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Applications of Sorting Algorithm
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Bitonic Sorting Network (BSN) (1)

= Parallel sorting network with simple control scheme
= Hardware implementation can achieve extremely high throughput
= Computation complexity: O(N log?N) for problem size N
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BSN (2)

= Comparison stages: log N (logN + 1)/2
= Communication stages: log N (logN + 1)/2
= |nter-stage communication — data permutation between comparison stages
= Two types of permutation patterns: stride permutation Py, ;, @, = (12®Pm/2’m/4)

= 2log N unique permutation patterns
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BSN (3)

= Resource consumption: O(N log?N) compare-and-swap (CAS) units

= Total “wire length”: Q(N?)

= “Wire length”: data communication distance, communication power « “wire length”

= Key issue: communication power consumption between adjacent stages

— A Communication power & Computation power

___l < < 3000
= £
e N = 2500 7
____T U Total “wire length”: % 2000 /_
o = N
N .. |E aN(2+2+4+---+2+4...+E> E 1500 /_
: : >
— l ] - = Q(N?) S 1000 /g—
o o 7/ B
|V | Classic result: g 500 (":f({ ( .\\
R Layout opt. does nothelp & 0 + == NN DNN N .
7 T 2 16 256 4096 16384
Ll Bl - Problem size N
Bitonic sorting network Experimental results on Virtex-7 FPGA

USC Viterbi

School of Engineering

University of Southern California




Problem Definition (1)

Sort streaming data with a fixed data parallelism

= Data memory: stores the input consisting of N-key data sequences

* |nput/output: in a streaming manner and at a fixed rate

= Data parallelism p: # of keys processed each cycle per comparison stage
* Inter-stage communication: data permutation between adjacent stages
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Problem Definition (2)

= Performance metrics

= Throughput
= Defined as the number of bits sorted per second (Gbits/s)
= Product of number of keys sorted per second and data width per key

= Energy efficiency
= Defined as the number of bits sorted per unit energy consumption (Gbits/Joule)
= Calculated as the throughput divided by the average power consumption

= Memory efficiency
= Throughput achieved divided by the amount of on-chip memory used by the
design (in bits)
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= Background and Related Work
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Related Work (FPGA 11, D. Koch and J. Torresen)

= Tree merge sorter | memory |
= FIFO-based merge sorter ioad j,m
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Related Work (DAC ’12, M. Zuluaga and M. Plschel)

= Hardware generator for sorting
= Domain-specific language based
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Related Work (FPGA 14, J. Casper and K. Olukotun)
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Memory and Energy Efficient Mapping

= Drawbacks of the state-of-the-art
= High throughput not guaranteed
= Design scalability needs to be improved
= No analysis provided
= Data parallelism is limited

= We propose a mapping approach to obtain a streaming sorting
architecture
= BSN based
= Utilizes Clos network for inter-stage communication
= Highly optimized wrt. energy efficiency
= Achieves optimal memory efficiency (0 (p/N))
= Scalable with N and p
= Supports processing continuous data streams
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= Memory and Energy Efficient Mapping

USC Viterbi

School of Engineering University of Southern California




Proposed Mapping Approach

= Fold the BSN for a fixed data parallelism p
= Fold the Clos network to perform inter-stage communication
= Support continuous data streams to maximize throughput

CAS unit Inter-stage communication
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Mapping the Clos Network (1)

» Fold the BSN — Streaming permutation

Data stream Data stream
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Mapping the Clos Network (2)

» Fold the Clos network into a 3-stage Streaming Permutation Network (SPN)
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Mapping the Clos Network (3)

Theorem 1: With p = S;, the proposed SPN can realize any given
permutation on streaming input of an N-key data sequence without any

memory conflicts using S; single-port memory blocks, each of size S,
(S, = S7).

Memory conflict: occurs if concurrent read or write access to more than
one word in a single-port memory block is performed in a clock cycle.
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Mapping the Clos Network (4)

Theorem 2: For any given permutation, time to “route” SPN is O(N logp)

(1<p<N) — =
= “Routing” for SPN - :§ {; Zﬁ\gi {; Z: o+
= Obtain control bits for stage 0 and —+ -+ - — e
stage 2 — e neéﬁ e

= Obtain memory addresses for stage 1 e Q\Fr Ou%@ = I

- stage £

= Configured dynamically or statically Coe e 9 BN R

\
= “Routing” for N = 4096,p = 64 o \%/g ¥:
= Time in state-of-the-art 1. 6 minutes - l -
= Time for the proposed SPN: 16 s l
. : Stage O Stage 1 Stage 2
22X Improvement (SPN) (SPN) (SPN)

[1] P. A. Milder, J. C. Hoe., M. Puschel. "Automatic generation of streaming datapaths for arbitrary fixed permutations." IEEE DATE, pp. 1118-1123.,
2009.
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Mapping the Clos Network (5)

= Key advantages of utilizing Clos network:

= Result in efficient control logic for SPN

. 0(log%) control logic

» Run-time “programmability”
= Time multiplexing CAS units to save logic
= Low “programming” overhead

= Scalable wrt. N and p
* O(plogp) logic consumption for stage 0 and stage 2
= p single-port memory blocks
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Memory Efficient Permutation in Time (1)

= Memory power for permutation in time (stage 1 in SPN) is significant,
especially when permuting continuous data streams

= Dual-port memory:

= One read port and one write port, independently using different memory
addresses

= E.g. 36kb BRAM on Xilinx Virtex-7 in the simple dual-port mode

= “Single-port” memory

= One port supports read-before-write operation to the same memory location
In one cycle

= Use a single memory address port
= E.g. 18kb BRAM on Xilinx Virtex-7 in the single-port mode
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Memory Efficient Permutation in Time (2)

= Permutation in time on continuous data streams can be performed using
dual-port memory (state-of-the-art):
= Store data using 2S5, memory for permuting S,-key data sequences
= Store addresses using 0(S,) memory: 0,3,2,1 are stored in the example below
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Memory Efficient Permutation in Time (3)

= We develop an in-place algorithm for permutation in time on continuous
data streams:

= Store data in single-port memory with size of S,
» Update memory addresses by an address generation unit using 0 (log S,) logic

Xio Xij3 Xi2 Xij1

Time
o R N
' Xoo Xo1 Xoz Xoz| | X10 X11 X12 Xzz! 1 Xio Xix Xiz Xig|} X(i+1)(0123) |
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i e e | R ’
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Permutation in time using single-port memory
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Memory Efficient Permutation in Time (4)

Theorem 3: Any permutation in time on continuous data
streams consisting of S,-element sequences can be realized
using a single-port memory of size S,

= Active memory address ports reduced by 50%
= Memory size reduced by 50%

X(i-1)(0,3,2,1)

Time
' Xoo Xo1 Xo2 Xoz| | X10 X11 X12 X3! ! Xjo Xiz Xi2 Xig}| X(i+1)(0123) |
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Memory Efficient Permutation in Time (5)

. . ) Data Data
= Implementation of in-place algorithm read write

= Use matrix P to represent the permutation in time

A;lk
= Given address sequence 4, = {0,1,2, ...,S, — 1}1 d

= Assume A;_; is used for ith permutation in time,

|

thus 4; = PA;— Seq. Logic
= During ith permutation, in cycle j, A;[k] is the T

memory address
= Based on ?, there always exists a constant g, such that A;[0]

patl =1,
ROM

thUS PAq == Pqu—l = e = Pq+1AO == AO

= For stride permutation, g = log S, Address generation unit

Theorem 4: For any given permutation in time, the proposed in-place algorithm
requires a constant number of address sequences.

[2] R. A. Brualdi. Combinatorial matrix classes, volume 13. Cambridge University Press, 2006.
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* Architecture Implementation
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Architecture Implementation (1)

= High Throughput (HT) Design
= Supports sorting continuous data streams
= OQverall latency: 6N/p+o(N/p) (1 <p < N/log?N)
» Fully pipelined and can maximize the 1/O bandwidth utilization

I CAS Units [ SPN
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High Throughput Design
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Architecture Implementation (2)

= Resource Efficient Design
= Trade off throughput for area for large scale sorting
= Use “programmable” SPN to time multiplex p/2 CAS units
=  “Program” the SPN to perform 2log N unique permutation patterns

SPN I
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Resource Efficient Design
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Architecture Implementation (3)

Memory/
throughput
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Experimental Setup

= Platform and tools
= Xilinx Virtex-7 XC7VX980T , speed grade -2L
= Xilinx Vivado 2014.2 and Vivado Power Analyzer

= Input vectors for simulation
= Randomly generated with an average toggle rate of 50% (pessimistic estimation)

= Performance metrics
= Throughput
= Energy efficiency
= Memory efficiency
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Experimental Results (1)

= Resource consumption of the proposed SPN

= Baseline: HT Design implemented without applying in-place permutation

=  Amount of LUT-L: mainly determined by data parallelism

=  Amount of BRAM18: reduced by 50% through in-place permutation in time
=  Scalable wrt. problem size and data parallelism
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Experimental Results (2)

= Performance of the proposed designs for sorting
= Utilizations of BRAM, LUT-L, LUT-M are reduced significantly
= 33%~67% energy efficiency improvement compared with the baseline
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Experimental Results (3)

= Memory efficiency comparison
= [16] (FPGA 11): 43K-key or 21.5K-key data sequences
= [20] (VLDB ’12): for sorting data sets consisting of 8-key data sequences

= [28] (DAC ’12): 16K-key streaming data a[16] | | | .
sequences 60 |4 HT Design N
= Our designs achieve = :[S;]IRAL 128
= 2.3x~5.3x better memory eﬁicfency than [16] 5 ol 7
= 1.5x~2.6x better memory efficiency than [28] .
= All our design points are dominating '§1; s o
A m O
A @] L
> 1 6 S

On-chip memory consumption (Mbits)

Memory efficiency comparison of various design
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Experimental Results (4)

= Energy efficiency comparison 2 1T Dosign

= Data parallelism: 4 © 1020 | = Low cost design |

= All pipelined to achieve 250 MHz § £ SPRIAL [28]

= Achieves the same throughput }f I |

*  Problem size: 16~16384 < ! 1

= [28]: a hardware generator for g - Z )
streaming sort & _ 7

= Up to 60% energy efficiency % 107 8= Z § % :

improvement ;35 i § Z § Z |
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Conclusion and Future Work

= Conclusion

= Streaming sorting architecture
= Scalable with data parallelism and problem size
= Efficient inter-stage communication realization
= “Programmable” streaming permutation network
= Optimal memory efficiency
» Demonstrates trade offs between throughput, area and latency

= Future work

= Design framework for automatic application-specific energy
efficiency optimizations on FPGA
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Thanks!

Questions?
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