Mapping-Aware Constrained Scheduling
for LUT-Based FPGAs

Mingxing Tan, Steve Dai, Udit Gupta, Zhiru Zhang

School of Electrical and Computer Engineering
Cornell University

ST

cf%: %\ . . -

Ul te=))3 Cornell University .=

X 7 T
ED A

High-Level Synthesis (HLS) for FPGAs

» HLS has become increasingly important to achieve higher
design productivity & quality

out = ((il & i2) ~ i3)
(14 & 15) / C/C++ program /

SDAccel/Vivado HLS

i1i2 i3 i4i5 Altera OpenCL Compiler
HLS Legup

ﬂTL code /

RTL/Logic synthesis

i1i2i3 i4i5

7Y
LUT LUT AGA implementatk/

LUT

A Typical HLS Flow

High-level Programming
Languages

if (condition) {

(C/C++, OpenCL, SystemC } else {
=| Java, Matlab, Python ... Lhi=ath; Untimed high-level
— > :2 - g +cfl, d inti
M R escription
z=t,—t;;
Compilation }
l ~
Transformations R4
! | > 3
Control data flow graph (CDFG)
Scheduling
1 1
0 SO—
Resource V S1
sharing -‘i’ — | \= Y/
1 > o 52 4{
—
RTL
. 3 cycles
generation

Timed design with clock cycles

SDC-Based Scheduling

v

Scheduling based on system of difference constraints

(SDC) formulation [Cong and Zhang, DAC’06]

I4

iy i3 i, s
01 HH
2ns
o
0,
2ns
(o
2ns

Total delay = 6ns > 5ns

Target clock period: 5ns
Delay estimate: 2ns

Let s; be the schedule variables

= Dependency constraints

<0,,0>:8,—S,<0
<0,,0>:8,—S,<0
<0;,0,>:8;—5,<0

= Cycle time constraint

= Latency constraints
= Resource constraints

SDC-Based Scheduling

» Representing SDC constraints with constraint graph

SDC constraints S;—S,=< 0
S,—S;= 0
S:{S;, 82 ,53,54 S;—S,=< 0
81 845 '1
Constraint graph 0
, =

Total delay = 6ns > 5ns

Price of abstraction? Pre-characterized delay estimation
for individual operation is often too pessimistic for logic operations

L'.

Lookup Tables (LUTs)

> A k-input LUT (k-LUT) can be configured to implement any
k-input 1-output combinational logic
— Delay is a constant for all K-LUTs

il i2 i3 4 i5
>

0/1
0/1
0/1 0,

0/

0/

0/

0/1 '
1

0/1 :I
1 (o) 4

| | —— Cone

Xo X4 Xp 3-LUT single-output subgraph

3-LUT

O3

cut
------- ~="1inputs to the cone

XN\
|
|

Cones and cuts are K-feasible when # of inputs =K

5

Mapping Logic Gates into LUTs

» Mapping enables more aggressive chaining by
packing more operations into each cycle
— LUT level I(v): arrive time in depth of LUTs

il i2 3 i4i5

e ————

-
-
S -~
\N -

Considering Mapping in Scheduling

Conventional scheduling Considering LUT mapping
il i2 i3 4 i5

il i2 13 4 i5

0,
2ns
0;
----------- Cycle 1
Estimated delay = 6ns > 5ns, 2 cycles Estimated delay = 4ns < 5ns, 1 cycle

A better schedule needs to consider mapping!

Scheduling and Mapping Interdependence

Determine register boundaries
HLS — Prefer mapping information for
more accurate delay estimation

Mapping

Logic

Synthesis Determine LUT mapping

= Typically occurs between register boundaries

MAPS: Mapping-Aware Constrained Scheduling

» Considering mapping in scheduling to
Idea enable more aggressive chaining

> An algorithm that finds the minimum-latency
Contributions schedule under SDC constraints
considering LUT mapping

» Significant latency reduction over a range of

Results logic-intensive applications

L-Values for MAPS

> We introduce L-values to represent the integrated

scheduling and mapping information

L, =(s, I,)

7\

(0,

Time step LUT level (o,
Inter-cycle Intra-cycle (1

scheduling mapping ’

information Information (1,

Goal: find a legal schedule with

- . . Time ste
minimum L-value for each operation P

Cycle 0
1)

1)

2)
Cycle 1

LUT level

10

Relaxation-Based Labeling

> We keep refining the lower-bound of L-values by relaxation
— A generalization of Bellman-Ford shortest-path algorithm

Step1: Initialize the L-value as (0, 0), an obvious lower-bound
without considering any constraint

Step2: lteratively improve the L-values as follows until convergency

/For each node on constraint graph N
(1) Mapping constraints: choose the best cut with minimal L-value
=] L 0, Del
fo vCECUT, %12)5{ u+ (0, Delay,)}
_ anh (2) Scheduling constraints: decide new L-values according to input edges
lteration gy = max {L, + (Lat,_,,,0)+ (0, Delay,)}
Yu—veFE
(3) Update the L-value based on mapping and scheduling constraints
L, = max{ [y, Gv
_ {fv, 90})

Return a legal schedule when the algorithm converges .

From CDFG to Constraint Graph

> We use constraint graph (CG)to A B

represent all SDC constraints " ¢~ Dependence
[source: Zhang and Liu, ICCAD13] é@ — constraint
C Sp—Sc =0

; Latency
Black-box operatlo i constramt
OI

Constraint graph b

(0,00 A B (0, 0)

Constralnt graph

Relaxation-Based Labeling
Assuming 3-LUTs and LUT level =3

Step1: Initialize the L-value as (0,0) for each node

Step2: lteratively update L-values by relaxation

Ilteration 1
Node D

Propagate L-values for mapping constraints

LUT level —
o P v, gt (O Delan)}

Ly (0, 0)

cuttA, By Ly (0, 1)
v

=

cuti(C, 0} Lgz (0, 2) Cut2{C,A.B} L.z (0, 1)

Choose the best cut

with minimal L-value s

(0, 0) (0, 0) . -
A B Relaxation-Based Labeling

\ 4
d\th? Assuming 3-LUTs and LUT level< 3
©0C_ (D)o
Ne__(oa 1) Step1: Initialize the L-value as (0,0) for each node
Ll
il i
I
:: E ; Step2: Iteratively update L-values by relaxation
Erp! Iteration 1
et Node |
Y
,' Propagate L-values for mapping constraints
(EO’ 2)1 [\ G Black-box operation H has only trivial cut
; \
e

Maximum LUT level is restricted by cycle time

~0:-0)- Time step LUT level

03 _ iy
1 | Ly: (0, 3)
(1,1)'~51
} L: (@) (1, 1)

Constraint graph LUT level= 3
14

(0, 0) (0, 0) . .
"o B Relaxation-Based Labeling

Assuming 3-LUTs and LUT level< 3

Step1: Initialize the L-value as (0,0) for each node

Step2: lteratively update L-values by relaxation

Iteration 1 I::> Iteration 2

Node |
Scheduling constrainis

v — L L U—V 7D v
gv = max {Ly+ (Laty—v,0) + (0, Delay,)}

Back edge from | to F: maximum latency constraint
F and | must be in the same cycle

L:(1, 1)

!
L (1§f;;~§‘§§‘27‘?i 1)
L:(1, 2)

Constraint graph

L:(1, 3)

15

(0, 0) (0, 0) . .
"o B Relaxation-Based Labeling

Assuming 3-LUTs and LUT level< 3

Step1: Initialize the L-value as (0,0) for each node

Step2: lteratively update L-values by relaxation

Iteration 1 I::> Iteration 2 I::) Iteration 3

Node F

Mapping constraints: satisfied

Scheduling constraints: F and | are in the same cycle

Every node reaches its minimum legal L-value!

The algorithm converges

Constraint graph

16

Optimality of MAPS Labeling

» Proof by induction that MAPS labeling algorithm always
maintains the lower bound of L-values

Base Case: All L-values are initialized as (0,0), which are the
lower bound without considering any constraints;

Induction: assume iteration k maintain the lower bound of L-values,

=> L-values in iteration (k+1) are also lower bound,
because our algorithm only monotonically increases
minimal L-values that satisfy a part of the given constraints

Upon convergence, MAPS returns a legal schedule
with a minimum L-value for each node

17

Conventional vs. MAPS schedule

0, 0)A B (©,0)

2ns

-~
~

——————— =Swdm==s Cycle 3 === Cycle2

Conventional schedule MAPS schedule

3 cycles; 2 cycle/iteration Total 2 cycles; 1 cycle/iteration
18

Incremental Scheduling for Resource Constraints

» Resource constraints for black-box operations
— e.g. memory port limits, hardened multipliers

» Incremental scheduling heuristic
— Legalize the initial solution from the labeling step
— Gradually serialize resource-constrained operations

19

Experimental Results

> Setup
— A state-of-the-art commercial HLS
« MAPS is implemented an LLVM pass

- We leverage the commercial HLS as the back end for RTL generation
« We use the same commercial HLS tool as baseline

— Target device: Virtex-7 FPGA with 6-LUTs
* 5ns target clock period

» Benchmarks
— 3 kernels: XORR, GFMUL, CLZ

- 8 logic-intensive applications from MiBench and CHStone
- Communication: CRC, Reed-Solomon decoder (RS)
« Cryptography: MD5, AES, SHA
+ Scientific Computing: DFADD, Mersenne twister (MT)
* Machine Learning: Digit recognition (DR)

20

Latency Reduction

Generate combinational circuits
| For XORR and GFMUL kernels

|
I1,00%100°4
100% : 191%
|
- i
S 80% || 1 —-._. Reduce by up to 60% for CRC
= I i | | 160% 1 Average reduction: 29%
S 60% {l] I !
S : K
& 40% i M
3 | -
e 20% {1] ,
2 : I I
S 0% M. r -) :
R N X S T NS - BN SRS SRR AR = SRR e
© Q
|]\ J
Y Y
3 kernels 8 real-life applications

5ns target clock period is met for all designs

MAPS significantly reduces latency by enabling more aggressive chaining

21

Resource Usage Comparison

Slight resource increase for some apps

- up to 28% reduction : |
: -) |1 04°/ i o
S 100% ~90% 86% r bﬁ/ v *b3%, 95% gqe;, 101%
a 172% | o] I
..6 0°/o: : : I
i
! i
° i ! ! :
| | I |
is Ll Ll !
==l
L4 25%
1D 102% 99/
o = I . |
& 100% up to 59% red U'C-tl-oq : = —
3K] 160% .
D 131 i 0/°
g 22% | |
— 0°/o I I
g 0% * l _
+0Q‘ Q@ o oQ“ & ¥ éb Qo 6‘
Lo |\ Q '

3 kernels 8 real-life applications

Average reduction

#LUT: 9%

Average reduction

#FF: 25%

22

Case Study for Digit Recognition (DR)

Random Sampling of MNIST

ﬂ 0000000

0011100
0110010
7 “ 0110110
0011100
NS HONE

(a) Binary string in 2D array (b) Binary image

®
=
)
)|
S

Target clock period = 5ns
49 input bits

Baseline:
voidbcount_set_bitg 7 levels of Operations
(bit49 input, bit6 &ones)
p 2 cycles
for (int i=0; i<49; i++)
ones += input[i]; MAPS:
} 3 levels of 6-LUTs
6 output bits 1 cycles

23% latency reduction for the entire DR app

23

Conclusions

» Cross-layer optimizations that integrate different steps of
the FPGA flow can enable next leap in QoR improvement
for HLS

» MAPS: a mapping-aware constrained scheduling algorithm
- Elegantly integrate LUT mapping information into scheduling
— Achieve latency-optimal schedule under SDC constraints
- Significantly improve performance and reduce hardware resource

24

THANKS!

QUESTIONS?

26

Complexity of MAPS Algorithm

» Each iteration will traverse each node and edge once
- Complexity for a single iteration: O(IVIK+IEI)

» MAPS labeling converges within at most D*IVI iterations

— Each iteration will monotonically increase the L-value by at least 1

— The upper bound of each L-value is D*IVI, where D denotes the
maximum delay for any edge; D is usually a small constant.

» Total complexity of MAPS Labeling is O(D*IVI*(IVIK+IEI)),
which is polynomial when K and D are small constants

MAPS labeling guarantees to obtain a legal schedule with
optimal L-value for each node in pseudo-polynomial time

27

Runtime Evaluation for MAPS

Synthesis time (seconds)

Baseline MAPS

PC 23.0 23.0
XORR 56.0 64.7
GFMUL 4.3 11.1
CLZ 24.0 29.7
CRC 3.9 11.8
MD5 15.6 28.8
AES 20.5 61.9
SHA 8.9 19.6
DFADD 9.3 11.1
MT 36.5 193.5

RS 23.0 24.6

DR 44.5 50.5

Target Clock Period = 5ns

Design Approach CP(ns) LAT LUT FF
baseline 2.88 1 133 17

XORR MAPS 228 0 (-100%) 120 (-10%) 0 (-100%)
baseline 2.93 2 50 27

GFMUL MAPS 1.68 0 (-100%) 43 (-14%) 0 (-100%)
baseline 2.93 11 177 169

CLZ MAPS 293 1 (-91%) 107 (-40%) 38 (-78%)
baseline 2.93 161 57 310

CRC MAPS 293 65 (-60%) 41 (-28%) 126 (-59%)
baseline 4.39 126 9175 6747

MD5 MAPS 424 95 (-25%) 8812 (-4%) 8417 (+25%)
baseline 4.78 197 4895 5855

AES MAPS 4.44 133 (-32%) 3989 (-19%) 3540 (-40%)
baseline 4.21 561 2916 3196

SHA MAPS 3.87 421 (-25%) 3032 (+4%) 3263 (+2%)
baseline 4.81 11 5950 2735

DFADD MAPS 4.80 10 (-9%) 5528 (-7%) 2106 (-23%)
baseline 3.96 146 3617 4630

MT MAPS 4.03 130 (-11%) 3447 (-5%) 2295 (-50%)
baseline 4.23 124370 1710 974

RS MAPS 4.30 79222 (-36%) 1546 (-10%) 828 (-15%)
baseline 3.70 520021 625 432

DR MAPS 3.80 400021 (-23%) 630 (+1%) 427 (-1%)

AVERAGE -29% 9% -25% 7

Kernel: Xor Reduction for Bit Vector

Target clock period is 5ns, each one-bit addition has 2ns latency

Original Schedule
2 cycles, 4 LUTs

,/ 6-LUT

T T T T T T T eyele 1
MAPS Schedule

1 cycles, 3 LUTs

30

Kernel Example: Galois Field Multiplication (GFMUL)

Cy¢le 0

Target clock
period = 5ns

Cycle 1

-]
w

\®)
>
w

Cycle 3

Original Schedule
4 cycles, 3 LUTs

MAPS Schedule
1 cycle, 1 LUT

31

Separate Mapping and Scheduling

» How about performing mapping before scheduling?

===5 Cycle 0 Cycle 0

Assuming each LUT e m o o o o o o s o o o o o o

1
|
1
|
1
|
:
: takes a full cycle Cycle 1
1
|
1
1

Cycle 1

Cycle 2 Cycle 2
Mapping + Scheduling Optimal schedule
2 cycles per iteration 1 cycle per iteration

Total Latency = 2*N for N iterations Total Latency = N for N iterations 2

Loop-Prioritized Mapping and Scheduling

> How about prioritizing mapping for loops

; Cycle 0
1
1
1
1
1
1
1
1
1
1

Cycle 2

Mapping + Scheduling Optimal schedule
3 cycles, 3 LUTs 2 cycles, 2 LUTs

33

Retiming Based Mapping and Scheduling

» Can we address the problem using retiming?

Retiming
will not
remove ™

registers
in loops

Mapping + Scheduling

2 cycles per iteration
Total Latency = 2*N for N iterations

Mapping + Scheduling + Retiming

Still 2 cycles per iteration
34

Word-Level Tracking
> Bit-Level Dependence Tracking

A B

i
AND, SHIFT,
of BN
XOR TRUNC

C C
inputs(C) = {A, B} inputs(C)={Ag}

ADD,
SUB

C
inputs(C)=
{Ag, Ay, ..., By, By, ..}

35

