in DSP block to provide
forwarding in IDEA soft processor

iDEA Soft Processor

e Fundamental novelty is exploiting DSP block

dynamic control signals

30

INMODE

48

OPMODE ALUMODE

25

A ——>

A1

25
Vi

18

A2 i@_l]

D

AD

18
VA

B —+—

B1

—

B2

48
L

48

iDEA Soft Processor

e A DSP-block based soft processor
e Maximises use of the DSP48E1 block
e 4150MHz+ achievable frequency

e Architecture described in detail in FPT 2012 and
TRETS 2014

Fetch | Decode +—»| Execute —» Write

Back
=

IDEA Soft Processor

¢ \\e deeply pipeline IDEA by adding extra cycles to
the different processor stages

e DSP48E1 primitive requires 3 cycles to achieve
Mmaximum speed

e Multiple ways of distributing extra cycles among

.

Fetch | Decode +—»| Execute —» Write

Back
=

Deep Pipelining and NOPs

e High number of empty cycles required to pad
dependent instructions, increasing with depth

—e— CIC —w— fib —— fir
med —8— mmul —a— gsort
40000
92]
S
> 30000
kS
E 20000
: o
=)
Z.
10000 N
l " s 24— ﬁo/‘:[
e —— e ———
4 5 6 7 8 9 10 11 12 13

=
14 15
Pipeline Depth

Padding for Dependencies

¢ |nstruction cannot enter decode stage until its input
operand has been written back

e [nsert empty instructions (NOPSs) between
dependent instructions

Padding for Dependencies

¢ |nstruction cannot enter decode stage until its input
operand has been written back

e [nsert empty instructions (NOPSs) between
dependent instructions

IF ID ID EX EX || wB
< P>
4 NOPs IF ID ID EX EX || wB

Padding for Dependencies

¢ |nstruction cannot enter decode stage until its input

e [nsert empty instructions (NOPSs) between
dependent instructions

ID

ID

EX

EX

wB

operand has been written back

4 NOPs

IF

[+

ID

EX

EX

WB

IF

ID

ID

EX

EX

EX

wB

5 NOPs

IF

ID

EX

EX

EX

wWB

Padding for Dependencies

e A few routes to overcoming this issue:
e Dynamic in hardware — cost
e Static in software

e External Loopback —add a forwarding path
around the execute stage

e |nternal Loopback — proposed approach
using DSP block feature

e Hardware support through modified opcodes

Assembly with Loopback

e Original Assembly

11

11

11

11

mul
nop
nop
mul
mul
nop
nop
add
nop
nop
add
nop
nop
sw

$1, X
$2, a
$3, b
$4, c
$5, $1, $2

$6, $5, $1
$5, $1, $3

$7, $5, $6
$8, $7, $4

$8, 0(Sy)

¢ \Vith loopback instructions

1i $1, x

1i $2, a

1i 83, b

1i $4, c

mul loop®, $1, $2
mul $6, loopod, $1
mul loopl, $1, $3
add loop2, loopl, $6
add $8, loop2, $4
nop

nop

sw $8, 0(Sy)

— save 6 instructions

External Forwarding

e Add a path around the execute stage

e Allows a dependent instruction to start its
execute stage once the previous one has

completed

A _

ol

ot

|

DSP Block

10

External Forwarding

e Add a path around the execute stage

e Allows a dependent instruction to start its
execute stage once the previous one has

completed

1A

|

DSP Block

10

External Forwarding

e Add a path around the execute stage

e Allows a dependent instruction to start its
execute stage once the previous one has
completed

IF

IF ID

ID

EX

EX

wWB

2 NOPs

D

>

|

DSP Block

IF

IF

ID

EX

EX

EX

wB

10

Internal Forwarding

e DSP block primarily used in filtering
e Multiply-accumulate is functional primitive

e | oopback path allows ALU output to be used for
accumulation

AL
e Dynamic control signal l
determines whether Q’?

this path is used

>

B - DSP Block

Internal Forwarding

e DSP block primarily used in filtering
e Multiply-accumulate is functional primitive
e | oopback path allows ALU output to be used for

accumulation

. . A4
e Dynamic control signal

determines whether
this path is used

>

D

B - DSP Block

Internal Forwarding

e DSP block primarily used in filtering
e Multiply-accumulate is functional primitive
e | oopback path allows ALU output to be used for

accumulation
. . A L&
e Dynamic control signal
determines whether Q’?
this path is used i’ a
B - DSP Block
IF IF ID ID EX EX EX | WB

IF IF ID ID EX EX EX wB

Loopback Analysis

¢ |dentify loopback opportunities in assembly

¢ | oopback instruction — a subsequent dependent
arithmetic operation

e [For external loopback: sufficient NOPs to pad the
execute stage

e [For internal loopback: no NOPs required

e NOPs are inserted for dependencies that cannot
be resolved by this forwarding path

12

Loopback Analysis

Parametric L Area | |
Verilog _I—> Xilinx i E
-+ Freq. | !
ISE i '
Constraints | ' [Cycles] |
Benchmark Assembler RTL
C code Simulator
LLVM Loopback Functional
MIPS Analysis Simulator
ML605 FPGA In-System
Platform Driver Execution

13

Processor Design Space

e [irst explore the impact of pipeline depth on area
and frequency

e Parameterised register stages in each processor
stage (1-5 cycles for Fetch, Decode, Execute)

e Overall pipeline depths of 4-15 cycles

e Multiple possible combinations for each overall
depth

14

Processor Design Space

e (Consider all combinations of stage depths for each

overall processor depth

e Reach close to 500MHz from 10 stages onwards

Frequency (MHz)

500

450

400

350

300

250

200

I f |
X £ ¥ };\
§ X
| X X |
x X 9
X % X
DI § % :
: Eox o .3
g
S T S T
% " :
g ; % x
o X .
X
| | | | | | | |
5 6 o 10 11 12 13 14 15

Pipeline Depth

15

Processor Design Space

e Clusters near where DSP block throughput limits
performance

e Significantly more registers than LUTs

o Registers
1,000 |x LUTs

800 [

Area Unit
o
S
S
I

400

200 | :
| | | | |
150 200 250 300 350 400 450 500
Frequency (MHz)

Processor Design Space

e Generally minimal impact for internal forwarding and

a little more for external forwarding

000°T
066
z66

998

L

[1None I Internal Loopback Il External Forwarding

I

€64

|

i

Vel

€64
L8
9G.L

|

€C8
G6.
V9L

I

119
¢09

N
Nel
©

T6S
e

G8¢

o
<t
0

1

€ve

8T1¢

o
= 60
< <H

N
©
ap]

(@R Ialas]
I~ D= I~
m;mom

55
S
S

o~
I~ b~
Mmm

TLE

[45%4
LET

=
r~
[i

|

i

\
11

|

|

I

| |

T

0

S
[fiill

LGV
- 1EY
(01547

8TV
I~ 80¥%
€8¢

8TV
- 9cv
g8¢

0cvy
- CCV
¥8¢

907
- 8.€
69¢€

€6¢€
I TiE
c9¢€

08¢
— 09¢
6V€

L9¢€
- 8V€
9€¢e

c9¢

I

o0 @
B
N

[
<t
oo
Ei [l

T€E
= 88¢C

\ \ \
13 14 15

12

10

I
9
Pipeline Depth

1,000 |-
500 |

0

SI0)SISoY

%
.

200 |

SLNT

17

IPC Improvement

e External Loopback

median —8— mmult —A— gsort
\ \ \

e Padding NOPs not
totally eliminated

e [For depths of 4-6
(with 1-cycle EX), no
NOPs needed

e As EX depth S B R T
Increases, savings are
curtailled due to need
for some NOPs

% IPC Savings

18

IPC Improvement

e |nternal Loopback

—— cr¢ —w— fib —— fir
median —8— mmult —A— gsort

e Sustained savings
over no forwarding

e Benchmarks with long
dependency chains

e A 5-30% ‘
Improvement 0

1]
4 5 6 7 8 9 10 11 12 13 14 15
Pipeline Depth

% IPC Savings

19

Execution Time

30 . T T 500
—+— Frequency (Int) t t o
o8 | Frequency (Ext)
=% = Internal Loopback 450
% =@ External Forwarding
-400 =
24 - =
/(/)\ 2
G -1 350 \;
o 22| O
= & g
..... e, il =)
= 20" v 4 “3‘/ 300 &
*,, RN “‘- “-5;; 4 Lsa
18 ‘ Kammmm= gyem————r 4950
JUPE SO .
1 ~~~~~~~~~~~~~ *, yu® ‘ﬂx'
6 BT e 1200
*»
14 | \ \ \ \
4 5 6 7 8 9 10 11 12 13 14 15

Pipeline Depth

* Frequency and geomean wall clock time for all benchmarks
* Frequency of external loopback implementation lags initially

e At higher depths, differences disappear as the extra cycles
are added to stages other than execute

e A 25% improvement in runtime compared to no forwarding

Execution Time

30 500

—— Frequency (Int)

9g | —— Frequency (Ext)
=%+ Internal Loopback
=@ External Forwarding

450

26
400
24 ani
z 350 =
T 22 &
£ . 5
H IIIIII 5
20 300 §
[] {1} -
18 L] [1] Ll _‘----' 250
16477 I g et et e
O AT T e T e 200
14 :
4 5 6 7 8 9 10 11 12 13 14 15

Pipeline Depth

e External loopback

e Depth 4 — 6 increase in execution time due to lower
operating frequency

e (Gap is significant in shallower depths, but closes as depth
Increases

e Reduced frequency is fundamental barrier

Execution Time

30 T T 500
—+— Frequency (Int) t t b
o8 | Frequency (Ext)
= 9@ Internal Loopback 450
2% @ External Forwarding
-400
. 24r
n
G -1 350
o 22|
= a Q”
i oeeeeseeeeeeet a0
20" g o
. o) RS
... Q)
18 |- & a = "“‘*..-I.;'l"a‘-"i' lllll a 19250
RPPL
...... - B el N __‘__.....-m“”‘
16 'l--..”“ 0,...'&..-"“““ 1900
14 \ \ \ | \ \ \ \
4) 6 7 8 9 10 11 12 13 14 15

Pipeline Depth

Internal loopback
e Minimum runtime is at 10 cycle processor depth

e Anomalous peak at depth 9, due to a significant EX cycle
Increase

e Results in 11-20% improvement at low depths

Frequency (MHz)

22

Limitations

e As a post-assembly step, limited by the instruction
order chosen by compiler

e Only ALU operations (add, subtract) can benefit
from internal forwarding

¢ |deally, a compiler that could ensure such
instructions are kept together would improve results

23

Potential

¢ Aside from small benchmarks, explored potential for
CHStone benchmarks

Bench Static Dynamic

mark Instr. Occur. % Instr. Occur. %
adpcm 1367 184 13 71,105 8,300 11
aes 2259 51 2 30,596 3,716 12
blowfish 1184 314 26 711,718 180,396 25
gsm 1205 82 6 27,141 1,660 6
jpeg 2388 95 4 1,903,085 131,092 6
mips 378 15 3 31,919 123 0.3
mpeg 782 80 10 17,032 60 0.3

sha 405 64 15 990,907 238,424 24

Conclusion

e Exploiting low-level DSP block feature enabled
efficient data forwarding to overcome significant
number of padding NOPs

e Maintain frequency of IDEA at close to 500MHz

e Up to 25% improvement across range of
benchmarks

e Demonstrated applicability to larger programs

25

TECHNOLOGICAL
UNIVERSITY

On Data Forwarding in Deeply
Pipelined Soft Processors

Thank You

