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High-Level Synthesis (HLS) for FPGAs

» HLS has become increasingly important to achieve higher
design productivity & quality
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A Typical HLS Flow
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SDC-Based Scheduling

v

Scheduling based on system of difference constraints

(SDC) formulation [Cong and Zhang, DAC’06]
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Total delay = 6ns > 5ns

Target clock period: 5ns
Delay estimate: 2ns

Let s; be the schedule variables

= Dependency constraints
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= Cycle time constraint

= Latency constraints
= Resource constraints



SDC-Based Scheduling

» Representing SDC constraints with constraint graph

SDC constraints S;—S,=< 0
S,—S;= 0
S:{S;, 82 ,53,54 S;—S,=< 0
81 845 '1
Constraint graph 0
, =

Total delay = 6ns > 5ns

Price of abstraction? Pre-characterized delay estimation
for individual operation is often too pessimistic for logic operations
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Lookup Tables (LUTs)

> A k-input LUT (k-LUT) can be configured to implement any
k-input 1-output combinational logic
— Delay is a constant for all K-LUTs
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Mapping Logic Gates into LUTs

» Mapping enables more aggressive chaining by
packing more operations into each cycle
— LUT level I(v): arrive time in depth of LUTs
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Considering Mapping in Scheduling

Conventional scheduling Considering LUT mapping
il i2 i3 4 i5

il i2 13 4 i5

0,
2ns
0;
----------- Cycle 1
Estimated delay = 6ns > 5ns, 2 cycles Estimated delay = 4ns < 5ns, 1 cycle

A better schedule needs to consider mapping!




Scheduling and Mapping Interdependence

Determine register boundaries
HLS — Prefer mapping information for
more accurate delay estimation

Mapping

Logic

Synthesis Determine LUT mapping

= Typically occurs between register boundaries



MAPS: Mapping-Aware Constrained Scheduling

» Considering mapping in scheduling to
Idea enable more aggressive chaining

> An algorithm that finds the minimum-latency
Contributions schedule under SDC constraints
considering LUT mapping

» Significant latency reduction over a range of

Results logic-intensive applications



L-Values for MAPS

> We introduce L-values to represent the integrated

scheduling and mapping information
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Goal: find a legal schedule with
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LUT level

10



Relaxation-Based Labeling

> We keep refining the lower-bound of L-values by relaxation
— A generalization of Bellman-Ford shortest-path algorithm

Step1: Initialize the L-value as (0, 0), an obvious lower-bound
without considering any constraint

Step2: lteratively improve the L-values as follows until convergency

/For each node on constraint graph N
(1) Mapping constraints: choose the best cut with minimal L-value
= ] L 0, Del
fo vCECUT, %12)5{ u+ (0, Delay, )}
_ anh (2) Scheduling constraints: decide new L-values according to input edges
lteration gy = max {L, + (Lat,_,,,0)+ (0, Delay,)}
Yu—veFE
(3) Update the L-value based on mapping and scheduling constraints
L, = max{ [y, Gv
_ {fv, 90} )

Return a legal schedule when the algorithm converges .



From CDFG to Constraint Graph

> We use constraint graph (CG)to A B

represent all SDC constraints " ¢~ Dependence
[source: Zhang and Liu, ICCAD13] é@ — constraint
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(0,00 A B (0, 0)

Constralnt graph

Relaxation-Based Labeling
Assuming 3-LUTs and LUT level =3

Step1: Initialize the L-value as (0,0) for each node

Step2: lteratively update L-values by relaxation

Ilteration 1
Node D

Propagate L-values for mapping constraints

LUT level —
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Choose the best cut

with minimal L-value s
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(0, 0) (0, 0) . .
"o B Relaxation-Based Labeling

Assuming 3-LUTs and LUT level< 3

Step1: Initialize the L-value as (0,0) for each node

Step2: lteratively update L-values by relaxation

Iteration 1 I::> Iteration 2

Node |
Scheduling constrainis

v — L L U—V 7D v
gv = max {Ly+ (Laty—v,0) + (0, Delay, )}

Back edge from | to F: maximum latency constraint
F and | must be in the same cycle
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!
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Constraint graph

L:(1, 3)
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(0, 0) (0, 0) . .
"o B Relaxation-Based Labeling

Assuming 3-LUTs and LUT level< 3

Step1: Initialize the L-value as (0,0) for each node

Step2: lteratively update L-values by relaxation

Iteration 1 I::> Iteration 2 I::) Iteration 3

Node F

Mapping constraints: satisfied

Scheduling constraints: F and | are in the same cycle

Every node reaches its minimum legal L-value!

The algorithm converges

Constraint graph
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Optimality of MAPS Labeling

» Proof by induction that MAPS labeling algorithm always
maintains the lower bound of L-values

Base Case: All L-values are initialized as (0,0), which are the
lower bound without considering any constraints;

Induction: assume iteration k maintain the lower bound of L-values,

=> L-values in iteration (k+1) are also lower bound,
because our algorithm only monotonically increases
minimal L-values that satisfy a part of the given constraints

Upon convergence, MAPS returns a legal schedule
with a minimum L-value for each node
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Conventional vs. MAPS schedule

0, 0)A B (©,0)

2ns
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——————— =Swdm==s Cycle 3 === Cycle2

Conventional schedule MAPS schedule

3 cycles; 2 cycle/iteration Total 2 cycles; 1 cycle/iteration
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Incremental Scheduling for Resource Constraints

» Resource constraints for black-box operations
— e.g. memory port limits, hardened multipliers

» Incremental scheduling heuristic
— Legalize the initial solution from the labeling step
— Gradually serialize resource-constrained operations
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Experimental Results

> Setup
— A state-of-the-art commercial HLS
« MAPS is implemented an LLVM pass

- We leverage the commercial HLS as the back end for RTL generation
« We use the same commercial HLS tool as baseline

— Target device: Virtex-7 FPGA with 6-LUTs
* 5ns target clock period

» Benchmarks
— 3 kernels: XORR, GFMUL, CLZ

- 8 logic-intensive applications from MiBench and CHStone
- Communication: CRC, Reed-Solomon decoder (RS)
« Cryptography: MD5, AES, SHA
+ Scientific Computing: DFADD, Mersenne twister (MT)
* Machine Learning: Digit recognition (DR)

20



Latency Reduction

Generate combinational circuits
| For XORR and GFMUL kernels
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5ns target clock period is met for all designs

MAPS significantly reduces latency by enabling more aggressive chaining
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Resource Usage Comparison

Slight resource increase for some apps
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Case Study for Digit Recognition (DR)

Random Sampling of MNIST

ﬂ 0000000

0011100
0110010
7 “ 0110110
0011100
NS HONE

(a) Binary string in 2D array (b) Binary image

®
=
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Target clock period = 5ns
49 input bits

Baseline:
voidbcount_set_bitg 7 levels of Operations
(bit49 input, bit6 &ones)
p 2 cycles
for (int i=0; i<49; i++)
ones += input[i]; MAPS:
} 3 levels of 6-LUTs
6 output bits 1 cycles

23% latency reduction for the entire DR app
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Conclusions

» Cross-layer optimizations that integrate different steps of
the FPGA flow can enable next leap in QoR improvement
for HLS

» MAPS: a mapping-aware constrained scheduling algorithm
- Elegantly integrate LUT mapping information into scheduling
— Achieve latency-optimal schedule under SDC constraints
- Significantly improve performance and reduce hardware resource
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THANKS!

QUESTIONS?
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Complexity of MAPS Algorithm

» Each iteration will traverse each node and edge once
- Complexity for a single iteration: O(IVIK+IEI)

» MAPS labeling converges within at most D*IVI iterations

— Each iteration will monotonically increase the L-value by at least 1

— The upper bound of each L-value is D*IVI, where D denotes the
maximum delay for any edge; D is usually a small constant.

» Total complexity of MAPS Labeling is O(D*IVI*(IVIK+IEI)),
which is polynomial when K and D are small constants

MAPS labeling guarantees to obtain a legal schedule with
optimal L-value for each node in pseudo-polynomial time
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Runtime Evaluation for MAPS

Synthesis time (seconds)

Baseline MAPS

PC 23.0 23.0
XORR 56.0 64.7
GFMUL 4.3 11.1
CLZ 24.0 29.7
CRC 3.9 11.8
MD5 15.6 28.8
AES 20.5 61.9
SHA 8.9 19.6
DFADD 9.3 11.1
MT 36.5 193.5

RS 23.0 24.6

DR 44.5 50.5




Target Clock Period = 5ns

Design Approach CP(ns) LAT LUT FF
baseline  2.88 1 133 17

XORR MAPS 228 0 (-100%) 120 (-10%) 0 (-100%)
baseline  2.93 2 50 27

GFMUL  MAPS 1.68 0 (-100%) 43 (-14%) 0 (-100%)
baseline  2.93 11 177 169

CLZ MAPS 293 1 (-91%) 107 (-40%) 38 (-78%)
baseline  2.93 161 57 310

CRC MAPS 293 65 (-60%) 41 (-28%) 126 (-59%)
baseline 4.39 126 9175 6747

MD5 MAPS 424 95 (-25%) 8812 (-4%) 8417 (+25%)
baseline 4.78 197 4895 5855

AES MAPS  4.44 133 (-32%) 3989 (-19%) 3540 (-40%)
baseline 4.21 561 2916 3196

SHA MAPS  3.87 421 (-25%) 3032 (+4%) 3263 (+2%)
baseline  4.81 11 5950 2735

DFADD  MAPS  4.80 10 (-9%) 5528 (-7%) 2106 (-23%)
baseline 3.96 146 3617 4630

MT MAPS  4.03 130 (-11%) 3447 (-5%) 2295 (-50%)
baseline 4.23 124370 1710 974

RS MAPS  4.30 79222 (-36%) 1546 (-10%) 828 (-15%)
baseline 3.70 520021 625 432

DR MAPS  3.80 400021 (-23%) 630 (+1%) 427 (-1%)

AVERAGE -29% 9% -25% 7




Kernel: Xor Reduction for Bit Vector

Target clock period is 5ns, each one-bit addition has 2ns latency

Original Schedule
2 cycles, 4 LUTs

,/ 6-LUT
_______
T T T T T T T eyele 1
MAPS Schedule

1 cycles, 3 LUTs
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Kernel Example: Galois Field Multiplication (GFMUL)

Cy¢le 0

Target clock
period = 5ns

Cycle 1

-]
w

\®)
>
w

Cycle 3

Original Schedule
4 cycles, 3 LUTs

MAPS Schedule
1 cycle, 1 LUT
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Separate Mapping and Scheduling

» How about performing mapping before scheduling?

===5 Cycle 0 Cycle 0

Assuming each LUT e m o o o o o o s o o o o o o

1
|
1
|
1
|
:
: takes a full cycle Cycle 1
1
|
1
1

Cycle 1

Cycle 2 Cycle 2
Mapping + Scheduling Optimal schedule
2 cycles per iteration 1 cycle per iteration

Total Latency = 2*N for N iterations Total Latency = N for N iterations 2



Loop-Prioritized Mapping and Scheduling

> How about prioritizing mapping for loops

; Cycle 0
1
1
1
1
1
1
1
1
1
1

Cycle 2

Mapping + Scheduling Optimal schedule
3 cycles, 3 LUTs 2 cycles, 2 LUTs
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Retiming Based Mapping and Scheduling

» Can we address the problem using retiming?

Retiming
will not
remove ™

registers
in loops

Mapping + Scheduling

2 cycles per iteration
Total Latency = 2*N for N iterations

Mapping + Scheduling + Retiming

Still 2 cycles per iteration
34



Word-Level Tracking
> Bit-Level Dependence Tracking

A B

i
AND, SHIFT,
of BN
XOR TRUNC

C C
inputs(C) = {A, B} inputs(C)={Ag}

ADD,
SUB

C
inputs(C)=
{Ag, Ay, ..., By, By, ..}
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