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Applications of Sorting Algorithm 

Online social networks 

Citation networks 

Protein interactions 

Air traffic network 

WWW 

Neural network 



 Parallel sorting network with simple control scheme 

 Hardware implementation can achieve extremely high throughput 

 Computation complexity: 𝑂 𝑁 log 2𝑁  for problem size 𝑁 
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Bitonic Sorting Network (BSN) (1) 
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 Comparison stages: log 𝑁 log 𝑁 + 1 /2 

 Communication stages: log 𝑁 log 𝑁 + 1 /2 

 Inter-stage communication → data permutation between comparison stages 

 Two types of permutation patterns: stride permutation 𝑃𝑚,𝑡, 𝑄𝑚 = 𝐼2⨂𝑃𝑚/2,𝑚/4  

 2 log 𝑁 unique permutation patterns 
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BSN (2) 
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 Resource consumption: 𝑂(𝑁 log 2𝑁) compare-and-swap (CAS) units 

 Total “wire length”: Ω(𝑁2) 

 “Wire length”: data communication distance, communication power ∝ “wire length” 

 Key issue: communication power consumption between adjacent stages 

   

 

                       
 
 

 

 

 

6 

𝜶𝑵 𝟐 + 𝟐 + 𝟒 + ⋯ + 𝟐 + 𝟒 … +
𝑵

𝟐
 

= 𝛀(𝑵𝟐) 

Total “wire length”: 

Experimental results on Virtex-7 FPGA 

BSN (3) 

Classic result: 
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Sort streaming data with a fixed data parallelism 

 Data memory: stores the input consisting of 𝑁-key data sequences 

 Input/output: in a streaming manner and at a fixed rate 

 Data parallelism 𝑝: # of keys processed each cycle per comparison stage 

 Inter-stage communication: data permutation between adjacent stages 
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Problem Definition (1) 
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 Performance metrics 

 Throughput 

 Defined as the number of bits sorted per second (Gbits/s) 

 Product of number of keys sorted per second and data width per key 

 Energy efficiency 

 Defined as the number of bits sorted per unit energy consumption (Gbits/Joule) 

 Calculated as the throughput divided by the average power consumption 

 Memory efficiency 

 Throughput achieved divided by the amount of on-chip memory used by the 

     design (in bits) 
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Problem Definition (2) 
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Related Work (FPGA ’11, D. Koch and J. Torresen) 

 Tree merge sorter 

 FIFO-based merge sorter 

 Insertion sorter 

 FIFO & Tree 

 2 GB/s  using on-chip memory 

 

      

 
 

 

 

 

Tree merge sorter 

FIFO-based merge sorter Insertion sorter 
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Related Work (DAC ’12, M. Zuluaga and M. Püschel) 

 Hardware generator for sorting 

 Domain-specific language based 
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Related Work (FPGA ’14, J. Casper and K. Olukotun) 
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Memory and Energy Efficient Mapping 

 Drawbacks of the state-of-the-art 

 High throughput not guaranteed 

 Design scalability needs to be improved 

 No analysis provided 

 Data parallelism is limited 

 We propose a mapping approach to obtain a streaming sorting 

architecture 

 BSN based 

 Utilizes Clos network for inter-stage communication 

 Highly optimized wrt. energy efficiency 

 Achieves optimal memory efficiency (𝑂（𝑝/𝑁）) 

 Scalable with 𝑁 and 𝑝 

 Supports processing continuous data streams 
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 Fold the BSN for a fixed data parallelism 𝑝 

 Fold the Clos network to perform inter-stage communication 

 Support continuous data streams to maximize throughput 
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 Fold the BSN → Streaming permutation 
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Mapping the Clos Network (1) 
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 Fold the Clos network into a 3-stage Streaming Permutation Network (SPN) 

 SPN 

 Stage 0 

 𝑆1-to-𝑆1 connection 

 Stage 1 

 𝑆1 single-port  

     memory blocks, 

     each of size 𝑆2 

 Stage 2 

 𝑆1-to-𝑆1 connection 

 Permutation in time 

 Permuting temporal  

      order of data elements  
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Mapping the Clos Network (2) 
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Mapping the Clos Network (3) 

Theorem 1: With 𝑝 = 𝑆1, the proposed SPN can realize any given 

permutation on streaming input of an 𝑁-key data sequence without any 

memory conflicts using 𝑆1 single-port memory blocks, each of size 𝑆2 

(𝑆2 ≥ 𝑆1). 

Memory conflict: occurs if concurrent read or write access to more than 
one word in a single-port memory block is performed in a clock cycle. 



Theorem 2: For any given permutation, time to “route” SPN  is 𝑂(𝑁 log 𝑝) 

(1 ≤ 𝑝 ≤ 𝑁) 

 “Routing” for SPN 

 Obtain control bits for stage 0 and 

      stage 2 

 Obtain memory addresses for stage 1 

 Configured dynamically or statically 

 “Routing” for 𝑁 = 4096, 𝑝 = 64 

 Time in state-of-the-art 1: 6 minutes 

 Time for the proposed SPN: 16 s 

 22x improvement 
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Mapping the Clos Network (4) 

Stage 0 
(SPN) 

Stage 2 
(SPN) 

Stage 1 
(SPN) 

[1] P. A. Milder, J. C. Hoe., M. Puschel. "Automatic generation of streaming datapaths for arbitrary fixed permutations."  IEEE DATE, pp. 1118-1123., 

2009. 

 

No need  

to route 

stage 1 



 Key advantages of utilizing Clos network: 

 Result in efficient control logic for SPN 

 𝑂(log
𝑁

𝑝
) control logic 

 Run-time “programmability”  

 Time multiplexing CAS units to save logic 

 Low “programming” overhead 

 Scalable wrt. 𝑁 and 𝑝 

 𝑂(𝑝 log 𝑝) logic consumption for stage 0 and stage 2 

 𝑝 single-port memory blocks 
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Mapping the Clos Network (5) 



 Memory power for permutation in time (stage 1 in SPN) is significant, 

especially when permuting continuous data streams 

 

 Dual-port memory:  

 One read port and one write port, independently using different memory 

addresses 

 E.g. 36kb BRAM on Xilinx Virtex-7 in the simple dual-port mode 

 

 “Single-port” memory 

 One port supports read-before-write operation to the same memory location 

in one cycle 

 Use a single memory address port 

 E.g. 18kb BRAM on Xilinx Virtex-7 in the single-port mode 
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Memory Efficient Permutation in Time (1) 



 Permutation in time on continuous data streams can be performed using 

dual-port memory (state-of-the-art):  

 Store data using 2𝑆2 memory for permuting 𝑆2-key data sequences  

 Store addresses using 𝑂(𝑆2) memory: 0,3,2,1 are stored in the example below 
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Memory Efficient Permutation in Time (2) 

x00 x01 x02 x03

x10 x11 x12 x23

Time
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x(i-1)(0,3,2,1)

Permutation in time using dual-port memory

…

…

…

x(i-1)(0,1,2,3)

x(i-2)(0,3,2,1)



 We develop an in-place algorithm for permutation in time on continuous 

data streams:  

 Store data in single-port memory with size of 𝑆2 

 Update memory addresses by an address generation unit using 𝑂(log 𝑆2) logic 
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Memory Efficient Permutation in Time (3) 
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Memory Efficient Permutation in Time (4) 
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Theorem 3: Any permutation in time on continuous data 

streams consisting of 𝑆2-element sequences can be realized 

using a single-port memory of size 𝑆2 

 Active memory address ports reduced by 50% 

 Memory size reduced by 50% 



 Implementation of in-place algorithm 

 Use matrix 𝑃 to represent the permutation in time 

 Given address sequence 𝐴0 = 0,1,2, … , 𝑆2 − 1 𝑇 

 Assume 𝐴𝑖−1 is used for 𝑖th permutation in time,  

    thus  𝐴𝑖 = 𝑃𝐴𝑖−1 

 During 𝑖th permutation, in cycle 𝑗, 𝐴𝑖[𝑘] is the  

    memory address 

 Based on 2, there always exists a constant 𝑞,  such that   
𝑃𝑞+1 = 𝐼, 

            thus 𝑃𝐴𝑞 = 𝑃2𝐴𝑞−1 = ⋯ = 𝑃𝑞+1𝐴0 = 𝐴0  

 For stride permutation, 𝑞 = log 𝑆2 
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Memory Efficient Permutation in Time (5) 

Memory 

block 

Data 

 read 
Data  

write 

ROM 

Seq. Logic 

𝐴𝑖[0] 

𝐴𝑖[𝑘] 

Address generation unit 

Theorem 4: For any given permutation in time, the proposed in-place algorithm 

requires a constant number of address sequences. 

[2] R. A. Brualdi. Combinatorial matrix classes, volume 13. Cambridge University Press, 2006. 
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Architecture Implementation (1) 

High Throughput Design 

…

Control Unit

Stage 1 Stage 2 Stage (log N)(log N+1)/2

p

CAS Units SPN

 High Throughput (HT) Design 

 Supports sorting continuous data streams 

 Overall latency： 6𝑁/𝑝 + 𝑜(𝑁/𝑝) (1 ≤ 𝑝 ≤ 𝑁/ log 2𝑁) 

 Fully pipelined and can maximize the I/O bandwidth utilization  
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Architecture Implementation (2) 

Resource Efficient Design 
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 Resource Efficient Design 

 Trade off throughput for area for large scale sorting 

 Use “programmable” SPN to time multiplex 𝑝/2 CAS units 

 “Program” the SPN to perform 2log 𝑁 unique permutation patterns 
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Architecture Implementation (3) 

Design Latency Logic Memory 
Memory 

type 

Through-

put 

Memory/ 

throughput 

FPGA ‘14 𝑜(𝑁 log 𝑝 /𝑝) 𝑜(𝑝 log 𝑁) 𝑜(𝑁) n/a 𝑜(𝑝/ log 𝑝) 2𝑁 + 𝑜(𝑁) 

DAC ‘12 
6𝑁

𝑝
+ 𝑜(𝑁/𝑝) 𝑜(𝑝 log2𝑁) 12𝑁 + 𝑜(𝑁) Dual-port 𝑜(𝑝) 

12𝑁

𝑝
+ 𝑜(𝑁/𝑝) 

FPGA ‘11 𝑜(𝑁) 𝑜(log 𝑁) 2𝑁 + 𝑜(𝑁) Dual-port 𝑜(1) 2𝑁 + 𝑜(𝑁) 

TC ‘00 𝑜(
𝑁 log 𝑁

𝑝 log 𝑝
) 𝑜(𝑝 log2𝑝) 𝑜(𝑁) Dual-port 𝑜(

𝑝 log 𝑝

log 𝑁
) 𝑜(

𝑁 log 𝑁

𝑝 log 𝑝
) 

HT 

Design 

𝟔𝑵

𝒑
+ 𝒐(𝑵/𝒑) 𝑜(𝑝 log2𝑁) 6𝑁 + 𝑜(𝑁) Single-port 𝑜(𝑝) 

𝟔𝑵

𝒑
+ 𝒐(𝑵/𝒑) 

Resource

Efficient 

Design 

𝑜(𝑁 log2 𝑁 /𝑝) 𝑜(𝑝) 𝑜(𝑁) Dual-port 𝑜(
𝑝

log2 𝑝
) 𝑜(𝑁 log2 𝑁 /𝑝) 
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 Platform and tools 

 Xilinx Virtex-7 XC7VX980T , speed grade -2L  

 Xilinx Vivado 2014.2 and Vivado Power Analyzer 

 Input vectors for simulation 

 Randomly generated with an average toggle rate of 50% (pessimistic estimation) 

 Performance metrics 

 Throughput 

 Energy efficiency 

 Memory efficiency 
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Experimental Setup 



 Resource consumption of the proposed SPN 

 Baseline: HT Design implemented without applying in-place permutation 

 Amount of LUT-L: mainly determined by data parallelism 

 Amount of BRAM18: reduced by 50% through in-place permutation in time 

 Scalable wrt. problem size and data parallelism 
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Experimental Results (1) 



 Performance of the proposed designs for sorting 
 Utilizations of BRAM, LUT-L, LUT-M are reduced significantly 

 33%~67% energy efficiency improvement compared with the baseline 
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Experimental Results (2) 



 Memory efficiency comparison 

 [16] (FPGA ’11): 43K-key or 21.5K-key data sequences 

 [20] (VLDB ’12): for sorting data sets consisting of 8-key data sequences 

 [28] (DAC ’12): 16K-key streaming data  

      sequences 

 Our designs achieve  

 2.3x~5.3x better memory efficiency than [16] 

 1.5x~2.6x better memory efficiency than [28] 

 All our design points are dominating  
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Experimental Results (3) 

Memory efficiency comparison of various design 



 Energy efficiency comparison 

 Data parallelism: 4 

 All pipelined to achieve 250 MHz 

 Achieves the same throughput 

 Problem size: 16~16384 

 [28]: a hardware generator for 

      streaming sort 

 Up to 60% energy efficiency 

     improvement  
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Experimental Results (4) 

Energy efficiency comparison of various 

designs 



Conclusion and Future Work 

37 37 

 Conclusion 

 Streaming sorting architecture 

 Scalable with data parallelism and problem size 

 Efficient inter-stage communication realization 

 “Programmable” streaming permutation network 

 Optimal memory efficiency 

 Demonstrates trade offs between throughput, area and latency 

 

 Future work 

 Design framework for automatic application-specific energy 

efficiency optimizations on FPGA 
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Thanks! 

 

Questions? 
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