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ABSTRACT

Multi-touch interaction has the potential to be an important input method for realistic training in

3D environments. However, multi-touch interaction has not been explored much in 3D tasks, espe-

cially when trying to leverage realistic, real-world interaction paradigms. A systematic inquiry into

what realistic gestures look like for 3D environments is required to understand how users translate

real-world motions to multi-touch motions. Once those gestures are defined, it is important to see

how we can leverage those gestures to enhance training tasks.

In order to explore the interaction design space for 3D virtual objects, we began by conducting

our first study exploring user-defined gestures. From this work we identified a taxonomy and

design guidelines for 3D multi-touch gestures and how perspective view plays a role in the chosen

gesture. We also identified a desire to use pressure on capacitive touch screens. Since the best way

to implement pressure still required some investigation, our second study evaluated two different

pressure estimation techniques in two different scenarios.

Once we had a taxonomy of gestures we wanted to examine whether implementing these realis-

tic multi-touch interactions in a training environment provided training benefits. Our third study

compared multi-touch interaction to standard 2D mouse interaction and to actual physical training

and found that multi-touch interaction performed better than 2D mouse and as well as physical

training. This study showed us that multi-touch training using a realistic gesture set can perform

as well as training on the actual apparatus.

One limitation of the first training study was that the user had constrained perspective to allow for

us to focus on isolating the gestures. Since users can change their perspective in a real life training

scenario and therefore gain spatial knowledge of components, we wanted to see if allowing users

to alter their perspective helped or hindered training. Our final study compared training with Un-

iii



constrained multi-touch interaction, Constrained multi-touch interaction, or training on the actual

physical apparatus. Results show that the Unconstrained multi-touch interaction and the Physical

groups had significantly better performance scores than the Constrained multi-touch interaction

group, with no significant difference between the Unconstrained multi-touch and Physical groups.

Our results demonstrate that allowing users more freedom to manipulate objects as they would in

the real world benefits training.

In addition to the research already performed, we propose several avenues for future research into

the interaction design space for 3D virtual objects that we believe will be of value to researchers

and designers of 3D multi-touch training environments.
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CHAPTER 1: INTRODUCTION

Multi-touch interfaces are now prolific with their use in monitors, laptops, tablets, and phones.

Touchscreens initially became popular with the advent of the smart phone but the small display

sizes limited the type of gestures that could be used. Users were limited to 1 or 2 finger gestures

allowing for rotation, scaling, and translation (RST) of objects on the display. Now larger touch-

screens are more affordable and more widespread such as hybrid laptops and larger displays like

the Microsoft Perceptive Pixel. These larger displays make multi-touch gestures that incorporate

multiple fingers or multiple hands possible but, for the most part, the main gestures used remained

the same. These 1-2 finger RST gestures are ideal for operations in the same plane as the multi-

touch display, however a definitive way of adapting gestures into the third dimension has not yet

been determined.

Multi-touch interaction is currently used in 3D gaming, simulation, and training environments

using the RST gestures but we believe the interaction could be improved to map more closely to

a realistic experience. Ultimately, we envision 3D multi-touch interaction to be modeled more

closely after interactions with the physical environment thus enhancing engagement or learning.

Statement of Research

A major challenge in 3D touch interaction is understanding how to translate interaction on a 2D

surface to a 3D environment. For each touch point on the screen, we know its position and contact

size and can estimate its orientation and pressure. There are interaction paradigms that map this 2D

input to 3D interactions by building upon the standard multi-touch RST (Rotation, Scaling, Trans-

lation) interactions for operations such as pinching, zooming, scrolling. However, most of these
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paradigms are metaphors for interaction. Instead, we envision providing users the ability to mimic

real world gestures and manipulate objects as they would in real life. We would also like users to

be able to pick up, rotate and move objects in a way that’s relevant to training environments. The

first problem we would like to solve is how do we get closer to mimicking real world interactions.

More specifically, how can we design realistic and intuitive multi-touch interactions for 3D virtual

objects that mimic real world object interaction ?

The second question we would like to examine is whether implementing these realistic multi-touch

interactions in training contexts provides procedural training benefits such as enhanced learning,

reduced training times, and reduced costs. If realistic multi-touch interactions provide training

benefits, we can leverage the prevalence of larger multi-touch displays to provide intuitive training

experiences. VR and AR simulations are often examined as inexpensive alternatives to training

on actual equipment however, multi-touch interaction might be more suitable for certain types of

training that don’t require complete immersion. In addition, multi-touch training environments

could provide the same benefits without the risks of cybersickness symptoms such as eye strain,

headache, dizziness or nausea that is common in VR and AR simulations [1].

To address these questions, we aim to create design guidelines for realistic and intuitive multitouch

interaction for 3D virtual objects and we will determine whether implementing these interactions

in multi-touch training environments benefits procedural training outcomes.

Thesis Statement

By using realistic multi-touch gestures to manipulate 3D objects, we can provide procedural train-

ing recall outcomes comparable to training in the real world.
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Approach

To address these questions, we conducted two studies that resulted in design guidelines for realistic

and intuitive multi-touch interaction for 3D virtual objects. After developing the guidelines we

conducted two additional studies to measure whether or not implementing these interactions in

multi-touch training environments benefits procedural training outcomes.

In the first study, we explore the best ways to use multi-touch interaction in 3D training environ-

ments [2]. We performed a gesture elicitation user study to define which gestures users preferred

on large capacitive displays when interacting with 3D objects. We found that many users’ first

instinct is to use 1 or 2 finger gestures similar to RST gestures used on a phone. However, when

prompted to do so, users tried to mimic physical, real-world actions such as using more fingers and

applied pressure to signify more force or to move an object into the screen. These results signified

that multi-touch gestures could mimic real world actions and be intuitive to users.

In our second user study we focused on defining the best ways to estimate pressure on capactivate

displays to enhance physical gestures [3]. Today’s most prevalent touchscreens use capacitive

sensing which can report the location and surface area of a touch, but do not directly sense the

pressure of the touch. Thus on capacitive screens, multi-touch pressure can only be estimated

based upon touch contact size. We explored how best to interpret pressure from contact size by

developing multiple estimation techniques. We also examined which of our pressure estimation

techniques were preferred among different scenarios.

In our third study we examined how multi-touch interaction affects the learning of a procedural

assembly task [4]. Our goal was to evaluate how our gesture set impacts learning in a training

environment and if gesture similarities to physical actions better prepare the user for performing

the physical steps in the real world. Since training can be looked at in many different ways we
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are focusing on procedural learning, or learning a repeatable step-by-step process. The study

evaluates the knowledge transfer acquired with multi-touch interaction technology compared to

standard training methods. We compared multi-touch interaction to 2D mouse interaction and to

actual physical training. We found that multi-touch interaction performed better than 2D mouse

and performed as well as physical training.

In our final study, we examined how having the freedom to explore in a training environment af-

fects learning. Our third study, like many multi-touch training systems and 3D training systems

in general, had a snap to position functionality that didn’t give the user the freedom to manipulate

the objects in great detail or to look around and examine different parts of objects as they would

in the real world. We evaluate the benefits of multi-touch training that has unconstrained object

manipulation, where the user can pick up, rotate and examine parts. We compared this uncon-

strained multi-touch group to a group that has constrained object manipulation, in which the parts

automatically align themselves and the user cannot make their own rotations. In addition, we com-

pared both groups to a control group performing physical training with the real world apparatus.

The selected experimental task consists of assembling a dog treat dispenser prototype built with a

Raspberry Pi and other electrical components. Since the apparatus and parts are small they them-

selves would be rotated by ones hands to examine and rearrange before assembly. This is different

than training on a large apparatus where the user might walk around the apparatus to examine and

place parts. We have chosen to look at a small apparatus so that we can isolate object manipulation,

instead of exploring both object manipulation and camera/viewpoint manipulation.

Contributions

In this dissertation we:
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• Developed design guidelines for realistic multi-touch gestures for 3D training environments

• Studied how using realistic multi-touch gestures for 3D training environments affects proce-

dural training

In order to realize these contributions, we:

• Performed a gesture elicitation user study to define which gestures users preferred on large

capacitive displays when interacting with 3D objects. We found that when prompted to do

so, users tried to mimic physical, real-world actions such as using more fingers and applied

pressure to signify more force or to move an object into the screen.

• Developed two pressure estimation techniques to interpret pressure from contact size and

evaluated them in a user study with two different tasks.

• Evaluated the knowledge transfer acquired by training with multi-touch interaction using

realistic gestures, compared to standard training methods. We found that multi-touch inter-

action performed better than 2D mouse and performed as well as physical training.

• Evaluated the knowledge transfer acquired by training with unconstrained multi-touch ob-

ject manipulation compared to constrained object manipulation. We found that multi-touch

interaction with unconstrained object manipulation performed better than constrained object

manipualtion, and performed as well as physical training.

Dissertation Outline

In Chapter 2, we discuss work related to different types of multi-touch interaction, multi-touch

interaction in education and training, and procedural training in virtual environments. Next, we
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present our work on user-defined gestures for 3D objects in Chapter 3, which led to the develop-

ment of a taxonomy and gesture design guidelines. Following that, in Chapter 4, we discuss the

follow up study on pressure estimation techniques for 3D interaction on capacitive touch screens.

Chapter 5 presents the first training study that evaluated the use of 3D multi-touch gestures com-

pared to other training methods. Our second training study examining multi-touch interaction with

constrained and unconstrained object manipulation, is presented in Chapter 6. Next, we discuss

our findings and future work opportunities in Chapter 7. Finally, we summarize our findings in

Chapter 8.
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CHAPTER 2: RELATED WORK

The goal of this chapter is to understand the current state of two areas of research: multi-touch

gestures and training applications. First we will begin with a brief overview of terminology. Multi-

touch gestures will be defined as predefined motions on the surface of the device that interact with

objects in a virtual environment. The term multi-touch interaction will represent the entire interac-

tion; the physical gesture, the result of the interaction, and the context in which the interaction is

performed.

The multi-touch gesture discussion will begin with a brief historical overview of multi-touch ges-

tures and recognition. We will continue with an overview of current multi-touch techniques for

3D environments, gesture elicitation studies and their resulting taxonomies, and gestures above the

surface. Then we will discuss work relevant to pressure estimation on touch screens. The training

discussion will begin with education and training applications with multi-touch interaction. Then

we will review relevant procedural training applications in the virtual and augmented reality do-

mains. Finally, we will cover learning theories related to enactive learning and increased interface

complexity.

Types of Multi-touch Interaction

Multi-touch Gestures and Recognition

Early gestural input research began with work by Coleman creating a text editor based on proof-

readers’ pencil markup [5], Rhyne constructing a spreadsheet application that combined gesture

and handwriting [6], and Buxton et al. producing a musical score editor with gestures to enter notes

[7]. Following this work, Rubine automated gesture recognition by creating a system to use gesture
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examples instead of hand coded recognition [8]. Since then there have been many advances in ges-

ture recognition using template matching [9], feature-based [10], signal-based [11], and continuous

approaches [12]. Increased accuracy in gesture recognition has allowed for multi-touch interfaces

to gain traction in a variety of domains. However, Ingraham found in a comprehensive research

review that researchers still do not have consensus on how to implement intuitive interactions and

users do not agree on which gestures are intuitive for which interactions [13]. Her findings also

indicate that the intuition of multi-touch interactions can be improved by considering factors such

as direct manipulation, physics, feedback, previous knowledge, and physical motion.

3D Direct Manipulation and Physics Simulations

There has been much recent work on the manipulation of 3D objects on multi-touch surfaces.

Direct manipulation is a widely explored strategy for this task, since the direct manipulation RST

method has wide appeal in 2D contexts. Reisman et al. extends this common 2D paradigm to

3D by allowing direct manipulation of 3D objects with 3 or more touch points [14]. Hancock et

al. also explores direct manipulation in [15] using one, two and three touch input techniques in

shallow depth 3D. Physics based approaches have been applied by Wilson et al. [16] by creating

solid proxy objects in the scene for each touch points. Physics based grasping behavior has also

been explored by Wilson in a later work [17] where objects are manipulated by a stream of fluid

particles. Cohé adapted the common mouse and keyboard transformation widgets to the tactile

paradigm by creating a new 3D transformation widget tBox [18]. Cohé’s work focuses on the

direct manipulation of objects or widgets, whereas our work explores how users intuitively act on,

and how users prefer to act on, 3D objects from a certain domain.
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Metaphors for Manipulation

Gestures that act as metaphors for real world actions have been seen in previous work. Hancock

et al. explored propagating behaviors to other objects in the scene by using metaphors, such as

throwing a blanket object on top of another object to cover it in a texture [19]. Ruiz et al. elicit user-

defined gestures for mobile interaction and find several themes similar to the ones we are exploring:

actions that mimic normal use (such as putting a mobile phone to the ear for a motion gesture to

answer a call), and real-world metaphors (such as placing a phone face down to hang up a phone

call as you would have with a rotary phone) [20]. Kray et al. also discover user-defined gestures

that act as metaphors for connecting mobile devices, displays and tabletops, such as starting with

two phones near each other and then pulling away to disconnect them [21]. Kurdyukova et al.

investigate gestures for data transfer between iPads and other devices, finding that both experienced

and inexperienced users rely on real-life metaphors when thinking of well-matching gestures [22].

Gestures Above the Surface

The availability of low cost tracking solutions such as the Microsoft Kinect and Leap Motion have

allowed combining above the surface interaction with on the surface interaction. Marquardt et

al. called the touch surface combined with the area above the surface the continuous interaction

space [23]. They also presented a variety of interaction categories that exploit the space between

these modalities such as extended continuous gestures to avoid occlusion, raycasting gestures for

extended reach, lifting gestures to reveal objects and to adjust scale, stacking objects, and 6 degrees

of freedom (DOF) manipulation. Wilson et al. proposed several metaphors to interact with different

surface displays while capturing full body posture [24]. For example, after performing multi-touch

interactions on a virtual object on the tabletop, the user may transfer the object to another display by

simultaneously touching the object and the destination display. Or the user may pick up the object
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by sweeping it into their hand, see it sitting in their hand as they walk over to an interactive wall

display, and drop the object onto the wall by touching it with their other hand. Mockup Builder is

an on-and-above-the-surface interaction technique based on asymmetric bimanual interaction for

creating and editing 3D models in a stereoscopic environment [25]. A user evaluation comparing

Mockup Builder to Sketchup demonstrated promising results for this type of alternative modeling

interface.

Low cost tracking solutions have also made estimating hand posture possible for surface inter-

actions. The Extended Multi-touch approach presented by Murugappan et al. demonstrated the

accuracy of hand posture tracking and user differentiation with the Microsoft Kinect [26]. Song et

al. applied this type of hand posture augmented multi-touch to exploratory visualization applica-

tions [27].

Above the surface interaction has also been explored to make direct interaction with 3D stereo-

scopic objects possible. Toucheo implements a semi-transparent mirror to reflect a stereoscopic

image over a touch screen [28]. The user can then interact with the stereoscopic image via 9 DOF

widgets on the touchscreen. Triangle cursor allows direct multitouch interaction to specify a 3D

position and yaw rotation above the interaction surface [29]. Both Toucheo and Triangle Cursor

were designed to avoid occlusions and disturbing the stereoscopic perception.

User-Defined Gestures

To create a user-defined, intuitive gesture set, Wobbrock et al. performed a study that elicited nat-

ural gestures from naive users [30]. Participants were presented with tasks to perform by showing

the effect and asking the user to perform a gesture that would cause that effect. The users were

asked to perform the gesture one-handed and then two-handed. It was determined that the number
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of fingers used for gestures was arbitrary for the same task and that users preferred one-handed to

two-handed gestures. Because the study primarily focused on desktop operations and tasks, the

final gesture set was heavily influenced by WIMP paradigms and yielded mainly metaphorical or

symbolic gestures. They have since evaluated their user-defined gesture set against a gesture set

created by designers and shown that the user-specified gesture set is easier for users to master [31].

There have since been many studies eliciting user-defined gestures based on Wobbrock’s experi-

mental design. Cohé and Hachet conducted a user study to examine how users perform rotations,

scaling, and translations on a 3D cube [32]. Our first study is similar to Cohé’s except that we have

added different objects and tasks to perform as well as two trials of the experiment. The first trial

is similar to Cohé’s in that it just asks the user to perform the gesture they think is appropriate for

the given task. The second trial of the first study is different than Cohé’s in that we ask the users to

perform gestures as if they were manipulating the object in the real world. We believe that this is an

important addition given our focus on multi-touch gestures for training and simulation applications

in 3D environments. In addition to Wobbrock and Cohé’s work, Ruiz et al. performed a study to

elicit user-defined motion gestures for mobile interaction [20], Micire et al. studied user gestures

for robot control and command in a 3D virtual environment [33], and Mauney et al. analyzed data

from 9 different countries to determine cultural similarities and differences in user-defined gestures

for touchscreen user interfaces [34].

Classifications and Taxonomies

Wobbrock et al. also presented a taxonomy of surface gestures based on user behavior [30]. Based

on a collection of gestures from participants, their taxonomy classifies gestures into four dimen-

sions: form, nature, binding, and flow. Cohé and Hachet and Ruiz et al. also adapted Wobbrock’s

original taxonomy to classify their specific gesture domains [32, 20]. We build upon the tax-
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onomies created by Wobbrock and Cohé from the results of our first study in Chapter 3.

Pressure as Multi-touch Input

Non-Capacitive Sensing Pressure Estimation

Since any use of touch inherently uses pressure, there have been many investigations into incor-

porating pressure information into surfaces by using malleable materials, such as with liquid dis-

placement sensing [35]. Early work investigating pressure as computer input began with Herot and

Weinz in 1978 [36], followed by Buxton concluding in 1985 that pressure control without feedback

(i.e a button click) can be difficult but it is a promising research area [37]. Since then there have

been several investigations into using pressure sensors as input [38], what pressure force levels are

comfortable for users [39], and how many levels are distinguishable [40]. Brewster et al. aimed

to use pressure to improve input performance when entering mixed-case text. Their experiment

used a mobile device with a resistive touch screen which measures pressure [41]. Their results

demonstrated that pressure input can outperform a standard shift-key keyboard design for mobile

text entry.

There have also been investigations into input devices with pressure sensors. Graspzoom attached

a Force Sensitive Resistor to the backside of a mobile phone to allow single-handed input for

bidirectional controls like zooming in and out [42]. Instead of a pinch to zoom gesture, which

often requires two hands (one for holding the phone and one for gesturing), their input model

uses tiny thumb gestures using pressure on the back of the phone. Pressure Widgets explore the

design space of using the continuous pressure sensing capabilities of styluses to operate multi-

state widgets [40]. Cechanowicz et al. investigated the use of a uni-pressure and dual-pressure

augmented mouse. They found users can comfortably control up to 64 modes with a dual-pressure
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augmented mouse [43].

Since most of today’s widely used multi-touch devices, whether mobile or desktop, use a capaci-

tive sensor matrix, we chose to focus on the feedback available from capacitive devices. Capaci-

tive devices only report the contact size based upon pixel coverage and are not capable of sensing

pressure forces. Liquid displacement sensing would allow for more exact pressure sensing, and

even vision-based systems can do better than capacitive by using the contact point’s brightness

[44]. However, even if high accuracy pressure sensing components were made widely available,

it would make some actions very difficult as pressure increases the touch’s friction on the sur-

face. Recently, Apple began incorporating their force sensor and Force Touch gestures into mobile

phones and trackpads, but the gestures are used mainly for simple desktop selection operations,

not for applying force during movement [45].

Capacitive Sensing Pressure Simulation

We use the term pressure “simulation”, since there are no pressure sensors on capacitive touch

screens therefore all techniques explored are pressure estimations, instead of true sensing. There

have been some pressure estimation techniques targeted at capacitive mobile devices that try to

capture actual pressure by proxy techniques. For example, Pseudo-pressure is a pressure estima-

tion method which assumes increases in pressure create both jitter in contact locations as well as

increased touch duration [46]. This technique was used as a way to reject text entry suggestions

on mobile phones. However, Pseudo-pressure’s jitter would not be reliable on a large screen, es-

pecially when applying pressure during another translation or rotation gesture. The time duration

would also not be applicable for the 3D tasks we evaluated. Vibpress utilized a mobile devices

built-in microphone to detect five different pressure levels by mapping sound amplitudes to dif-

ferent pressure levels [47]. Forcetap analyzed acceleration data along the z-axis to differentiate
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between a strong tap and a gentle tap on touch screens [48]. All of these methods are limited for

our purposes because they focus on mobile applications and aren’t applicable for applying pressure

during translation or rotation.

As a way of simulating pressure on capacitive devices, there have been several developments that

take advantage of changes in contact size, as we explore in our second study. As explained in [44],

contact size can be altered by either pressure or finger-tip angle. However, applying more or less

pressure on a rigid surface will only slightly change the contact size thus finger-tip angle generates

larger contact size deltas. An example of a multi-touch technique that takes advantage of contact

size is Sim-Press which simulates clicking by mapping the changes in the finger’s contact area to

changes in pressure [49]. Similarly, Fat Thumb is a mobile technique for one handed zooming that

uses increases in the thumb’s contact size to trigger different zoom levels [44]. Another technique

that uses the finger-tip angle in multi-touch interaction is Microrolls. Microrolls doesn’t imitate

pressure as Fat Thumb and SimPress do, but instead interprets small rocking movements of the

thumb to trigger gestures without requiring any tangential movement [50]. Similar to Microrolls,

Thumbrock [51] and Shear Force [52] interpret different actions or forces based upon the change

in orientation of the finger.

In our second study we build upon this existing work in the following ways: First, similar to

FatThumb and SimPress, in both of our estimation techniques we interpret relative changes in

contact size as a way to estimate pressure. However, both of their approaches require calibration

to determine passing a threshold point. We also examine an alternative technique: comparative

pressure estimation, which knows nothing of the user’s calibration contact size only their initial

touch’s contact size. Second, FatThumb and SimPress look at contact size as a threshold to activate

either clicking or zooming modes, whereas we map pressure continuously to depth position. Third,

these studies focus on mobile and/or GUI settings in 2D tasks; we focus on contact size changes

during multi-touch interaction within 3D virtual environments. Finally, we also apply the two
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pressure estimation techniques to different 3D tasks that vary in the dexterity required by the users

(fine versus gross motor skills).

Multi-touch Interaction in Education and Training

There has been much work in interactive tabletops in education for encouraging inquiry-based

learning, experiential learning, or collaborative learning. Schneider describes four tabletop learn-

ing environments for science education and how each one positively affects inquiry-based learning

[53]. The outcomes of how these systems can positively affected inquiry-based learning were: 1)

rich visualizations may increase the way people collaborate, 2) rich interactions have the potential

to foster engagement and exploration of a problem space, and 3) the main benefit of technology-

enhanced learning environments may in fact not be learning, but preparation for future learning.

Shaer et al. presented G-nome Surfer 2.0, a tabletop interface for fostering inquiry-based learning

of genomics [54]. Their findings indicate that G-nome Surfer improves students’ performance,

reduces workload, and increases enjoyment. They also compared G-nome surfer on a tabletop to

a multi-mouse implementation in a study and found that the tabletop condition resulted in four

educational benefits: 1) increasing physical participation, 2) encouraging reflection, 3) fostering

effective collaboration, and 4) facilitating more intuitive interaction.

The Flow of Electrons [55] provides an augmented workspace for learning physical computing

experientially. By allowing users to place electronics components on the surface and experiment

with wiring and the outcomes, it allows users to make mistakes without fear of breaking anything.

It bridges the gap between digital information and actual hardware components. Similarly, Piper

and Hollan compared the affordances of presenting educational material on a tabletop display

with presenting the same material using traditional paper handouts [56]. The affordances of study

materials on the tabletop versus paper allowed for more playfulness and experimentation since the
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notes or drawings created were not permanent and were easily edited. The ability for users to

easily and immediately experiment and practice without the fear of making permanent mistakes

is something that can benefit training applications as well, since users may be intimidated by

expensive equipment or dangerous medical procedures.

Multi-touch interfaces have not been explored as much in the context of training. OrMiS [57], a

tabletop interface for simulation-based training, where military officers use a map-based tool to

carry out strategic maneuvers and combat, enabling large-scale training exercises without the cost

of field deployment. OrMiS is designed to replace traditional PC-based simulation tools while

improving ease of learning and better facilitating collaborative work. OrMis focuses on 2D map-

based strategic tasks whereas we focus on training on a physical apparatus in a 3D environment

using realistic gestures. For medical training SimMed implements a 3D simulation in an aug-

mented tabletop environment to teach medical procedural skills for diagnosis and treatment [58].

They observed high levels of immersion and positive social aspects, as well as observations that

suggest a significant learning effect. Their training was very open-ended in order to explore the

diagnostic techniques trainees chose, whereas we are focused on training a specific step-by-step

procedure. There are no other studies, that we are aware of, which evaluate the efficiency and

effectiveness of procedural training using multi-touch interactive surfaces.

VR and AR Procedural Learning

Although there hasn’t been much work with multi-touch systems in the areas of maintenance and

medical training, there has been much work with Haptic, Virtual Reality (VR) and Augmented

Reality (AR) systems. Haptic systems and VR technologies allow reproducing the conditions in

surgery, yet without risks for the patient, and offer new opportunities for training. Gosselin et

al. present a novel training platform offering high fidelity haptic interactions and show how this
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approach was applied in the context of maxillofacial surgery [59]. The first results demonstrate its

efficiency in qualifying expertise and training people. PerioSim is a haptic simulator that has been

developed as an aid for the sensorimotor skill acquisition in dentistry and is being evaluated in a

classroom setting [60]. Kang et al. investigated several repetitive training schedules to determine

which was the most effective in training on a robotic VR simulator, which simulates the da Vinci

surgical system [61]. They found that daily 1-hour practice sessions performed for 4 consecutive

days resulted in the best final score, continuous score improvement, and effective training while

minimizing fatigue versus other training schedules.

There have been many studies evaluating the effectiveness of VR and AR in training compared

to traditional methods, reporting in some cases that these methods perform as well as traditional

hands-on methods. For instance, Ganier et al. compared tank maintenance procedure performance

after conventional training with a real tank and those trained in a virtual environment. Both training

groups were also compared to a no-training control group who carried out the procedure using only

job instructions [62]. No differences were found for the testing task completion times for the test

groups, but significant differences were found between both test groups and the control group.

Indicating that procedural knowledge learned in a virtual environment is transferred to real-world

performance. Another study evaluated different Virtual Reality interaction technologies in learning

an industrial maintenance task [63]. The four different interaction technologies were basic mouse,

2D mocap, 3D mocap, and a haptic device. They found negligible impact on the learning of

assembly task when the focus is on transfer of procedural knowledge rather than the transfer of

sensorimotor skills. In addition, users that trained with mouse and 2D mocap took significantly

less time training.

Henderson and Feiner evaluate an augmented reality (AR) user interface designed to assist users in

the psychomotor phase of procedural tasks [64]. Their user study showed participants completed

the psychomotor aspects of the assembly task significantly faster and with greater accuracy than
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when using assistance on a stationary LCD screen. Another study examined VR and AR tech-

niques compared with classic training techniques. The VR and AR methods showed no significant

differences over control methods. In addition, they found AR training for industrial maintenance

and assembly (IMA) tasks can reduce the number of unsolved errors [62]. One of the main differ-

ences with these AR and VR studies is they they make use of 3D spatial interfaces [65] while we

focus on 2D multi-touch gestures. We aim to expand upon these results in virtual procedural train-

ing by exploring whether multi-touch interaction, which leverages realistic gestures, can perform

as well as training on the real equipment.

Learning with Increased Interface Complexity

Enactive learning interfaces, where knowledge constructed by an agent through its sensorimotor

interactions with its environment, have been shown to be more effective than passive or vicarious

learning methods [66]. With enactive learning in mind, we aim to leverage multi-touch interaction

for realistic procedural training such as for industrial assembly tasks or medical procedures.

There has been some work in HCI that focuses on whether ”harder” interfaces, or interfaces that

require greater effort from the user, benefit learning spatial tasks. Cockburn et al. found this to be

the case in graphical user interfaces [67]. They state that if an interface design’s objective is to

train users to interact with interfaces that depend on spatial properties, designers should explicitly

increase the mental effort of interaction. From another perspective, the game ”Game Over!” was

specifically designed to be inaccessible, in that it can be played by no one, in order to teach ac-

cessibility guidelines [68]. In our fourth study, by having unconstrained interaction where users

are free to examine parts and by forcing users to rotate components until they are properly aligned

before installing, we are inherently making the interaction more difficult. Our hypothesis in studies

3 and 4 are that by forcing this increased level of interaction the training more closely mimics the
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real world and will therefore benefit the learning of the real world task.

Conversely, Cockburn et al. also found that spatial memory performance deteriorated in both phys-

ical and virtual systems as their freedom to locate items in the third dimension increased [69].

Betella et al. also found that guided navigation resulted in better spatial memory versus free navi-

gation in a 3D Mixed Reality Navigation task, citing equivalent exposure time and a larger screen

sizes as possible reasons [70]. Our fourth study experiment also focuses on comparing how in-

creasing the level of freedom in interaction affects memory, but we focus on procedural memory

over spatial memory specifically. Richards and Taylor evaluated a 2D simulation versus a 3D

virtual world for teaching the Marginal Value Theorem [71]. They found that due to potential cog-

nitive overload and distractors in the virtual world, it appears that the two-dimensional NetLogo

model delivered better learning outcomes. Based upon outcomes such as these, Stuerlinger et al.

emphasize the value of constraints for 3D user interfaces for reducing cognitive load and present

a set of guidelines for constraints [72]. From these works we understand that it is possible that

by increasing the level of multitouch interaction in our training interface we may be introducing

cognitive load which may distract from learning. However, we believe that the combined similarity

of the interaction required in the virtual environment compared to the real world task environment

benefits learning.
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CHAPTER 3: USER-DEFINED MULTI-TOUCH GESTURES FOR 3D

OBJECTS

Introduction

In this chapter, we begin to explore what gestures users choose when asked to interact with different

3D objects on a multi-touch surface. As a result, we also examine how familiarity with popular,

metaphorical multi-touch gestures (e.g., a swipe gesture to unlock) translates to interacting with

3D objects that afford physical actions (e.g., a knob affords turning). We will use Wobbrock et

al.’s definition of a metaphorical gesture as a gesture that acts on, with, or like something else, and

the definition of a physical gesture as a gesture that should ostensibly have the same effect on a

table with physical objects [30]. In this study we specifically focus on interactions with 3D objects

that have rotational, tightening, or switching components on mechanisms that might be found in a

mechanical equipment operation and training simulations. We believe this research is a necessary

precursor for exploring how physical multi-touch gestures on objects can translate to learning the

physical operations encountered in executing mechanical and maintenance tasks.

To begin our exploration, we performed a user study to elicit user-defined gestures for manipulating

3D objects on multi-touch surfaces using a study design established by Wobbrock et al [30]. The

results indicate that users had a bias towards previously learned metaphorical multi-touch gestures

when first asked to perform a gesture on a 3D physical object. We were also able to show that with

instruction to interact with the object as they would in the real world, users would switch from a

metaphorical gesture to a physical one. Our user study led to the following research contributions:

• A classification procedure to categorize gestures and to determine the nature of a gesture (

i.e., whether it is metaphorical or physical in nature, or a combination of both).
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• A user defined gesture set for multi-touch gestures applied to 3D objects.

• User preferences with regards to metaphorical versus physical gestures.

• A comparison to Cohé et al.’s work that elicits user gestures for RST operations on a 3D

cube [32].

Figure 3.1: The Gesture Collection Apparatus and a user performing a two handed gesture.
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(1) Ball
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(2) Ball
Valve Side

(3) Ball
Valve Top

(4/5) Ball
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Right/Left

(8) Gate
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Valve Top
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Valve Rotate
Up/Down
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Valve Rotate
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(17) Pull
Switch

(18) Rotary
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(19) Key
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(20/21)
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ing Clasp
and Door
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ing Knife
Valve

(24) Wrench
(25) Pickle
Jar
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fly Valve

(27) Key
Drawer

Figure 3.2: The 27 referents presented to participants in trials 1 and 2 of the user study.

User Study

Overview

The goal of our user-centered experimental design was to let users express their ideal gestures on

objects that afford manipulation. The complex objects explored are valves, switches, tools, doors,
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and buttons that might be seen in mechanical equipment operation and training. Static images of

these 3D objects were used, with minimal feedback given in the form of strokes drawn to the screen

of their gesture path, in order to remove bias from expected reactions to gestures. Since all of our

users have owned multi-touch devices there would be inherent bias in what users instinctively

chose as their gestures. Thus, we decided to go through two trials of the experiment. In the first

trial, we asked the users to perform the task on each object using whatever gesture they felt was

appropriate. In the second trial, we asked the users to perform gestures that they would use if this

object was a physical object in the real world.

Pilot Study

A Pilot study was conducted with 20 participants aged 19 to 26, with 13 males and 8 females.

Both a 27” Perceptive Pixel LCD multi-touch display (PP display) and a Samsung Galaxy Tablet

10 (Galaxy Tab) were used. Although there are large differences in size and form factor between

the Galaxy Tab and the PP display, there was no significant difference between devices in the

gesture sets or number of fingers and hands used. Thus, the Galaxy Tab was omitted from this user

study.

After the pilot study, we discovered gesture primitives (shown in Table 3.2) that applied to different

objects in the current domain. We wanted to see if these gesture primitives applied to more complex

interactions that required possibly two hands or combinations of gestures as well as navigational

tasks. Thus after the pilot we added new referents to the experiment that required compound

operations (referents 22, 23, 25, 26, and 27 shown in Figure 3.2). We also added new navigational

referents which required the user to change the perspective of the object by rotating the viewpoint

(referents 4, 5, 6, 7, 10, 11, 12, 13, 20, and 21). The navigational referents are different than the

other referents that require activating or turning on, in that they lend themselves to metaphorical

23



gestures. Due to this, we will leave these referents out when comparing the nature results of the

two experiment trials.

Participants and Apparatus

There were 14 paid participants aged 18 to 29, all male. Two participants were left-handed and

the remaining were right-handed. All participants owned a multi-touch device such as a phone,

tablet or track-pad. Although all users were experienced with using multi-touch gestures on their

devices, none had implemented a multi-touch application before. The experiment was conducted

using a 27” Perceptive Pixel LCD multi-touch display (PP display). We developed an application

(in C#) that displayed a static image of each referent next to an animated image of the task to

perform (i.e., a valve opening) with a written description of the task (i.e. open this valve) as well.

The application saved the users’ gestures to a database. The data saved for each contact point were

the timestamp, size, pressure, touch id, and coordinates which allowed for animated playback. In

addition, each user was recorded on video.

Procedure

Participants were asked to go through two trials of the experiment. For each trial the user was

shown 27 referents (see Figure 3.2) accompanied by a task description on the screen (for example

”Turn the gate valve to the left.”). For the first trial, the participants were told to use whatever

gestures they thought would be appropriate for accomplishing each task. For the second trial, the

participants were told to use gestures as if each referent was a physical object in the real world.

Immediately after each gesture was completed, participants rated their gesture on goodness and

ease of use on a 7-point Likert scale. After the 14 participants had completed the experiment with

27 referents and 2 trials, a total of 756 gestures were collected and then classified.
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Figure 3.3: The nature classification process. The physical and proxy sub-categories are defined in
Figure 3.4. The abbreviations P, PM, and M were used for Physical, Physically Metaphorical, and
Metaphorical gestures respectively.
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Classification Method

A systematic classification process was necessary to examine whether users interacted with the

objects in a metaphorical or physical way, or a combination of both. We define physical gestures

in the same way as Wobbrock does, gestures that should ostensibly have the same effect on a

table containing those physical objects. However we distinguish ourselves somewhat from their

definition by having the requirements that the gesture must use two or more fingers and majority

of touches must make contact with the object. We make this distinction since if any of our objects

was manipulated in the real world those requirements would be necessary. Metaphorical gestures

are then any gesture that uses 1 finger if they are also acting like the physical motion, or any other

gesture that is not representative of the physical motion but is a metaphor in another way (such as a

line in the direction the object should move). Proxy gestures are gestures that act like the physical

motion but do not make contact with the object. The reasons we make these distinctions is firstly

to prepare for implementing a physics simulation driven by projected contact with the objects, and

secondly to mimic real world interactions for the purposes of training.
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Figure 3.4: (A)-(C) demonstrate the Physical sub-categories from left to right: grip, edge, and
grab. The gestures also correspond to 2 point finger turn, 2 finger curved line, and 2 finger pinch
and pull. (D)-(F) demonstrate the Proxy sub-categories from left to right: proxy grip, proxy edge,
and proxy grab. The gestures used are 5 point finger turn, 3 finger curved line, and 2 finger pinch
and pull.

The classification process (Figure 3.3) begins by examining the initial location and path of each

touch and determining if it intersected the object. If the touch intersected the object and followed

the path in which was needed to apply force to the object, then it was classified as one of the

physical gestures, either grip, grab, or edge (shown in Figure 3.4). A touch is classified as grip

if its initial location intersects the object, edge if its initial location begins in empty space and

then intersects the object, and grab if a pinching motion is done before the remaining gesture.

Otherwise, if the touch did not intersect the object but the motion still followed the force path, it

was labeled a proxy grip, proxy grab, or proxy edge gesture, which we define as physically based

metaphorical gestures. These gestures mimic the physical motion done in real life, but since they
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do not make direct contact with the object they are metaphorical in nature.

Table 3.1: Sub classifications of gestures, as described in section 3.

Metaphorical Physical Metaphorical Physical

Hold (H) Threshold Grip (TP) Grip (P) Proxy Grip (XP)

Swipe (S) Threshold Grab (TB) Grab (B) Proxy Grab (XB)

Drag (D) Threshold Edge (TE) Edge (E) Proxy Edge (XE)

Turn (N)

Gestures that did not fall into the physical (P) or physically metaphorical (PM) categories, fell into

the metaphorical (M) category. We originally established a threshold for number of fingers and

pressure to classify metaphorical gestures. Since real world motions could not complete the tasks

in our experiment with only 1 finger, the finger threshold was 1. We left out the pressure threshold

since a suitable cross platform, cross gesture number was not feasible. The sub-categories for P,

PM and M are shown in Table 3.1. After each touch location is classified, the sum of all of the P,

PM, and M touches are compared to determine if the gesture is overall a P, PM, or M gesture. It

is important to note that the abstract and symbolic gesture categories (presented in Wobbrock et

al.’s taxonomy [30]) were left out of this classification method since no gestures in those categories

were observed during our experiments.
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Table 3.2: Observed gestures, as well as the observed range of fingers and hands used.

Gesture Abbrev. # Fingers # Hands

Dot D 1 1

Straight Line SL 1-3 1

Curved Line CL 1-5 1

Semicircle SC 1-3 1

(Almost) Full Circle AFC/FC 1-2 1

Spiral/ Multiple Circles SP/MC 1 1

Finger Turn FT 2-5 1

Hold and Turn HT 2-5 1

Pinch PI 2 1

Pinch and Pull PP 2-3 1

Hold and Drag HD 2 2

Both Hands, Opposing Directions BHOD 2 2

Experiment Results

User-Defined Gesture Set

After all of the participants had run through the gesture collection experiment, each user’s gestures

were classified according to the overall observed gestures shown in Table 3.2, the number of fin-

gers and hands used, and the category (see Figure 3.4). Confirming Wobbrock et al.’s findings,

our observations indicate that the number of fingers used is arbitrary in the interpreted gesture.

However, the number of fingers is still important in interpreting the nature of the gesture indicated

in Table 3.2. For instance, the number of fingers is still important as it can be indicative of more
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or less force or control. The gesture used by the majority for both trials for each referent is shown

in Table 3.3. Although the interpreted gesture did not change for some objects, the physicality of

the gesture increased. For example, for referent 1, Ball Valve Front, the average number of fingers

used increased from 1 (SD = 0) in trial 1 to 2.14 (SD = 1.04) in trial 2. For many objects the gesture

changed from a metaphorical gesture to a physical gesture. For example, referent 5, Gate Valve

Side, had a straight line Gesture in trial 1 with average number of fingers = 1.3 (SD=0.57), which

is a metaphorical gesture that does not apply to the real world. In trial 2 referent 5 had a finger turn

gesture with average number of fingers = 2.45 (SD=1.28) which is a physical gesture one would

do in the real world.

The gesture set found in the pilot remained the same, even though we added more complex objects

and navigational tasks. We found it interesting that users did not come up with new gesture primi-

tives to accomplish these new tasks that required compound operations (specifically referents, 22,

23, 26, and 27). Instead, we found users used a combination of gesture primitives already defined

to accomplish these tasks.

For each referent, the groups of gestures were used to calculate an agreement score A that specifies

the degree of participant agreement in the gestures they selected. This method was replicated from

Wobbrock et al.’s prior work, see Equation 3.1.

A =

∑
r∈R

∑
Pi⊆Pr

(∣∣∣ Pi

Pr

∣∣∣)2
|R|

(3.1)

The agreement scores indicate that there was more user consensus in objects that had a face on

view to the area to be manipulated, such as referent 9, Gate Valve Top, in Table 3.3. For example,

in trial 2 referent 8, Gate Valve Front, has an obscured view where A = 0.34 , whereas for referent

9, Gate Valve Top, A = 0.42. In addition, objects that were overall difficult to manipulate had a
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low Agreement score regardless of the angle (e.g., in trial 2 referents 20/21, Key Switch Rotate, A

= 0.23).
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Table 3.3: The data collected for the 27 referents is shown.

Trial 1 Trial 2
Referent Gesture Class A M% PM% P% Class A M% PM% P%

1 Ball Valve Front CL TP 0.63 64.3 14.3 21.4 P 1.06 14.3 7.1 78.6
2 Ball Valve Side CL TP 0.53 50.0 21.4 28.6 E 0.80 14.3 21.4 64.3
3 Ball Valve Top CL TP 0.64 57.1 0 42.9 P 0.89 14.3 28.6 57.1
4/5 Ball Valve Rotate Up SL S 0.45 92.9 0 7.1 S 0.41 92.9 0 7.1
6/7 Ball Valve Rotate Right SL S 0.49 100 0 0 N 0.29 92.9 0 7.1
8 Gate Valve Side FT TP 0.34 28.6 21.4 50.0 XP 0.54 7.1 42.9 50.0
9 Gate Valve Top FT E 0.42 35.7 7.1 57.1 P 0.65 14.3 28.6 57.1
10/11 Gate Valve Rotate Up SL S 0.30 92.9 7.1 0 S 0.26 92.9 0 7.1
12/13 Gate Valve Rotate Right SL(FT) N 0.36 100 0 0 N 0.24 92.9 0 7.1
14 Needle Valve Back FT P 0.45 35.7 7.1 57.1 P 0.75 7.1 14.3 78.6
15 Needle Valve Side FT P 0.50 28.6 7.1 64.3 P 0.74 0 35.7 64.3
16 Needle Valve Top FT P 0.55 21.4 7.1 71.4 E 0.64 7.1 7.1 85.7
17 Pull Switch SL TP 0.88 57.1 35.7 7.14 XP 0.98 21.4 57.1 21.4
18 Rotary Switch FT TP 0.44 42.9 14.3 42.9 P 0.77 7.1 35.7 57.1
19 Key Switch FT XP 0.34 28.6 50 21.4 XP 0.53 0 50 50
20/21 Key Switch Rotate Left SL(FT) S 0.27 92.9 0 7.1 S 0.23 92.9 0 7.1
22 Locking Clasp CL TP 0.44 92.9 0 7.1 P 0.28 42.9 7.1 50

/ Door SL 42.9 0 57.1 7.1 7.1 85.7
23 Locking Knife Valve FT P 0.63 21.44 0,0 78.6 P 0.63 0 28.6 71.4

SL 28.6 0 71.4 0 28.6 71.4
24 Wrench CL TP 0.63 50 7.1 42.9 E 0.66 0 0 100
25 Pickle Jar FT XP 0.33 42.9 28.6 21.4 XP 0.39 14.3 42.9 35.7
26 Butterfly Valve PI B 0.36 21.4 0,0 78.6 B 0.63 14.3 7.1 78.6

CL 35.7 0 64.3 7.1 0 92.9
27 Key and Drawer FT TP 0.31 50 21.4 28.6 P 0.54 14.3 57.1 28.6

SL 28.6 7.1 64.3 7.1 14.3 78.6



Nature Dimensions

The results in Table 3.3 show the data collected for the 27 referents. For each referent the majority

gesture chosen in trial 1 and trial 2 are shown in the Gesture column. Since most referents had

the same Gesture value for trials 1 and 2, only one is shown and if there was a difference in

trial 2 it is in parentheses. The gesture sub-classification is shown in the Class column. The

Agreement scores (A), the percentage of Metaphorical (M), Physically based Metaphorical (MP),

and Physical (P) gestures used, are also shown respectively. The results in Table 3.3 show, as

expected, that the percentage of M gestures were higher during first pass of the experiment, and

the percentage of MP or P gestures were higher during the second pass of the experiment. In trial

1 there were 41.5% observed metaphorical (M) gestures, 12.2% physically metaphorical (PM)

gestures and 46.3% physical (P) gestures, and in trial 2 there were 10.2% M gestures, 24.8% PM

gestures and 65.0% P gestures which shows an increase in physical gestures. However, the results

do not show a majority of metaphorical gestures for the first pass of the experiment as we expected.

Which indicates that some of the referents (such as those that required compound operations) lent

themselves to more physical gestures without the users being explicitly told to do so. Viewing

angle and the awkwardness of the object cause the percentage of P to be lower than expected in

trial 2 as well, since if there is not a realistic way of physically interacting with the screen the user

chose an MP or M gesture.

Number of Fingers and Hands Used

As we assumed, most users used 1 or 2 fingers for the first trial and more than 2 in the second

trial. The average number of fingers across all referents was 1.89 in trial 1, and 3.49 in trial 2. The

average number of hands in trial 1 was 1.04 and in 1.07 in trial 2. The number of fingers used is

significantly greater trial 1 versus trial 2 (t12 = -5.99, p < 0.01).

33



Gesture Rating

Similar to Wobbrock et al. ‘s previous work, after the participants completed each gesture they

rated the goodness and ease of use on two Likert scales. The first Likert scale stated “The gesture

I picked is a good match for [task here]” and the second stated “The gesture I picked is easy to

perform.” Using Mann-Whitney tests, found that there were no significant differences in ratings

between trials of the experiment. Again the ease of use ratings indicate that users did not perceive

the physical gestures used in the second pass of the experiment to be more difficult to use than the

metaphorical gestures used in the first pass of the experiment. This is interesting because symbolic

or metaphorical gestures are considered simplifications and abstractions of real world actions, and

therefore considered easier to perform.

There were, however, significant differences between referents. For example, referent 8 (Gate

Valve Side) had an average goodness rating of 5.93 (sd = 0.10) and referent 9 (Gate Valve Top)

had an average goodness rating of 6.34 (sd = 1.07), which are significantly different (Z = -3.27,

p < 0.05). In addition, the ease of use ratings are significantly different as well (Z = -2.14, p <

0.05), where referent 8 again has a lower mean (x = 5.51, sd = 1.43) than referent 9 (x = 5.99, sd =

1.14). The camera angle (in the previous case) as well as the difficulty of manipulating the referent

(referent 19 versus 18 for example) play a part in how the users perceived their gestures‘ goodness

and ease.

Interviews

After the participants finished the 4 trials they answered 3 interview questions before the experi-

ment was complete. The interview questions were: (1) “Did you notice that your gestures changed

in the second pass of the experiment when I said to treat the objects as real, physical objects?”, (2)
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“What specifically changed about your gestures in the second pass?”, (3) “Which gestures did you

prefer - the ones used in the first pass or those in the second pass, and why?” The majority of users

answered yes (11/14) to the first question and more fingers and either pressure or parts of hand to

the second question (11/14). One user stated that ”At first I interacted as though it was a phone

app, and then I incorporated more fingers.” The other 3 participants were already using physical

gestures and using more fingers and hands in the first pass of the experiment.

For the final question, the participants were evenly divided in their preferences, 6/14 (42.9%)

indicated they preferred the first pass of the experiment mostly because they were easier to perform,

and the physical gestures could be awkward. The other 6/14 participants indicated they preferred

the second pass of the experiment. According to one user ”the gestures were similar to habits I use

every day”, and another said ”it’s easier to do things as if you would in real life”. 2/12 (14.3%) said

that their preference depends upon the referent and the viewing angle. Although it may seem that

physical gestures would correspond to physical objects, we assumed the majority would prefer the

metaphorical gestures from the first pass, since there is inherent bias from the use of multi-touch

phones and tablets. Thus, we were surprised that user preferences were evenly divided. One user

stood out from the others stating that he used the Mac track-pad and because of this he “prefers

multiple fingers because it‘s a more intuitive experience to turn a knob the way you would in real

life.” In addition, some users stated that it would depend on the object and the application. In

particular, one user stated “It would be really cool to have a video game where you had to navigate

the world by interacting with the picture like they were real objects. For simple interfaces, though,

I would rather have simpler controls.”
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Discussion

We classified each gesture into the categories within the Nature dimension (P, PM, or M) as well

as the sub-categories shown in Table 3.1. All gestures were observed as either in the metaphorical

category or in one of the physical or proxy sub-categories. The number of fingers played an impor-

tant role in distinguishing between metaphorical and physical gestures. For instance, a curved line

with one finger to open a ball valve (Figure 3.2-1) was considered a metaphorical gesture since in

real life more force would be required, whereas a curved line with 2-5 fingers would be considered

a physical gesture because it mimics the real life motion. This is not to say that more fingers al-

ways leads to a physical gesture. For instance, opening a gate valve (Figure 3.2-8) with a 3 finger

straight line gesture would be considered a metaphorical gesture because that would not translate

to real life whereas a multi-point finger turn gesture would.

In trial 1 there were 41.5% observed metaphorical (M) gestures, 12.2% physically metaphorical

(PM) gestures and 46.3% physical (P) gestures, and in trial 2 there were 10.2% M gestures, 24.8%

PM gestures and 65.0% P gestures which shows an increase in physical gestures. However, the

results do not show a majority of metaphorical gestures for the first pass of the experiment as

we expected. Which indicates that some of the referents (such as those that required compound

operations) lent themselves to more physical gestures without the users being explicitly told to do

so. Viewing angle and the awkwardness of the object cause the percentage of P to be lower in

trial 2 as well, since if there is not a realistic way of physically interacting with the screen the user

chose an MP or M gesture.

Our results contain both similarities and differences with Cohé’s study [32]. Both studies deter-

mine how users intuitively manipulate 3D objects, where Cohé uses a 3D cube alone and we use

more complex objects. Although the objects are different in our study the results are similar and

complementary to Cohé’s results upon further investigation. Cohé examines three parameters to
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categorize gestures: form (number of fingers), initial point location (IPL), and finger trajectory.

With this information Cohé determines the location of the IPL on the cube (e.g., corner, edge, face,

or external to the cube) and defines a relationship between the IPL and the transformation. For

instance, for rotating a cube the most common choice was an IPL on a face parallel to the transfor-

mation axis (TA) with a trajectory along the transformation direction (TD). From these fine grained

observations, Cohé found several overall characteristics of gestures for rotating an object:

• Curved - the trajectory is curved.

• Straight - the trajectory is straight.

• Grab - the user picks a point on the cube surface and then moves the object.

• Push - the user begins their gesture and the cube moves after it has been pushed, or when the

finger trajectory intersects an edge orthogonal to the TA.

From these general characteristics emerged four gesture categories that encompass all rotation

gestures: CurvedAndPush, StraightAndPush, StraightAndGrab, and CurvedandGrab. Similarly,

Cohé came up with the following characteristics for translation gestures: Push, Without object

referent, Grab-Lateral, Grab-Pull and Grab-Push. Straight and curved were omitted since there

were no curved gestures observed for translation.

Our classification method also examines form, IPL, and finger trajectory to determine what the

gesture shape is (listed in Table 3.2), then categorize each touch according to the process in Figure

3.3, and finally come up with an overall determination if the gesture was M, PM, or P in nature.

Interestingly, we came up with similar categories for gesture classification. Our grip, edge, and

proxy categories correspond to Cohé’s grab, push, and without object referent categories respec-

tively. We also added the category for a grab that represents a enclosing or pinching motion that

someone would do to pinch or grab an object in the real world.
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We believe our data from trial 1 would be similar to Cohé’s for referents 4-7, 10-13, 20, and 21

since those referents are rotating the entire object’s viewing angle. However, in trial 2 users were

told to do gestures as they would in the real world, so the number of fingers used would have

increased. In addition, to perform a rotation, users would mimic picking up an object and rotating

it which doesn’t fit into Cohé’s categories for rotations. For the remaining referents for trial 1, the

data would also be similar to Cohé’s since turning a valve or switch on is rotating or translating a

particular part of that component. Again in trial 2, these tasks would use more fingers and pressure

and would not fit into Cohé’s categories. It is interesting to note that Cohé defined all of the user’s

gestures as physical gestures. Whereas by our definition, all of the gestures performed by users

would be metaphorical since they would not perform the desired action in the real world.

In our study users intuitively used gestures similar to Cohé’s to manipulate real world objects, thus

verifying Cohé’s work. However, when asked to treat the referents as real world objects users used

more physical gestures. In addition, when performing more physical gestures users consistently

agreed they were no more difficult to perform than metaphorical gestures. This is ideal for future

uses of physical gestures in simulation or training environments. Users also were evenly divided

on their preference for metaphorical gestures or physical gestures. It is also interesting that the

viewing angle affected the perceived difficulty of a gesture to perform and is something to keep in

mind when designing these systems.

Conclusion

We have presented a user study that explores what gestures users choose to interact with 3D objects

that have rotational, tightening, and switching components. We have also described a procedure

for classifying gestures as metaphorical, physical, or physically metaphorical. Our results indicate

that due to biases from previous multi-touch experience, the majority of participants intuitively try
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to interact with 3D objects using 1-2 finger gestures in a primarily metaphorical way. However,

once prompted to use gestures as if manipulating physical, real-life objects, the users increased

the number of fingers, hands and pressure used, and used more gestures that were physical in

nature. The participants also found these physical gestures just as easy to perform as metaphorical

gestures. Designers should take into consideration that users intuitively use the gestures they are

most familiar with, so if they would like to elicit physical gestures there needs to be guidance in

doing so. Other than intent, many other factors play a role in the gestures chosen, among them

form factor and the perspective view of the referent. In addition to the gestures, there is also the

intersection and interaction with the object to take into consideration when interpreting the gesture,

as defined in the Physical and Proxy Nature sub-categories presented.

In this study we observed that many users increased pressure as a way to signify increasing force or

depth with physical gestures. In the next chapter we explore two different techniques for estimating

pressure on capacitive touchscreens within two different scenarios.

39



CHAPTER 4: MULTITOUCH PRESSURE SIMULATION IN 3D

ENVIRONMENTS

Introduction

In Chapter 3, we found that many users increased pressure in order to make their gesture more

closely mimic real world interactions. We observed that users increased pressure to convey apply-

ing force and depth movement. However, the most prevalent touch surfaces use capacitive sensing,

which rely on the electrical properties of the human body to detect touch, and thus do not sense

pressure. Therefore in order to implement pressure as input, we had several questions to answer.

First, could we instead use changes in contact size (i.e., the surface area of the finger which comes

into contact with the input surface) to estimate pressure? Second, since users contact sizes vary

greatly, would calibration be beneficial? And thirdly, does the pressure estimation technique per-

form well for different types of tasks such as applying force and depth movement?

In order to answer these questions we conducted a 2 x 2 within-subjects experiment of 20 partic-

ipants examining two different pressure simulation techniques (calibrated and comparative) with

two different 3D tasks that require varying levels of sensorimotor skills (gross and fine). Specifi-

cally, we use variations in finger contact size (i.e., the surface area of the finger which comes into

contact with the input surface) as a way to simulate pressure and translate it into meaningful 3D

interactions. Since varying contact size is very similar to varying pressure and acts as a suitable

metaphor, we use the term pressure “simulation”. Since there are no pressure sensors on capaci-

tive touch screens, we are instead interpreting changes in contact size by varying finger tilt angles,

where larger contact size corresponds to heavier “pressure”.

Our goal was to determine users perceptions (i.e., ease-of-use, gesture fit, and perceived efficiency)
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and actual performance (i.e., total completion time). To the best of our knowledge, no previous

studies have examined using pressure or contact size for multi-touch object manipulation. In addi-

tion, no previous studies have compared calibrated or comparative pressure estimation techniques.

Although we expected the calibrated pressure estimation technique to outperform the comparative

technique, we found that our initial hypotheses were only partially supported. For the ball and

hoops task (gross motor skill), the calibrated estimation technique was significantly better suited

for the task. However, the opposite was true for the stove knob task (fine motor skill); the compar-

ative estimation technique was significantly better than calibrated.

Figure 4.1: Our experiment apparatus included a 55-inch Perceptive Pixel display raised to stand-
ing height and tilted upwards by 30 degrees.
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Study Design

Perceptions and Performance Metrics

The dependent variables for all conditions within our experimental design included: 1) three per-

ceived measures based on user ratings of ease-of-use, goodness of gesture fit, and perceived ef-

ficiency to complete the task, and 2) an objective measure of Task Completion Time (TCT). For

the perceived measures, after each task participants were asked to answer the following questions

using a 7-point Likert scale, based on previous work [30]:

• How easy was it to perform the gesture?

• The gesture I used was a good match for the task.

• I quickly completed the task.

TCT was measured as seconds to complete the task trial. The trial started when the user pressed

a “Begin” button and automatically ended when the system detected the user had completed the

task.

Motor Skills

The goal of 3D interaction is to map user input to mimic actual human motion in a natural, in-

tuitive, and meaningful way. In order to do this, we need to have a deep understanding of the

fundamentals of human motion. Sensorimotor skills involve the process of receiving sensory input

and responding through motor (physical) output. Motor skills are coarsely separated into fine and

gross categories; gross movements come from large muscle groups such as the shoulder or arm
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whereas fine motor skills are involved in smaller movements that occur in the wrists, hands and

fingers [73, 74]. The use and assessment of both fine and gross motor skills are commonly used

in rehabilitation [75] and for skilled training such as for surgeons [73], who often using haptics

when applied to 3D virtual interactions [74]. Therefore, we wanted to ensure that our results for

the different pressure estimation techniques could readily be generalized to 3D tasks that utilized

both fine and gross motor skills. As such, we applied our pressure simulation techniques to two

different tasks: (1) a gross motor skills task where users guided a ball through hoops arranged at

different depths and (2) a fine motor skills task where users applied pressure while rotating a stove

knob (shown in Figures 4.2a and 4.2b).

The gross motor skills task required guiding a
ball through 3 hoops by translating while ap-
plying pressure for depth control.

The fine motor skills task required rotating a
stovetop knob to a certain position by applying
pressure while rotating.

Figure 4.2: The gross and fine motor skills tasks.

In both 3D tasks, pressure was being varied with the tilt of the fingertip to estimate pressure. The

gross motor skill task required the gross motor skills of the shoulder to control x and y translational
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position. At the same time, the finger tilt variations controlled depth (z) position. Hard pressure

increased the depth position away from the camera, light pressure decreased depth position towards

the camera, and neutral pressure maintained depth position. In the ball and hoops task, pressure

acts as an alternative to the pinch to zoom method used in Sticky Fingers for depth translation [19].

The fine motor skill task required pushing in a stovetop burner knob by surpassing a pressure

threshold and maintaining that pressure while rotating the knob. It required fine motor skills of

the thumb, index finger and wrist. We examine pressure to control depth while rotating in the

stovetop burner task, where a pressure threshold has to be met in order to push the stovetop knob

prior to rotation. Based on the inherent characteristics of gross motor skills, which involve larger

movements, versus the finer tuned movements necessary for the fine motor skills task, our first

hypothesis serves as a manipulation check of users’ perceptions of the two different tasks:

H1 Users will perceive the gross motor task as significantly (a) easier to use, (b) better fit to the

gesture, and (c) faster than the fine motor task.

Pressure Estimation Techniques

We explored two different pressure estimation techniques, calibrated pressure and comparative

pressure, which both use the contact size of a touch point on a screen. The difference between

methods is how they determine the neutral pressure value from which to compare corresponding

increases and decreases in pressure. For both methods increases in contact size are interpreted as

more simulated pressure within our defined metaphor. More pressure then corresponds to more

depth movement into the environment since more force usually moves something away.

Calibrated pressure requires the user to calibrate their light, medium and heavy pressure contact
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sizes and then calculates an average neutral contact size. Our calibration exercise presented the

user with a cube and asked them to press on it 5 times using their index finger (on the center and

4 corners) for light pressure, medium pressure, and then high pressure. Each participant was told

that pressure was interpreted as contact size. It was then demonstrated that light pressure meant

the tip of the finger, hard pressure meant the full pad of the finger, and medium pressure meant

about halfway between the two. The neutral pressure was then calculated as the mean contact size

of all of the collected contact sizes. Since capacitive screens start registering touches as they come

into contact with the screen, the screen will register a few very light touches before the intended

interaction begins. During our pilot study we determined that ignoring the first five events was

appropriate to only record the intended interaction contact size.

For the calibrated method, the current pressure was calculated as the relative difference in area of

the current touch’s contact area from the saved neutral contact area:

((currentsize− neutralsize)−minimumsize)/neutralsize

For example, for a user that has minimum, neutral, and maximum values of 500, 1800, and 4100

their pressure range would be ((500- 1800)-500)/1800, ((4100-1800)-500)/1800 = (-1, 1). Since

we take the average of all of their calibrated values the range is approximately (-1, 1). Thus, for

increases in contact size, the pressure is positive, and for decreases in contact size the pressure is

negative. The positive and negative pressure is useful for controlling bi-directional depth position,

or z axis translation, where heavier than neutral pushes the object into the screen (away from the

camera) and lighter than neutral pulls the object towards the user (towards the camera).

Comparative pressure was also calculated as the difference from neutral pressure, where the initial
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touch is assumed to be neutral and the minimum size is unknown:

((currentcontactsize− neutralsize))/neutralsize

For the same user, assume their initial touch is 500 (which also happens to be their minimum) then

their range is (500-500)/500, (4100-500)/500 = (0, 7.2). This range not only eliminates negative

pressure, but it skews positive pressure. In our application, this would allow the user to increase

pressure at a faster rate and pass the pressure limit they would have had with the calibrated method.

Then assume the same user has an initial touch of 4100 (which is their maximum) then their range

is (-7.2, 0). Thus, if the user would like to move in a certain direction faster, skewing their neutral

value in the opposite direction would be advantageous. However, if the user wants reliable bi-

directional movement they would need to start with medium pressure.

Since the calibrated pressure can immediately classify a user’s pressure level in the range from low

to high instead of only being able to interpret relative increases and decreases as the comparative

method does, the following hypotheses reflect our expectation that the calibrated method will be

perceived as better by users and outperform the comparative method:

H2 The calibrated pressure estimation method will be perceived as significantly (a) easier to use,

(b) better fit to the gesture, and (c) faster than comparative estimation technique.

H3 The Time to Complete (TCT) the tasks for the calibrated pressure estimation technique will

be significantly faster than the comparative pressure estimation technique.
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Methodology

User Study

We implemented a 2 x 2 repeated measures, within-subjects experimental design. The gross motor

skills task required translation while varying pressure in order to guide a ball through hoops (shown

in Figure 4.2a). The fine motor skills task required rotation while maintaining pressure to push in

and turn a knob (shown in Figure 4.2b).

Participants and Apparatus

We recruited 20 participants (7 female, 13 male) ranging in age from 18 to 29 years (average:

20.9 years). Of the 20 participants, 13 owned a touch screen phone while the other 7 owned

both a touch screen phone and tablet. All participants received $10 as compensation for their

time. We conducted the experiment on a 55-inch Microsoft Perceptive Pixel display. The display

was mounted on a stand so the bottom edge of the display was raised to 3.5 feet, approximately

standing height, as shown in Figure 4.1. The display was tilted upwards by 30 degrees since

tilted displays have shown to be for comfortable for users [76]. The apparatus also included a

camcorder capturing the screen and the participant’s arm and hand, and a table for the investigator

to observe and take notes. Our application used Windows Touchinput events which return xContact

and yContact properties in hundreths of a pixel in physical screen coordinates for both pressure

estimation techniques [77]. We developed the 3D environment and user study application in the

Unity3D game engine.
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Figure 4.3: User had a practice session where they applied increasing and decreasing pressure
levels on a 3D spring-loaded button.

Tasks and Procedure

Before participants began the experiment, the proctor explained to them what we were going to

explore during experiment. They explained that we would be translating and rotating different

objects on the screen, but to control depth position contact size would be used. Then they explained

that contact size is similar to increasing and decreasing pressure, but is actually controlled by the

tilt of your finger. The proctor demonstrated varying pressure levels while they were explained.

Then, after each participant understood what we were measuring they began the study with the

calibration session.

Next, users had a practice session where they applied increasing and decreasing pressure levels

on a 3D spring-loaded button, shown in Figure 4.3. This allowed users to experience how finger
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tilt was interpreted as pressure. Following the calibration and practice sessions, participants were

presented with the experimental tasks. The gross and fine motor skills tasks were each completed

with both calibrated and comparative pressure estimation techniques, totaling four trials overall.

To prevent ordering effects, half of the participants completed the gross motor task first and half

completed the fine motor task first. The order of the estimation methods was also balanced within

each task.

Before each trial, participants had a practice session to get comfortable with each combined task

and estimation method. They were asked to practice the entire task at least twice or until they were

comfortable performing the task. Since participants practiced the task multiple times, there were

no repeated trials. Once the trial began, participants were instructed to complete the task as quickly

as they could since each trial was timed. Following each trial, they were asked the three survey

questions on ease-of-use, goodness of gesture fit, and speed. To test our hypotheses, we conducted

repeated measures ANOVAs to assess both the main effects and interaction effects of our treatment

conditions for all of the perceived dependent measures. An independent t-test was used to assess

the differences in the actual TCTs since the two tasks were independent of one another and were

not necessarily designed to take the equivalent time to complete.
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Figure 4.4: Results of each user’s calibration session: the minimum and maximum contact sizes
and the calculated calibrated neutral pressure values for all users, ranked from low to high in
hundreths of a pixel.

Results

Calibrated Neutral Pressure

We found a wide spread of calibration values from our participants, demonstrating the utility in

calibration. The minimum pressure values, maximum pressure values and the calculated calibrated

neutral pressure values for all users is shown in Figure 4.4, ranked from low to high. Interestingly,
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each user had the same minimum pressure value indicating a limitation in the sensor for exact

sensing. The overall average neutral pressure is 1555.94 (stdev = 293.00). We can see from these

values that there is a large difference in pressure sizes from the minimum calculated neutral value

(1130.45) and the maximum calculated neutral value (2316.269), the maximum value is almost 2

times as large. In addition, the maximum contact size for the user with the smallest overall contact

sizes (1716.39) is less than the calculated neutral value for the user with the largest overall contact

sizes (2316.27). The user with smallest overall values would have a hard time using the system

calibrated for the user with the largest values or even the median values.

Table 4.1: The averages and (standard deviations) of our dependent measures: ease-of-use, gesture
fit, perceived efficiency, and task completion time (TCT).

Gross Calibrated Gross Comparative Fine Calibrated Fine Comparative

Easiness 6.30 (0.86) 5.30 (1.17) 4.20 (1.85) 5.55 (1.39)

Goodness 6.45 (1.09) 5.95 (1.36) 5.30 (1.78) 6.00 (1.08)

Speed 6.30 (0.80) 5.15 (1.31) 5.15 (1.31) 5.85 (0.99)

TCT 34.27 (23.00) 50.61 (35.39) 29.35 (27.53) 16.09 (13.80)

Hypotheses Testing Results

The averages and standard deviations of our dependent measures are summarized in Table 4.1. In

the sections below, we will present the results of our hypotheses testing. Then, we will further

interpret our results by examining the interaction effects between our test conditions.
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Main Effects of Motor Skills

We found partial support for our Hypothesis 1; the gross motor task was perceived as significantly

easier (F1,19 = 10.97, p <0.005) and faster (F1,19 = 4.54, p <0.05) than the fine motor task. How-

ever, the main effect of perceived goodness of gesture fit was not significant (F1,19 = 3.34, p =

0.084). This result suggests that users perceived the gesture motions as equally well-suited for

their respective tasks.

Main Effects of Pressure Estimation Techniques

Our Hypothesis 2 was also partially supported; users perceive the calibrated estimation technique

as significantly faster (F1,19 = 4.54, p <0.05) than the comparative estimation technique. However,

it was not perceived as significantly easier (F1,19 = 0.53, p = 0.487) or better suited to the gesture

(F1,19 = 0.22, p = .645) than the comparative pressure estimation method. Additionally, we had to

reject Hypotheses 3 because the TCT for the tasks using the calibrated estimation technique was

significantly slower (t20 = 1.93, p < .05) than the comparative estimation technique for the fine

motor task. Table 4.2 summarizes our results based on our initial hypotheses.
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Table 4.2: A summary of results based upon our initial hypotheses.

Hypotheses Result

H1a: Ease-of-use, Gross >Fine Motor Task ACCEPT

H1b: Goodness-of-fit, Gross >Fine Motor Task REJECT

H1c: Perceived Speed, Gross >Fine Motor Task ACCEPT

H2a: Ease-of-use, Calibrated >Comparative REJECT

H2b: Goodness-of-fit, Calibrated >Comparative REJECT

H2c: Perceived Speed, Calibrated >Comparative ACCEPT

H3: TCT >Comparative REJECT

Interaction Effects

Because we found only partial support for our first two hypotheses and had to reject our third,

we continued our analysis to interpret the possible interaction effects between our test conditions

and better understand the totality of our results. We found that our all of our repeated measures

ANOVAs were dominated by significant interaction effects for the perceived measures: easiness

(F1,19 = 16.85, p <0.001), goodness (F1,19 = 6.42, p <0.05), and speed (F1,19 = 12.93, p <0.002).

We also found a significant interaction effect in TCTs.
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Figure 4.5: The average task completion times (TCT) for each trial of the experiment using either
calibrated or comparative pressure in either the gross or fine motor tasks.

As illustrated in the interaction graphs in Figures 4.6a-4.6d, the classic X pattern between our

test conditions demonstrates the strong interaction effects between the two pressure estimation

techniques and the gross versus fine motor tasks. Across all of the perceived measures, we saw

the same patterns. For the gross motor task, users perceived the calibrated estimation technique

as significantly easier-to-use, better-fit to the gesture, and faster than the comparative estimation

technique. The opposite was true for the fine motor task; the comparative estimation technique

outperformed the calibrated. This pattern was also consistent (though inverse since lower TCT is

considered better) for the objective measure of TCT between the conditions.

The interaction graphs also show a relatively flatter line for the comparative estimation technique

across the perceived measures for two tasks, suggesting that the interaction effect was more pro-
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nounced for the calibrated estimation technique. In other words, the perceived variance in per-

formance between gross and fine motor tasks was greater for calibrated estimation technique than

the comparative. For TCT, the comparative estimation technique had the largest variance time

to complete between gross and fine motor tasks, while the calibrated was relatively stable across

tasks.
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Easiness Goodness

Speed TCT

Figure 4.6: The interaction graphs for the two pressure estimation techniques and the gross versus
fine motor tasks
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Discussion

Interpreting Our Results

While we found mixed support for our initial hypotheses, the results from our study were even

more insightful than if we had achieved the outcomes we had originally set forth in our hypothe-

ses. Indeed, we found that different pressure estimation techniques perform significantly better for

different 3D tasks based on the type of motor skill users have to perform. Because of the unantici-

pated results, we were challenged to reflect on our user study and the lessons we learned from our

users. Here, we present some of those insights to help explain our results.

As anticipated, the gross motor task benefited from the calibrated pressure estimation technique

for a number of reasons. First, bi-directional control required a predictable neutral position, which

users were able to achieve through calibration. Second, the finger’s orientation was roughly the

same during both the calibration session and the gross motor task. Users were able to leverage

a wider range in contact size to complement the larger degrees of freedom encompassed in the

arm and shoulder motions of the gross motor task. In contrast, the comparative pressure took the

first touch as the neutral position. If the user started with either a light or hard touch, this set

their neutral point as either light or hard, which limited them to not being able to go any lighter

or harder during the ball and hoops task. This was a limitation of the comparative pressure in a

bi-directional task, since it would make it impossible to move the ball towards the camera in the

gross motor task. Thus, if the user wanted to bring the ball towards the camera, they would have

to let go of the screen and initiate their interaction again with a harder touch and then transition

to light pressure. However, in a unidirectional task where a pressure threshold needs to be met, as

in the fine motor task, it would make it easier to apply positive pressure past this threshold if the

initial touch was very light.
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Yet, we discovered the unexpected result that comparative pressure estimation was significantly

better than calibrated pressure estimation for the fine motor task. We believe that the fine motor

task benefited from comparative pressure for a number of reasons. From previous pilot testing, we

determined the pressure threshold before the knob would depress to be positive 0.5 pressure units.

Some users’ fingers did not flex in a way for them to be able to surpass their calibrated threshold

without putting their fingers into an unnatural or uncomfortable position. Also the orientation of

the user’s fingers changed as they were rotating which made it difficult to maintain pressure past the

threshold value during rotation. Whereas with the comparative pressure (as discussed in Section

Pressure Estimation Techniques) the user can reach a higher pressure value simply by starting with

a very light pressure. Users learned that starting with light pressure for the comparative method

was effective during the practice session. Users were then able to understand how to make the

comparative method work for them during the actual task trial. If the users were unable to get the

neutral position right for the rotation task on their first try, the comparative estimation technique

allowed them to readjust each time they touched the screen. We believe that because the task

required the use of fine motor skills, the ability to readjust with trial and error was an invaluable

benefit to users.

Implications for Design

There are five important design implications that come out of this work. First, different estimation

techniques are more optimal for different tasks based on whether the task is unidirectional or bidi-

rectional. Calibration is more necessary for bidirectional tasks, whereas the comparative method

performs well for unidirectional tasks. It is more important to bidirectional movement to determine

where the neutral, low and high pressure values are, making calibration more necessary.

The second implication is that the user needs to know more about the implementation of the pres-
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sure estimation when calibration is not used. Unidirectional movement can get by better without

calibration, but only if the user understands that applied pressure is interpreted as increases in con-

tact size and that applying steady pressure outright will not work. Thirdly, if calibration or pressure

estimation customization is not possible in a complex task that requires both unidirectional and

bidirectional movement, then it would be best to use the comparative estimation technique. The

comparative pressure estimation technique performed more consistently across both tasks, though

sub-optimally for the gross motor skill task.

Finally, improvements to the calibration process could be made to make it applicable to more

tasks. The same large pressure variation range available to a user when calibrating with their finger

straight up and down, is not available in tasks that (1) use the thumb, (2) have a small area, and

(3) require rotation. In addition, as a user’s touch moves away from the center of the screen the

finger pad’s orientation is going to change slightly, affecting the contact size. Ideally, calibration

should obtain finger pad representations at the outer 4 corners of the screen. Then if the calibration

method was also cognizant of the user’s position relative to the screen, it could make assumptions

about the finger pad’s orientation.

Conclusion

We evaluated the two pressure estimation techniques, calibrated and comparative, and their ap-

plications to the different motor skill tasks in a 2x2 within-subjects experiment. Although we

expected the calibrated pressure estimation technique to outperform the comparative technique,

we found that our initial hypotheses were only partially supported. Instead, we uncovered an in-

sightful and unanticipated finding: different pressure estimation techniques are significantly better

for different tasks based on the type of motor skills being performed.
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We have now defined design guidelines for physical gestures and how to implement pressure as

part of these physical gestures. In the next chapter we explore whether using these gestures in

training applications increases knowledge transfer.
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CHAPTER 5: MULTITOUCH INTERACTION AND PROCEDURAL

TRAINING

Introduction

Once we had developed gesture design guidelines for realistic 3D multi-touch interaction in Chap-

ters 3 and 4, we were ready to evaluate the training benefits of a training system that provides

realistic affordances through these types of gestures. Specifically, we address the following re-

search question: How does realistic multi-touch interaction affect the learning of a procedural

assembly task? To address this question, this chapter presents a study evaluating the knowledge

transfer acquired with multi-touch interaction technology compared to standard training methods.

We compared multi-touch interaction to standard 2D mouse interaction and to actual physical

training.
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Figure 5.1: The motorized bicycle model in the virtual environment with the tools and parts on the
table or in the tool bar for easy access.

Our study focuses on learning a repair and assembly procedure and the transfer of knowledge to

performing the task on the real world apparatus. We chose a mechanical repair task since they

are complex tasks which involve the knowledge of specific procedures, the location of parts, the

interactions between parts, and the use of tools. In order to focus on the installation gestures

themselves, we limited the object manipulation and constrained the viewpoint. We demonstrate

realistic physical gestures and interaction techniques that aid in learning by creating realistic con-

straints that would be applicable to a variety of procedural tasks, such as gravity, using two hands,

and applying pressure.
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Figure 5.2: The physical motorized bicycle apparatus (5.2a) with the accompanying tools and parts
(5.2b).

Training Systems and Task

The selected experimental task consisted of assembling and testing part of a 2-stroke bicycle-

mounted engine (shown in Figure 5.2). The apparatus and task were selected based upon a number

of constraints: (1) the task should use tools, parts and gestures that would be applicable to indus-

trial, defense, or medical tasks, (2) the apparatus should be able to fit into our lab, (3) the task

should be safe for all participants to perform, (4) the task should be significantly complex and

non-obvious that a layman could not complete it without prior training. These constraints led us

to repairing a 2-stroke bicycle engine where participants could assemble, test and adjust the clutch

and other parts.
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Assemble Clutch Test and adjust clutch Install spark plug Configure wiring

Figure 5.3: The four different sub-tasks (5.3a - 5.3d) shown on the physical bicycle apparatus (top),
and in the virtual environment (bottom).

The overall task consisted of 22 steps grouped into 4 sub-tasks (shown in Figure 5.3): (1) clutch

assembly, (2) clutch functionality testing and adjustments, (3) spark plug installation, and (4) wire

configuration. Some examples of the operations participants had to perform are: tightening the

clutch wheel nut to adjust the clutch plate, tightening screws with a screwdriver, installing the

spark plug with a socket wrench, and plugging in wires. The task also required verifying the

correct clutch plate tightness, where the engine needed to be disengaged with the clutch in and

engaged with the clutch out. If either of these conditions are not true the clutch plate should be

looser or tighter respectively. In total, participants had to manipulate roughly 25 parts, and use

three different types of tools (shown in Figure 5.2b).
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Motorized Bicycle

The physical apparatus was a motorized bicycle mounted on a small stand to allow pedaling the

bike freely in place for testing purposes. The participants that trained on the physical bicycle had

the advantage of experiencing the affordances provided by each of the tools and parts involved in

the task. For instance, understanding the correct tightness of the clutch plate is an important step in

the process. This can be experienced by tightening the nut about 80% of the way and making sure

the clutch plate still has about 1/8” of movement. As described above, correct clutch plate tightness

can be verified by pedaling the bike with both the clutch in and the clutch out. The user can verify

the engine is disengaged visually by looking at the gears and observing the relative easiness of

pedaling the bike. With the engine engaged, the user can feel that the bike is more difficult to pedal

and hear the engine making a chugging sound. The ability to examine the parts and bike apparatus

from any viewpoint or zoom level is also an advantage the physical model provides. As described

above, the physical bicycle provides feedback in the form of opposing forces and aural and visual

cues.

Virtual Model and Multi-touch Interaction

The virtual environment contained a detailed, working model of the bicycle, engine, components

and tools involved (shown in Figure 5.1). A tool bar was also provided so that if a user was zoomed

into a certain area of the bike they wouldn’t have to zoom out to select a part from the table. Users

could select the tool or part needed from the tool bar and it would hover next to the button. Each

corresponding step in the task was replicated in the virtual model and required interaction. We

ensured both the multi-touch and mouse interaction required the same number of steps to complete

the task.
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Previous work on user-defined multi-touch gestures for 3D objects influenced our multi-touch in-

teraction model [2]. Based on this work, all objects, except for small screws, required two or more

fingers to manipulate in order to make the interaction more realistic. The gestures incorporated

were double tap, translate, rotate, pressure, grasp, grip and hold. Double tap zoomed in and out

of the 5 main viewpoints of the bike. Translate was used to move parts and tools around. Ro-

tate was used on the clutch plate to align it, and on the screwdrivers. Pressure was used to apply

pressure when installing the spring and to attach the socket wrench to the spark plug. Pressure

information was interpreted based off touch point size provided by the display device. Grasp was

used on the clutch lever; multiple fingers had to push down on the lever while the thumb stayed on

the handle grip. Grip was used on the socket wrench handle to grip it and rotate it around. Hold

was used in 2-handed gestures where gravity or other forces would take over. For instance, if the

user let go of the clutch plate before securing the clutch wheel nut with the other hand the plate

would detach due to the force of the spring and fall to the table.

Where possible we aimed to replicate the affordances provided by the real model in the virtual

model and multi-touch gestures. For example, the steps in the real task and the corresponding steps

replicated in the virtual model follows and are shown in Figure 5.4. In the real model installing

the clutch plate requires: (1) pressing and rotating the spring over the center bolt until it stays, (2)

attaching the clutch plate by rotating it so it aligns with the three pegs, and then (3) holding and

pressing the clutch plate over the spring while screwing on the clutch wheel nut. The corresponding

multi-touch interaction required was identical, where the gestures required were: (1) translate and

pressure rotate the spring, (2) translate, rotate and hold the clutch plate, (3) 2-handed interaction

where one hand holds the clutch plate while the other hand translates and rotates the clutch wheel

nut.

In the above example, even though the main gesture motions were identical, some affordances were

not replicated due to the constraints of the interface. For instance, in the physical model you have
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to rotate and press on the spring until it clicks onto the center bolt, but sometimes this is tricky

and can be hard understand how it feels when the spring attaches. Whereas in the multi-touch

model, the user only needs to press and rotate 180 degrees and it will automatically connect. On

the other hand, rotating and aligning the plate was more difficult in the multi-touch model since

the user is required to exactly match up the plate with the three pegs and then press. In the physical

model the same precision is not required. For step (3), the physical model’s spring pushed back

against the clutch plate reminding users to apply pressure to keep it in place. In the multi-touch

environment, users had no such feedback and may forget that pressure is required to prevent the

plate from detaching until the nut is secure.

We emphasized the model fidelity and interaction details even further to articulate any sensorimotor

skills that wouldn’t be found in the user manual alone. As for interaction details, the number of

rotations required to rotate the clutch wheel nut, the screws with the screwdrivers, and the spark

plug with socket wrench were the same for the actual bicycle apparatus and the virtual model. As

for model fidelity, in order to get the clutch plate to the correct tightness, participants were directed

to tighten the clutch wheel nut approximately 80% of the way and then perform the clutch testing

procedure to verify it was working correctly. In the virtual model, 80% tightness also mapped

to 1/8” of clutch plate movement so users could press on the clutch plate and see how much it

depressed. We also indicated that it was harder to pedal the bicycle with the engine engaged by

requiring 2 fingers and pressure to pedal when engaged and 1 finger versus no pressure threshold

when disengaged.

Virtual Model and Mouse Interaction

The mouse interaction was intended as a control training group, providing only basic click and drag

interaction. We implemented a simplified mouse condition over an optimized mouse condition to
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demonstrate that it’s not only the number of steps the user completes, but the level of interaction

that affects learning. We ensured both the multi-touch and mouse interaction required the same

number of steps. With the mouse the user would drag the part or tool to the desired position and

then when close enough it would snap to place. To perform rotations the user would click again

and the part or tool would animate as it rotated into place. If a mistake was made, the user could

click to uninstall and then move the part away. Since rotations only required one click to animate

they could be completed much quicker than in the multi-touch interface where a user would have

to perform multiple rotation gestures to install the part completely.
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Pressing and rotating the spring
over the center bolt until it clicks
into place

Pressing and aligning the clutch
plate over the spring and three
pegs

Tightening the clutch wheel nut
over the clutch plate to the appro-
priate tightness

Figure 5.4: The three steps in assembling the clutch (5.4a - 5.4c) shown on the actual bicycle
apparatus (top), and in the virtual environment (bottom).

User Study

We conducted a user study to explore the effectiveness of gesture-based multi-touch training. The

study examined three different methods of training how to repair a 2-stroke bicycle engine. The

three methods were using the actual equipment, using a virtual model with gesture based interac-

tion, and using a virtual model with a mouse. All groups trained with the same paper manual and
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returned three days later for a post-training test. During the post-test participants were asked to

perform the task on the actual equipment as quickly as possible from memory and were graded on

correct steps and timed. Our hypotheses were:

H1 The participants trained using the gesture interface will score as well on the post-test as the

participants trained with the actual equipment.

H2 The participants trained using the gesture interface will score better on the post-test than the

participants trained using the mouse interface.

H3 Due to discrepancies between manipulating the actual components and the virtual model, the

participants trained using the gesture interface will perform the post-test slower than the

participants trained with the actual equipment.

H4 Since the gesture participants may have maintained some muscle memory of the task, partici-

pants trained using the gesture interface will perform the post-test faster than the participants

trained using the mouse interface.

H5 The training time for the mouse participants will be faster than the bicycle and multi-touch

groups since they don’t have to go through the longer physical gestures.

Participants and Apparatus

There were 36 participants (13 female, 23 male) aged 18 to 37 (x̄ = 23.6,σ = 4.58) randomly

distributed into the three groups. The participants were recruited from a University setting from

a wide variety of majors including Speech Pathology, Biology, Marketing, Business, Information

Technology, and more. Participants rated their mechanical experience on a Likert scale from 1 to

7, (x̄ = 3.06, σ = 2.04), and none of the participants had worked on a similar engine previously.
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Training was either conducted on the computer via a 55-inch Microsoft Perceptive Pixel multi-

touch screen, or on the actual bicycle and engine. Post-tests were performed on the physical

bicycle.

Study Design

The experiment follows a between-subjects design with 36 participants randomly divided into 3

experimental groups (each participant was assigned to a group in alternating order). Two groups

trained in a virtual environment, one using multi-touch gestures or the other using mouse input.

The third group was trained on the actual bicycle.

Participants were timed during training and testing and scored on the test. Participants were also

asked to rate the following statements on a Likert scale from 1 (strongly disagree) to 7 (strongly

agree), both post-training and post-testing:

Post-Training questions:

Q1 I feel prepared to complete the repair task after completing the training

Q2 I thoroughly understand the concepts that I learned during the training

Post-Testing questions:

Q1 I was sufficiently prepared to complete the repair task upon arrival today

Q2 I thoroughly understood the concepts that I learned during the training
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Procedure

Testing occurred exactly 3 days after training to avoid short-term memory effects. For training, all

groups followed the same protocol. First, participants were presented with the training apparatus

(whether it be the computer or bicycle) and the paper manual. Second, they were familiarized

either with the tools or the interaction model. Second, participants were asked to follow along with

the paper manual as they conducted the task. They were told they could complete the training as

many times as they wanted, so long as they could learn the task and describe the process back to

the proctor correctly.

Table 5.1: Steps in the procedure that participants were scored on during the post-test.

Steps Steps

1 Clutch lever 11 Testing - clutch

2 Clutch button down to adjust

3 Spring 12 Flathead screw

4 Clutch plate 13 Flathead screwdriver

5 Clutch wheel nut 14 Gasket

6 Begin testing 15 Gear case cover

7 Testing - pedal bicycle 16 5 screws

8 Testing - clutch down, 17 Phillips Screwdriver

engine disengaged 18 Spark plug

9 Testing - clutch up, 19 Socket wrench

engine engaged 20 CDI cap

10 Testing - diagnose 21 Connected wiring

correct adjustment 22 Wiring correct
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Three days later, participants returned to perform the task on the real bicycle engine. They were

asked to perform the task correctly from memory without the user manual. They were scored on the

steps shown in Table 5.1. One point was given for each step completed correctly and performed

in the correct order, for a total of 22 points. If they skipped a step then later remembered and

backtracked to complete it, they received a 1/2 point.

Results

Training

Training Time

The participants could go through the training as many times as they wanted to learn the task and

describe the process back to the proctor, the average total training time by group is shown in Figure

5.5. We found that all of the participants in the Bike group only went through the process once,

whereas all of the participants in the Multi-touch and Mouse groups went through the training

twice. The bike trainees would have to wait on the proctor to dismantle the training model which

may have discouraged them from going through it twice. Once the virtual users had learned the

interface, they were able to quickly go through the training a second time. The virtual medium

affords quickly repeating the training scenario as compared to the physical training apparatus.
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Figure 5.5: Average training times by training group. Participants could go through the training
multiple times, however the participants in the physical bike group all opted to only perform the
training once.

An independent samples t-test did indicate the multi-touch group spent significantly more time

than the bike group (t22 = −2.42, p<0.025) and the mouse group (t22 = −2.96, p<0.007) on the

first training session. However, the bike and mouse groups training times were not significantly

different (t22 = 0.623, p = 0.540). This result demonstrates that multi-touch participants had

to perform detailed, realistic interactions and may have also spent extra time adjusting to new

gestures.
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Questionnaire

We performed a Kruskal-Wallis test (results are shown in Figure 5.6) which showed that there

were no significant differences between the different groups for their responses to each of the 4

Likert questions (presented in the Participants and Apparatus section). These results indicate that

participants from all groups felt that they were prepared after the training, and still felt that they

were prepared after performing the actual post-test.

Figure 5.6: Average user Likert ratings on the preparedness and understanding questions asked
after training and after testing.
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Testing

Testing Scores

When the participants returned for testing, they were asked to perform the task on the real bicycle

and engine from memory. They were scored on number of steps completed correctly and timed.

The average scores by group are shown in Figure 5.7. The scores were normally distributed for the

Bike, Gesture, and Mouse groups as assessed by Shapiro-Wilk’s test (p>.05). A one-way between-

subjects analysis of variance (ANOVA) was run to compare the effect of the training method on

the testing score. The main effect that training method had on the dependent variable, testing

score, was found to be significant (F2,33 = 5.36, p <0.010). Independent samples t-tests indicated

the gesture group scored significantly better than the mouse group (t22 = 2.50, p<0.025) and the

bike group also scored significantly better than the mouse group (t22 = 2.58, p<0.020). However,

the bike and gesture groups scores were not significantly different (t22 = 0.240, p = 0.812).

This result demonstrates that participants that trained with Multi-touch performed as well as those

trained on the actual apparatus and better than those trained on the Mouse.
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Figure 5.7: Average testing scores by training group.
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Testing Errors

Figure 5.8 shows each step of the testing process and how many users got the step correct, separated

by testing groups. The errors occurred when a user forgot or skipped a step. If a user remembered

to do a step, there was never a case where the user didn’t know how to operate the tool or part in

that step, but instead users completely forgot the process altogether.

Figure 5.8: The number of users that completed each testing step correctly for each training group;
the bike group in blue, the gesture group in red, and the mouse group in yellow. This graph also
demonstrates on which steps users made the most errors by showing where the deficits are. For
example, for the flat screw step only 4 of the mouse users performed the step correctly, whereas 9
gesture users and 10 bike users performed it correctly.

Testing Scores

The testing times were also measured (shown in 5.9) and found to be normally distributed for

the Bike, Gesture, and Mouse groups, as assessed by Shapiro-Wilk’s test (p >.05). A one-way
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between-subjects analysis of variance (ANOVA) was run to compare the effect of the training

method on the testing score. The main effect that training method had on the dependent variable,

testing score, was not significant (F2,33 = 1.64, p = 0.209).

Figure 5.9: The average testing times by training group.

Discussion

The performance results (shown in Figure 5.7) demonstrate that participants trained with multi-

touch interface scored as well as those trained on the actual apparatus and better than those trained

on the mouse interface, confirming Hypotheses H1 and H2. However, the post-test times were

not statistically significant and do not confirm Hypotheses H3 and H4. This could be due to a

few reasons. It’s possible incorrect steps could still lead to the same testing time as a test that
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was completed without errors. In addition, the inexperience of some participants using tools,

causing them to be more cautious than others, may have lead to higher variance within groups. We

believe that a few factors led to the multi-touch group scoring as well as the bike group. First, the

affordances of the multi-touch model were closely mapped to the affordances of the real model,

allowing multi-touch users to perform nearly the same physical gestures in the simulation as they

would in real life. Secondly, strict constraints used in the multi-touch training (discussed in the

Virtual Model and Multi-touch Interaction section) demanded more concentration allowing better

memory of the steps as well as the physical motions required. Thirdly, users felt that repeating

the training would be quick and easy since they could simply restart the environment to start again

with the dismantled model versus undoing each step performed on the physical model.

Hypothesis H5 was partially confirmed, the Mouse group trained faster than the Multi-touch group

but not the Bike group. We believe the gesture group had longer training times since there was a

gesture learning curve and mistakes were made more often during training due some strict con-

straints. It could be argued that the multi-touch group performed better than the mouse group since

they spent more time training. However, the majority of this time was spent learning, adjusting and

executing gestures, not in additional training repetitions. Since the number of steps were identical

and the virtual model was the same between the mouse and multi-touch groups, we believe the bet-

ter multi-touch performance was due to the similarities of the multi-touch model affordances and

physical gestures with the actual bicycle model and physical movements. Although the multi-touch

training was not as efficient, time-wise, as the mouse training it was more effective.

The multi-touch interface provides the ability for users to manipulate tools and parts and perform

realistic physical gestures as they would in a real-world procedure. Although our gesture set was

somewhat small (7 gestures), it is still possible to achieve realistic actions; the gestures become

more realistic when tied to physics forces and constraints. It is important for the physical motions

and constraints within the procedural steps to be replicated where possible. For instance, consider
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a task in real life where one hand is required to hold a part in place while the other attaches it. The

corresponding multi-touch interaction should also require a 2-handed gesture instead of objects

snapping into to place or ignoring gravity. In some instances the stricter constraints in the multi-

touch interaction may have led to more mistakes by users in training, but may have forced them to

learn the steps better since they had to use more precise gestures.

For instance, a more complex 2-handed gesture was used for steps 4 and 5 (from Table 5.1) which

required holding the clutch plate while tightening with the clutch wheel nut. As shown in Figure

5.8, more multi-touch users remembered the wheel nut step versus mouse users, potentially due

to this increased amount of interaction. On the other hand it is interesting that approximately the

same number of mouse and multi-touch users missed the clutch plate step. Some virtual users said

this was because the shininess and/or shape of the plate in real life was not reflected in the virtual

model and was hard to recognize.

In order to maintain the feeling of holding and manipulating the parts directly, or direct manipu-

lation, we chose the viewpoints in the virtual environment carefully. A perceptual disconnect can

occur when an object moves away from a user’s touch and the object is no longer underneath the

user’s hand. This is particularly apparent when translating objects along multiple axes.

On a multi-touch interface, the user gets force feedback from the surface, however they don’t

get full 3DOF positional force nor any rotational force feedback. We chose to simulate applying

force with pressure and use of more fingers. Pressure and the number of fingers required are good

indicators of force but don’t translate exactly to force in real life. For instance, attaching the spring

to the bolt in the physical model requires pressing hard while rotating. In the multi-touch model

users need to rotate 180 degrees and meet a pressure threshold. During the post-test, the multi-

touch users expressed confusion as to why the spring wasn’t attaching as easily as in the training.

For force feedback, the user could also be required to apply an opposing force in the form of more
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fingers and more pressure. For instance, the physical model’s spring pushed back against the clutch

plate reminding users to apply pressure to keep it in place. In the multi-touch environment, users

had no such feedback and may forget that pressure is required to prevent the plate from detaching

until the nut is secure. By requiring the user, in this instance, to apply pressure as an opposing

force, they may learn the existence of force feedback in that action. Pressure could be improved

upon by training users on how pressure is measured on a touch screen, calibrating pressure on a

per user basis, or by providing visual and aural cues. Since forces cannot be felt by the user, visual

and aural cues must compensate for that lost sense of force.

The realistic multi-touch gestures were tightly linked with physics in the virtual environment,

procedural constraints, simulating forces, and carefully chosen viewpoints in order to create a

convincing simulation of the physical actions within the maintenance procedure. Keeping in mind

these considerations, multi-touch can provide a realistic and effective training environment for

procedural tasks.

Conclusion

In this chapter we presented the use of realistic multi-touch interaction in a 3D training environ-

ment as a way to enhance learning of sensorimotor skills a well as procedural knowledge. We

conducted a between subjects experiment with 36 participants distributed into 3 groups in order

to evaluate the effectiveness of multi-touch training. One group used multi-touch interaction in

the 3D training environment, the second used basic mouse-based interaction, and the third trained

on the real equipment. A post-training test carried out 3 days later evaluated performance in con-

ducting the real task from memory. Results show that the multi-touch interaction and the real task

groups had significantly better performance scores than the mouse interaction group, with no sig-

nificant difference between multi-touch and real task groups. We demonstrated that multi-touch
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interaction trains participants on the task as well as training on the actual equipment, suggest-

ing multi-touch interaction is a worthwhile training tool for procedural knowledge that requires

sensorimotor skills.
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CHAPTER 6: CONSTRAINED AND UNCONSTRAINED MULTITOUCH

INTERACTION IN PROCEDURAL TRAINING

Introduction

In chapter 5 we evaluated the training benefits of a multi-touch training system that used realistic

physical multi-touch gestures in a virtual environment to provide realistic affordances [4]. While

the previous study required realistic gestures to install and test parts during training, it required

minimal object manipulation. We hypothesize limiting object manipulation by the user in this

way takes away the benefit of focusing on the spatial properties of objects and negatively affects

training. Inversely, it’s also possible that limiting object manipulation may have benefits, such as

reducing cognitive load and other distractors as discovered by Cockburn [67].
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Figure 6.1: The dog treat dispenser prototype built with a raspberry pi, servo, and camera that users
were trained to create.

We aim to evaluate the benefits of multi-touch training that has unconstrained object manipulation,

where the user can pick up, rotate and examine parts. We compare this unconstrained multi-

touch group to a group that has constrained object manipulation, where the parts automatically

align themselves and the user cannot make their own rotations. In addition, we will compare both

groups to a control group performing physical training with the actual apparatus. The selected
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experimental task consists of assembling a dog treat dispenser prototype built with a Raspberry Pi

and other electrical components (shown in Figure 6.2).

Front Board Back Board Camera Camera Mount

Servo Servo Wheel Raspberry Pi Jumper Cables

Bolts, Nuts, and Screws Clips Micro USB Box

Figure 6.2: The parts used in assembling the prototype.
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Training Systems and Task

The selected experimental task consisted of assembling a dog treat dispenser prototype built from

a Raspberry Pi and other electrical components (shown in Figure 6.1). Since we wanted to focus

on object manipulation and how that affects training, we selected the apparatus and task based

upon a few requirements. First, the task should be confined to a small area like a table top so

that the user could be seated and easily manipulate the parts in front of them to complete the

task. Otherwise, if the task required larger immobile parts like an engine, the user would have to

navigate or walk around in the environment as well as manipulate objects. Second, the task should

use tools, parts and gestures that would be applicable to industrial, defense, or medical tasks so

that the outcomes are relevant for training applications in these domains. Third, the task should be

significantly complex and non-obvious that a novice could not complete it without prior training.

These requirements led us to assembling a small electronic prototype where participants could

assemble and then test the final product.

The overall task consisted of 13 general steps, where each step could require multiple repetitions of

the same step (shown in Table 6.1). Some examples of the operations participants had to perform

are: mounting parts with bolts, nuts or screws and connecting parts with different wires or cables.

In total, participants had to manipulate 30 parts using their hands or a screwdriver (shown in Figure

6.2).

Physical Apparatus

The physical apparatus consisted of a Raspberry Pi and electronic components required to assemble

the dog treat dispenser prototype arranged on a small table. The participants that trained on the

physical apparatus had the advantage of experiencing the affordances provided by each of the tools
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and parts involved in the task. The ability to examine the parts from any viewpoint or zoom level

is also an advantage the physical model provides. In addition, the physical apparatus provides

feedback in the form of opposing forces and aural and visual cues.

Table 6.1: Steps in the procedure that were described in the user manual and that participants were
scored on during the post-test.

Steps

1 Insert the Servo

2 Attach Servo with 4 screws

3 Connect 4 bolts to front plate with 4 nuts

4 Connect camera to camera mount

5 Mount camera with short bolt and nut

6 Secure Raspberry Pi to back board with 4 screws

7 Connect the servo to the Raspberry Pi

with 3 jumper cables

8 Connect camera ribbon to Raspberry Pi

9 Screw nuts 1/3 way down each front board bolt

10 Align back plate on top of front board bolts

11 Secure back plate with 4 nuts

12 Connect box to servo arm with 2 clips

13 Plug in micro usb cable
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Virtual Apparatus

The virtual environment contained a detailed, working model of the Raspberry Pi, components,

and tools involved (shown in Figure 6.3). Each corresponding step in the task was replicated in

the virtual model and required interaction. We ensured both the Constrained and Unconstrained

multi-touch interaction required the same number of steps to complete the task. In both virtual

environments animations were used to show a part being installed. For example, in the Constrained

group if the user dragged the servo to the correct hole to insert it into the front board, it would rotate

and drop into the hole so they could visualize how to insert it. For the Unconstrained group, they

would have had to rotate the servo first so it would only animate dropping into the hole.

Figure 6.3: The virtual environment with the parts and tools on the table required to assemble the
Raspberry Pi prototype.
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Unconstrained Multi-Touch Interaction

In the unconstrained virtual environment we wanted the user to feel like they were actually picking

up, examining and attaching components. In order to do this we wanted gravity to be used when

dragging parts on the table, but when objects were ”picked up” we wanted gravity off so that

users could feel like they were holding and examining the objects. Previous work on user-defined

multi-touch gestures for 3D objects by [2] and [32] influenced our multi-touch interaction model

for object manipulation. Buchanan et al. observed grasping and pinching gestures for grabbing or

picking up objects which lead to gestures 6.4a and 6.4b [2]. Once the objects were selected, or

”picked up” the object moved to a fixed spot in the center of the screen closer to the camera and

gravity was turned off. When the object was de-selected the part would then go back to its previous

position. Cohe et al. observed both dragging perpendicular to the axis of rotation and orbit gestures

for rotating objects around a specific axis which lead to 6.4d-6.4f [32].

In order for participants to become familiar with this gesture set we created a practice task which

included only a board with 4 holes, a bolt and a Raspberry Pi. The participants had to rotate the

bolt to the correct orientation to insert it into the board. Then they had to rotate the Raspberry Pi to

match the orientation shown in an image in the paper user manual. The Unconstrained users went

through this practice task only once and then begain the training task. They were also given a card

showing the different gestures shown in Figure 6.4 in case they needed a reminder.
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Select De-Select Translate

Rotate around Z-Axis Rotate around X-Axis Rotate around Y-Axis

Figure 6.4: The gestures used in the Unconstrained group to manipulate the parts during assembly
in the virtual environment. Once a part was selected with gesture 6.4a it would hover as if picked
up from the table. Then the user could manipulate it with gestures 6.4c-6.4f. Gesture 6.4b would
then release the object back to the table. The Constrained group could only use gesture 6.4c.

Constrained Multi-Touch Interaction

The Constrained multi-touch interaction didn’t have gravity turned on and didn’t have the ability

for users to ”pick up” or rotate objects. They could only drag objects to a target where they

wanted them to be installed. The part would then orient itself to the correct orientation. If the

following step required a part to be oriented differently to install the next part it would orient itself

automatically. For example, the front board would flip over after the servo was installed to allow
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easy access to the servo wires.

User Study

We conducted a user study to explore the effectiveness of Unconstrained multi-touch interaction

during training. The study examined three different methods of training how to assemble a Rasp-

berry Pi dog treat dispenser prototype. The three methods were using the actual equipment, using

a virtual model with Unconstrained multi-touch interaction, and using a virtual model with Con-

strained multi-touch interaction. All groups trained with the same paper manual and returned two

days later for a post-training test. During the post-test participants were asked to perform the task

on the actual equipment as quickly as possible from memory and were graded on correct steps and

timed. Our hypotheses were:

H1 The participants trained using the Unconstrained multi-touch interface will score as well on

the post-test as the participants trained with the actual equipment.

H2 The participants trained using the Unconstrained multi-touch interface will score better on the

post-test than the participants trained using the Constrained multi-touch.

H3 Due to discrepancies between manipulating the actual components and the virtual model, the

participants trained using the Unconstrained multi-touch interface will perform the post-test

slower than the participants trained with the actual equipment.

H4 Since the Unconstrained multi-touch participants may have learned more about the parts and

procedure, participants trained using the Unconstrained multi-touch interface will perform

the post-test faster than the participants trained using the Constrained multi-touch interface.
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H5 The training time for the Constrained multi-touch participants will be faster than the physical

and Unconstrained multi-touch groups since they don’t have to precisely align components.

Participants and Apparatus

There were 39 participants (8 female, 31 male) aged 18 to 34 (x̄ = 21.8,σ = 3.65) randomly dis-

tributed into the three groups. The participants were recruited from a university setting from a

variety of majors, including engineering and non-engineering majors. Sixteen of the participants

had used a Raspberry Pi before. Training was either conducted on the computer via a 55-inch

Microsoft Perceptive Pixel multi-touch screen, or on the actual Raspberry Pi prototype. Post-tests

were performed on the actual Raspberry Pi prototype.

Study Design

The experiment follows a between-subjects design with 39 participants randomly divided into 3

experimental groups (each participant was assigned to a group in alternating order). Two groups

trained in a virtual environment, one using Unconstrained multi-touch interaction or the other

using Constrained multi-touch interaction. The third group was trained on the actual Raspberry Pi

prototype.

Participants were timed during training and testing and scored on the test. Participants were also

asked to rate the following statements on a Likert scale from 1 (strongly disagree) to 7 (strongly

agree), both post-training and post-testing:

Post-Training questions:

Q1 I feel prepared to complete the assembly task after completing the training.
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Q2 I thoroughly understand the procedure that I learned during the training.

Post-Testing questions:

Q3 I was sufficiently prepared to complete the assembly task upon arrival today.

Q4 I thoroughly understood the procedure that I learned during the training.

Procedure

Testing occurred exactly 2 days after training to avoid short-term memory effects. For training, all

groups followed the same protocol. First, participants were presented with the training apparatus

(whether it be the computer or Raspberry Pi and parts) and the paper manual. Second, they were

familiarized either with the parts and tools or the interaction model. Finally, participants were

asked to follow along with the paper manual as they conducted the training task. Participants then

returned 2 days later to perform the post-test, which was assembling the actual prototype from

memory without the manual.
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Figure 6.5: The average training times by group.

Two days later, participants returned to perform the task on the real Raspberry Pi prototype. They

were asked to perform the task correctly from memory without the user manual. They were scored

on the steps shown in Table 6.1, where each step could actually count as multiple steps. For

example, when inserting the servo we also checked if the servo was inserted in the correct side of

the board and in the correct orientation. One point was given for each step completed correctly and

performed in the correct order, for a total of 33 points. We allowed them to do the steps out of order

during the test as long as it resulted in the correct outcome. Many steps required the previous step

to be completed, so going out of order would ultimately result in longer time since users would

have to undo something in order to proceed.
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Figure 6.6: Average user Likert ratings on the preparedness and understanding questions asked
after training and after testing.

Results

Training

Training Times

The participants from all three groups were asked to go through the training exercise once by

following along with the same paper user manual. Participants were told before beginning that

they would have to return 2 days later to complete the real-life task from memory without the
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user manual. The average training time by group is shown in Figure 6.5. We first ran a One

Way ANOVA to determine that there were significant differences between groups (F2,36 = 19.55, p

<0.001). Then we performed an independent samples t-test to compare groups to each other. The

Constrained group performed the training significantly faster than both the Physical group (t24 =

4.58, p<0.001) and the Unconstrained group (t24 = 6.29, p<0.001). However, the training times

for the Physical and Unconstrained groups were not significantly different (t24 = 2.01, p = 0.056).

These results were as expected and confirm Hypothesis H5; the training time for the Constrained

participants will be faster than the Physical and Unconstrained groups since they didn’t have to

precisely align components. We also observed that many participants had to put in extra effort to

rotate components in the Unconstrained group since there was a learning curve for the rotational

gestures, which explains the slightly longer average training times compared to the Physical group.

Questionnaire

We performed a Kruskal-Wallis test (results are shown in Figure 6.6) which showed that there

were no significant differences between the different groups for their responses to the first 3 of

the 4 Likert questions (presented in the Participants and Apparatus section). These results indicate

that participants from all groups felt that they were prepared after the training, and still felt that

they were prepared after performing the actual post-test. However, for the last post-test question

Q4 (”I thoroughly understood the procedure that I learned during the training”), the Kruskall-

Wallis test showed there were significant differences between groups (χ2(2) = 8.82, p<0.02). A

Mann-Whitney U test revealed there were only significant differences between the Physical and

Unconstrained groups (U = 30.5, p<0.003), signifying in hindsight the Unconstrained group felt

they didn’t understand the procedure as well as those in the Physical group.
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Figure 6.7: The average testing scores by group.
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Figure 6.8: The average testing times by group.

Testing

Testing Scores

When the participants returned for testing, they were asked to perform the task on the Raspberry

Pi prototype from memory. They were scored on number of steps completed correctly and timed.

The average scores by group are shown in Figure 6.7. The scores were normally distributed for

the Constrained, Unconstrained, and Physical groups as assessed by Shapiro-Wilk’s test (p >.05).

A one-way between-subjects analysis of variance (ANOVA) was run to compare the effect of the

training method on the testing score. The main effect that training method had on the dependent
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variable, testing score, was found to be significant (F2,36 = 8.60, p <0.001). Independent samples

t-tests indicated the Unconstrained group scored significantly better than the Constrained group

(t24 = 2.62, p<0.02) and the Physical group also scored significantly better than the Constrained

group (t24 = 3.87, p<0.001). However, the Physical and Unconstrained group scores were not

significantly different (t24 = 1.36, p = 0.19). This result demonstrates that participants that

trained with Unconstrained interaction performed as well as those trained on the actual apparatus

and better than those trained with Constrained interaction, which supports Hypotheses H1 and H2.

Figure 6.9: The number of users that completed each testing step correctly for each training group;
the Physical group in blue, the Constrained group in red, and the Unconstrained group in yellow.
Note that steps all users performed correctly are not shown and the wire orientation is shown as a
fraction of correct wires/6.
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Testing Errors

Figure 6.9 shows each step of the testing process and how many users got the step correct, sep-

arated by testing groups. We did not score based on steps that were performed out of order, but

only on if a step was done incorrectly. The errors occurred when a user forgot or skipped a step

completely or put the part on the wrong location or orientation. Figure 6.9 also demonstrates on

which steps users made the most errors by showing where the deficits are. For example, the wire

orientation as well as the servo orientation were the hardest for users to remember. The steps that

all users remembered and performed correctly were omitted from the graph (installing the 4 bolts,

Raspberry Pi, 4 Raspberry Pi screws, servo wires, back board, and micro USB cable).

Testing Times

The testing times were also measured (shown in Figure 6.8) and found to be normally distributed

for the Constrained, Unconstrained, and Physical groups, as assessed by Shapiro-Wilk’s test (p

>.05). A one way between-subjects analysis of variance (ANOVA) was run to compare the effect

of the training method on the testing score. The main effect that training method had on the depen-

dent variable, testing time, was significant (F2,36 = 7.77, p <0.002). An independent samples t-test

revealed that there were not significant differences between the Constrained and Unconstrained

groups (t24 = 0.11, p = 0.92), but the Physical group performed the post-test significantly faster

than both the Unconstrained (t24 = 3.73, p<0.001) and Constrained (t24 = 3.75, p<0.001) groups.

These results confirm Hypothesis H3 (Unconstrained test time >Physical test time), but not Hy-

pothesis H4 (Unconstrained test time <Constrained test time).
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Discussion

The performance results (shown in Figure 6.7) demonstrate that participants trained with Uncon-

strained multi-touch interaction scored as well as those trained on the actual apparatus and better

than those trained with Constrained multi-touch interaction, confirming Hypotheses H1 and H2.

We believe that a few factors led to the Unconstrained group scoring as well as the Physical group.

First, the object manipulation affordances in the Unconstrained interaction model were closely

mapped to the manipulation affordances of the real model. The user had the ability to pick up and

examine parts, and was forced to put them into the correct orientation to be able to install them.

We believe this requirement allowed users to become more familiar with the properties of each

component. Secondly, if they could not install a part due to incorrect orientation they had to re-

evaluate the instructions which required more focus and understanding of the current task. Thirdly,

there was a learning curve associated with the gestures which also required more time and focus

spent on the current task. We did consider the alternative outcome that this gesture learning curve

might distract participants as found in [69] and [70]. However our results indicate that instead the

increased difficulty of the interface enhanced learning.

The post-test times indicated that both Multi-touch groups had significantly slower task completion

times in the post-test, which confirmed Hypotheses H3 and rejects H4. This could be due to a few

reasons. It’s possible incorrect and skipped steps could still lead to the same testing time as a test

that was completed without errors. In addition, the inexperience of some participants using tools

and electronic parts could have caused them to be more cautious than others, may have lead to

higher variance within groups. The Physical group was probably more familiar with how the parts

felt and fit together so they were able to move faster through the post-test. In addition, to ensure

training conditions were similar across groups, each group only went through the training once.

Had the virtual groups gone through the training multiple times they probably would have learned
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the procedure better and the task completion times may have been faster.

Hypothesis H5 was also confirmed, the Constrained group trained faster than the Unconstrained

group but not the Physical group. We believe the Unconstrained group had longer training times

since there was a gesture learning curve and mistakes were made more often during training due

to some strict alignment requirements. It could be argued that the Unconstrained group performed

better than the Constrained group since they spent more time training. However, this time was

spent learning, adjusting and executing gestures, not in additional training repetitions. Since the

number of steps were identical and the virtual model was the same between the Constrained and

Unconstrained groups, we believe the better Unconstrained performance was due to the gained

familiarity with the objects and the extra focus required to complete the training task. Although

the Unconstrained training was not as efficient, time-wise, as the Constrained training it was more

effective.

In some instances the stricter constraints in the Unconstrained multi-touch interaction may have

led to more mistakes by users in training, but may have forced them to learn the steps better since

they had to use more precise gestures. For instance, looking at Figure 9 we can see that although

all users remembered to insert the servo and install the 4 bolts, the Constrained group made more

errors on these steps by inserting the servo upside down or screwing it into the wrong side of the

board. Many participants from the Constrained group also inserted the 4 bolts into the wrong board

or the wrong way into the board.

The Questionnaire results for Q1-Q3 indicate that participants from all groups felt that they were

prepared after the training, and still felt that they were prepared after performing the actual posttest.

However, for the last post-test question Q4 (”I thoroughly understood the procedure that I learned

during the training”), the Unconstrained group rated it significantly less than the Physical group.

This signifies that in hindsight the Unconstrained group felt they didn’t understand the procedure

103



as well as those in the Physical group. We believe this may be due to the gesture learning curve

they experienced during the training. It’s possible that since few users were extremely comfortable

with the gestures, since they had to adjust rotations several times, they didn’t feel that they had

mastered the procedure as well. Even though the Unconstrained group did in fact score as well as

the Physical group.

Limitations and Future Work

Since we wanted to evaluate how the freedom to manipulate objects affects learning a procedural

task, we chose not to implement many installation gestures. For instance, we did require the Un-

constrained group to screw in screws and nuts but we didn’t require any more complex installation

gestures as in Buchanan et al. [4]. In future work, we would like to look at the combination of

object manipulation gestures and installation gestures. In addition, examining how increasing the

training time with each method affects learning would be interesting.

An interesting outcome was that many users that trained in either of the multi-touch groups said

that they enjoyed training in a virtual environment first since it was an easier way to train without

worrying about breaking anything. It would be interesting to look at if training in virtual envi-

ronments actually motivates students to be more interested in electronic, computer engineering, or

electrical engineering. Since we had the participants use a paper training manual we would like

to incorporate training instructions and guidance into the virtual environment. We would also like

to do a similar study comparing multi-touch gestures to Virtual Reality, full body gestures, and

training on physical systems using Augmented Reality potentially on a more complex procedural

task.
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Conclusion

In this chapter we presented the use of object manipulation gestures combined with alignment

requirements in a 3D training environment as a way to enhance learning of a procedural task.

We conducted a between subjects experiment with 39 participants distributed into 3 groups in or-

der to evaluate the effectiveness of Unconstrained and Constrained multi-touch interaction during

training. One group used Unconstrained multitouch interaction in the 3D training environment,

which meant they could pick up and rotate objects and were also required to properly align com-

ponents to install them. The second group used Constrained multi-touch interaction, where they

could only drag and drop components to install them and components aligned to their positions

automatically. And the third Physical group trained on the real apparatus. A post-training test

carried out 2 days later evaluated performance in conducting the real task from memory. Results

show that the Unconstrained multi-touch interaction and the Physical task groups had significantly

better performance scores than the Constrained multi-touch interaction group, with no significant

difference between the Unconstrained multi-touch and Physical task groups. We demonstrated

that Unconstrained multi-touch interaction trains participants on the task as well as training on the

actual equipment, suggesting multi-touch interaction is a worthwhile training tool for procedural

knowledge that requires spatial knowledge of components.
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CHAPTER 7: DISCUSSION AND FUTURE WORK

In this dissertation, we explored how to define realistic multi-touch gestures for 3D tasks and

how these gestures affect procedural training. First a user-defined gesture study led us to design

guidelines for realistic multi-touch gestures for 3D tasks in Chapter 3. Second we conducted a

follow-up study on how pressure can be implemented on multi-touch displays in Chapter 4. We

then implemented these gestures in two different training scenarios to see how they compared to

traditional training methods in Chapters 5 and 6.

Existing bias, motivation and viewpoint play a role in the gesture chosen to represent a physical ac-

tion. The results from Chapter 3 indicate that due to biases from previous multi-touch experience,

the majority of participants intuitively try to interact with 3D objects using 1-2 finger gestures in

a primarily metaphorical way. However, once prompted to use gestures as if manipulating physi-

cal, real-life objects, the users increased the number of fingers, hands and pressure used, and used

more gestures that were physical in nature. The participants also found these physical gestures

just as easy to perform as metaphorical gestures. Thus if interface designers want to elicit physical

gestures there needs to be guidance in doing so. The form factor and the perspective view of the

referent also played a role in the gesture chosen. If the viewpoint of the referent did not align with

the multi-touch surface users were more likely to choose a metaphorical gesture since a physical

gesture on the surface would not align with the referent.

Contact size can be used to simulate pressure for simulated force or for depth control on a capaci-

tive touchscreen. Since pressure played such a large role in how users performed physical gestures,

we examined how best to estimate pressure on a capacitive touchscreen. Capacitive touch screens

don’t sense pressure but can report contact size. Thus we studied two different pressure estimation

techniques that use contact size, calibrated and comparative, on two different types of tasks, gross
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and fine. We found that the calibrated estimation technique performed better on the gross task,

which was a bi-directional translation task. Whereas the comparative technique performed better

on the fine task, which was a uni-directional rotation task. Since bi-directional control required a

predictable neutral position, which users were able to achieve through calibration, the calibrated

method performed better than the comparative method on the gross task. However the calibrated

method did not perform as well for the fine, uni-directional rotation task. For the fine task, some

users fingers did not flex in a way for them to be able to surpass their calibrated threshold without

putting their fingers into an unnatural or uncomfortable position. Also the orientation of the users

fingers changed as they were rotating which made it difficult to maintain pressure past the thresh-

old value during rotation. Whereas with the comparative pressure technique the user can reach a

higher pressure value simply by starting with a very light pressure. Users learned that starting with

light pressure for the comparative method was effective during the practice session. If calibration

or pressure estimation customization is not possible in a complex task that requires both gross and

motor skills, then it would be best to use the comparative estimation technique. The comparative

pressure estimation technique performed more consistently across both motor skills, though it per-

formed sub-optimally for the gross motor skill. Thus we used comparative pressure in the first

training study of Chapter 5.

Physical gestures used in a procedural training task on mechanical components can benefit training

outcomes. In our first training study we compared users that trained with a multi-touch interface to

those trained with a keyboard and mouse with a control group training on the real world physical

apparatus. For the multi-touch interface we implemented the gestures with the design guidelines

defined in Chapter 3 with the comparative pressure examined in Chapter 4. The performance

results demonstrated that participants trained with the multitouch interface scored as well as those

trained on the real world apparatus and better than those trained on the mouse interface.

We believe that a few factors led to the multi-touch group scoring as well as the real world group.
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First, the affordances of the multi-touch model were closely mapped to the affordances of the real

model, allowing multi-touch users to perform nearly the same physical gestures in the simulation

as they would in real life. Secondly, strict constraints used in the multi-touch training demanded

more concentration allowing better memory of the steps as well as the physical motions required.

The multi-touch interface of Chapter 5 provides the ability for users to manipulate tools and parts

and perform realistic physical gestures as they would in a real-world procedure.

Although our gesture set in Chapter 5 was somewhat small (7 gestures), it is still possible to achieve

realistic actions; the gestures become more realistic when tied to physics forces and constraints.

We believe it is important for the physical motions and constraints within the procedural steps to

be replicated where possible. For instance, consider a task in real life where one hand is required

to hold a part in place while the other attaches it. The corresponding multi-touch interaction should

also require a 2-handed gesture instead of objects snapping into to place or ignoring gravity. In

some instances the stricter constraints in the multitouch interaction may have led to more mistakes

by users in training, but may have forced them to learn the steps better since they had to use more

precise gestures.

Viewpoint plays an important role in how realistic a gesture feels. When designing the study

of Chapter 5, we chose the viewpoints in the virtual environment carefully in order to maintain

the feeling of holding and manipulating the parts directly, or direct manipulation. A perceptual

disconnect can occur when an object moves away from a users touch and the object is no longer

underneath the users hand. This is particularly apparent when translating objects along multiple

axes.

Multi-touch interaction with unconstrained object manipulation results in better procedural training

outcomes. In Chapter 6’s study we found participants that trained with Unconstrained multi-touch

interaction scored as well as those trained on the real world apparatus and better than those trained
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with Constrained multi-touch interaction. We believe that a few factors led to the Unconstrained

group scoring as well as the Physical group. First, the object manipulation affordances in the

Unconstrained interaction model were closely mapped to the manipulation affordances of the real

model. The user had the ability to pick up and examine parts, and was forced to put them into the

correct orientation to be able to install them. We believe this requirement allowed users to become

more familiar with the properties of each component. Secondly, if a user could not install a part

due to incorrect orientation they had to re-evaluate the instructions which required more focus and

understanding of the current task. Thirdly, there was a learning curve associated with the gestures

which also required more time and focus spent on the current task. We did consider the alternative

outcome that this gesture learning curve might distract participants, however our results indicate

that instead the increased difficulty of the interface enhanced learning.

As part of our experiments we looked at two different multitouch training environments: one where

the focus was on the physical gestures with a constrained viewpoint (Chapter 5), and another

where the focus was on object manipulation where the user could view objects from different

angles (Chapter 6). Across both studies, participants with higher forms of interaction outperformed

participants with less interaction. Users trained on constrained multi-touch outperformed those

that only had access to mouse based interaction and users that trained on unconstrained multi-

touch outperformed those who trained with constrained multi-touch. We believe this is for a few

reasons: first the multi-touch interactions mimick the real world interactions which may provide

muscle memory. Second, enactive learning, where actions have consequences, can provide better

learning outcomes. Third, unconstrained object manipulation allow users more spatial awareness

of objects. Finally, more difficult interfaces can require more time and focus.
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Future Work

The continuing popularity of multi-touch devices makes it increasingly valuable to explore how

training applications can best leverage realistic multi-touch interaction. We began by exploring

design guidelines and evaluating multiple use cases in this work, but we believe there are many

opportunities for this work to be continued and extended. This section offers suggestions on how

to build upon this work further over the next few years.

Contact Size Calibration

The contact size calibration could be improved upon for our Calibrated pressure estimation method

presented in Chapter 4. As a user’s touch moves away from the center of the screen the finger pad’s

orientation is going to change slightly, affecting the contact size. Ideally, calibration should obtain

finger pad representations at the outer edges of the screen, as well as the center. Then if the

calibration method was also cognizant of the user’s position relative to the screen, it could make

assumptions about the finger pad’s orientation.

Learning Types

In our experiments we did not examine what types of learners (i.e. Visual, Auditory, Read-

ing/Writing, Kinesthetic) or what types of users (i.e. Novice or Expert) benefit the most from

this type of mulit-touch training interface. In addition, it would be valuable to examine which spe-

cific parts of the 3D interface correspond to specific learning goals. We would also like to evaluate

realistic gestures for non-procedural learning. For instance instead of training to learn a procedure,

users could train on how a component, such as the raspberry pi, works in general using different

examples. Then users could be tested in a different context to see if they can extrapolate their
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training knowledge to a new task.

In-Situ Gesture Learning

One obstacle of both studies was understanding how to best teach the gestures required for the

study. In each experiment, we had a practice scene where users could experiment with the gestures,

however there was often still a steep learning curve during the training. The proctor usually had

to explain the gestures verbally again during the training session when the user could not recall

which gesture to use or was having trouble performing a gesture correctly. ShadowGuides and

Octopocus have presented different visualizations for in-situ learning of multi-touch gestures and

mouse gestures respectively [78, 79]. It would be interesting to see how these visualization can

be implemented in a training environment. It would also be interesting to see how to distinguish

between visualization cues for installation gestures and for direct manipulation gestures.

Above the Surface Interaction

Our research exclusively focused on interactions with the surface of the multitouch display how-

ever there is research evaluating above the surface interaction techniques by Marquardt et al [23].

They outlined techniques such as lifting gestures to reveal objects and to adjust scale, stacking

objects, and 6 degrees of freedom (DOF) manipulation. It would be interesting to compare our

techniques with Marquardt et al. ’s for the same operations to see which users prefer in a training

environment.

111



Navigation

We have evaluated two different training applications; one where installation gestures were used

but object manipulation and viewpoint were constrained, and another where object manipulation

was unconstrained. It would be interesting to look at a training environment that requires naviga-

tion, such as repairing a large apparatus, and see if the freedom to navigate the environment helps

or hinders learning. We believe requiring gestures for installing parts, object manipulation, and

navigation may cause the cognitive burden to be too high. It would be interesting to find the ideal

balance between having too little and too much freedom to interact with the environment.
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CHAPTER 8: CONCLUSION

With the prevalence of multi-touch interfaces and affordable large touch screens, multi-touch ges-

tures that incorporate multiple fingers or multiple hands are possible. We envision realistic interac-

tions to be used on these large multi-touch surfaces to mimic training in the real world. However,

a major challenge in 3D touch interaction is understanding how to translate interaction on a 2D

surface to a 3D environment. We would like users to be able to pick up, rotate and move objects in

a way that’s relevant to training environments. The first problem we aimed to solve is how do we

get closer to mimicking real world interactions. The second question we examined is whether im-

plementing these realistic multi-touch interactions in training contexts provides procedural training

benefits.

In this dissertation, we conducted two studies that resulted in design guidelines for realistic and in-

tuitive multi-touch interaction for 3D virtual objects. After developing the guidelines we conducted

two additional studies to measure whether or not implementing these interactions in multi-touch

training environments benefits procedural training outcomes.

In the first study, we explore the best ways to use multi-touch interaction in 3D training environ-

ments [2]. We performed a gesture elicitation user study to define which gestures users preferred

on large capacitive displays when interacting with 3D objects. We found that many users’ first

instinct is to use 1 or 2 finger gestures similar to RST gestures used on a phone. However, when

prompted to do so, users tried to mimic physical, real-world actions such as using more fingers and

applied pressure to signify more force or to move an object into the screen. These results signified

that multi-touch gestures could mimic real world actions and be intuitive to users.

In our second user study we focused on defining the best ways to estimate pressure on capactivate

displays to enhance physical gestures [3]. Today’s most prevalent touchscreens use capacitive sens-
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ing which can report the location and surface area of a touch, but do not directly sense the pressure

of the touch. Thus on capacitive screens, multi-touch pressure can only be estimated based upon

touch contact size. We explored how best to interpret pressure from contact size by developing

multiple estimation techniques. We also examined which of our pressure estimation techniques

were preferred amongst different scenarios. We found different pressure estimation techniques are

significantly better for different tasks based on the type of motor skills being performed.

In our third study we examined how multi-touch interaction affects the learning of a procedural

assembly task [4]. Our goal was to evaluate how our gesture set impacts learning in a training

environment and if gesture similarities to physical actions better prepare the user for performing

the physical steps in the real world. Since training can be looked at in many different ways we

are focusing on procedural learning, or learning a repeatable step-by-step process. The study

evaluates the knowledge transfer acquired with multi-touch interaction technology compared to

standard training methods. We compared multi-touch interaction to 2D mouse interaction and to

actual physical training. We found that multi-touch interaction performed better than 2D mouse

and performed as well as physical training.

In our final study, we examined how having the freedom to explore in a training environment af-

fects learning. Our third study, like many multi-touch training systems and 3D training systems

in general, had a snap to position functionality that didn’t give the user the freedom to manipulate

the objects in great detail or to look around and examine different parts of objects as they would

in the real world. We evaluate the benefits of multi-touch training that has unconstrained object

manipulation, where the user can pick up, rotate and examine parts. We compared this uncon-

strained multi-touch group to a group that has constrained object manipulation, in which the parts

automatically align themselves and the user cannot make their own rotations. In addition, we com-

pared both groups to a control group performing physical training with the real world apparatus.

The selected experimental task consists of assembling a dog treat dispenser prototype built with a
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Raspberry Pi and other electrical components. We demonstrated that Unconstrained multi-touch

interaction trains participants on the task as well as training on the actual equipment and better

than Constrained interaction.

Multi-touch interactions for 3D environments could improve training outcomes if used effectively.

We found that in order to create realistic gestures, the gestures should be designed to be physical

in nature, meaning they should provide the same affordances as interactions with the same real

world objects. Along the same vein, if interactions in the real world require effort or force, the

replicated multi-touch interaction should require more fingers and pressure. In two user studies,

we found that increasing the level of interaction with a training environement enhances learning of

a procedural task. We believe there are still many opportunities for this work to be continued and

extended. We hope that our work will serve as a guideline for future exploration into improving

training with the usage of 3D multi-touch interaction.
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gestures for interaction in multi-display environment. In Proceedings of the 2012 ACM in-

124



ternational conference on Intelligent User Interfaces, IUI ’12, pages 93–96, New York, NY,

USA, 2012. ACM. ISBN 978-1-4503-1048-2.

[23] Nicolai Marquardt, Ricardo Jota, Saul Greenberg, and Joaquim A Jorge. The continuous

interaction space: interaction techniques unifying touch and gesture on and above a digital

surface. In IFIP Conference on Human-Computer Interaction, pages 461–476. Springer,

2011.

[24] Andrew D Wilson and Hrvoje Benko. Combining multiple depth cameras and projectors

for interactions on, above and between surfaces. In Proceedings of the 23nd annual ACM

symposium on User interface software and technology, pages 273–282. ACM, 2010.
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