0.5-V Highly Power-Efficient Programmable Logic using Nonvolatile Configuration Switch in BEOL

Makoto Miyamura, Toshitsugu Sakamoto, Yukihide Tsuji, Munehiro Tada, Naoki Banno, Koichiro Okamoto, Noriyuki Iguchi, and Hiromitsu Hada Low-power Electronics Association & Project (LEAP) m-miyamura@aj.jp.nec.com

Concept of "Switch Over Logic"

□ Nonvolatile switch is stacked on logic plane

- Reduced cell area (Stacked switch plane)
- Low Power (Nonvolatility / Shorter wiring length)
- Complementary Atom SW reduces programming voltage

(*1) I.Kuon & J.Rose, IEEE CAD, 2007

Operation principle

Atom switch : Nanometer-scale Cu bridge forms between two electrodes via electrochemical reaction.

Generation Features

- Nonvolatile
- Small input capacitance (1/10 of CMOS)
- Rewritable (>10³)
- BEOL integration (small area)

Page : 3

CAS-based Configurable Logic Block

Page : 4

Physical implementation

CASs are embedded in M4-M5 with 65nm-node CMOS process.

Low power/high performance of AtomSW-FPGA

Comparison with commercial low-power FPGA

- 64x64 AtomSW-FPGA vs SRAM-based FPGA
- 16b-ALU/Signal-generator are mapped using 332 LUTs.
- Dynamic power : -30% at minimum operating voltage
- Critical path delay : -60% for VDD=0.8V

Acknowledgements

This work is supported by the Ministry of Economy, Trade and Industry and New Energy and Industrial Technology Development Organization (NEDO).

A part of the device processing was operated by Innovation Center for Advanced Nanodevices (ICAN), National Institute of Advanced Industrial Science and Technology (AIST), Japan.