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ABSTRACT

Virtual reality has become a powerful tool for motor learning and skill acquisition, offering im-

mersive environments for users to practice and refine movements. This thesis investigates how

different visualization styles in VR affect movement imitation accuracy, specifically focusing on

hand movements. While prior research has explored precise alignment and visualization individu-

ally, few studies have examined their combined impact. This study addresses that gap by evaluating

the effectiveness of various visualization methods in relation to offset, animation, and manual type.

We developed an application to ensure all participants experienced each visualization factor as 12

combinations in varied sequences. The user study conducted with 30 participants combined per-

formance data with responses from the qualification, between trial, and end of experiment ques-

tionnaires. Movement data assessed performance accuracy, and questionnaire data captured user

perception.

The results indicate that manual type significantly affects user satisfaction and accuracy (p <

0.001), with the unimanual condition yielding the highest accuracy. Animation style also had a sig-

nificant effect (p < 0.001), with discrete animations improving accuracy compared to continuous

animations. Offset had no significant effect on accuracy, but users did prefer closer visualizations.

These findings provide valuable insights into VR-based motor learning applications. By using

discrete animation and close-up visuals, developers can enhance the effectiveness of movement

learning tools. This could have a direct impact on careers where muscle memory is a necessity.

Future research could explore applications in rehabilitation, training, and remote teleoperation to

optimize VR-guided motor tasks. Research could also evaluate the impact of visualization design

in VR on real-world applications.
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CHAPTER 1: INTRODUCTION

1.1 Background

Virtual reality (VR) has emerged as a powerful tool for motor learning and skill acquisition, of-

fering immersive and interactive environments for users to refine and practice movements. Over

the years, VR has been integrated into various fields, from education and training to healthcare

and industrial applications, providing realistic simulations that enhance skill development. One

promising area of VR application is teleoperation, where users control robotic systems remotely,

often in hazardous or inaccessible environments.

1.2 Motivation

Teleoperation enables humans to remotely operate robotic systems, improving safety and efficiency

in domains such as space exploration, underwater robotics, surgery, and heavy machinery opera-

tion. A crucial aspect of teleoperation is the ability to perceive and interpret visual information

accurately to ensure precise movement execution. However, stable, high-speed transmission of

visual data remains a challenge, especially in environments with latency, limited bandwidth, or

communication delays.

Virtual reality can enhance situational awareness in teleoperation by providing immersive visual

feedback and intuitive control mechanisms, allowing operators to execute complex tasks more ef-

fectively. However, the way visual information is presented—including factors such as animation

style, movement offset, and handedness—may significantly impact movement accuracy and ef-

ficiency. This study explores the impact of different visualization styles on movement imitation
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accuracy in VR-based teleoperation.

1.2.1 Robotic-Assisted Surgery

In minimally invasive surgery, robotic systems like the Da Vinci Surgical System enable precise

and minimally invasive procedures. However, learning to operate these systems is challenging

due to limited access to surgical consoles and the high costs associated with training. VR-based

training solutions could offer an affordable, scalable, and accessible alternative, allowing surgical

residents and medical professionals to gain practical experience before operating real robotic sys-

tems. Currently, Intuitive Surgical, the developer of the Da Vinci system, offers various training

tools, including on-site training and courses, the Intuitive Learning online platform, the SimNow

simulation platform, and remote case observation and telemonitoring [1]. Despite these resources,

access to physical surgical consoles remains a barrier to frequent practice. VR-based teleoperation

could bridge this gap, enabling more immersive and hands-on training experiences.

1.2.2 Space Operations

Teleoperation is a fundamental component of modern space exploration, enabling astronauts and

ground operators to remotely control robotic systems in hazardous or otherwise inaccessible en-

vironments. Currently, teleoperated robots are employed in a range of critical tasks, including

satellite servicing, planetary exploration, and space station maintenance. A notable example is the

Canadarm2, a sophisticated robotic arm on the International Space Station (ISS), which is oper-

ated both by astronauts aboard the station and by mission control on Earth to facilitate spacecraft

docking and perform essential repairs [2]. Furthermore, space agencies such as NASA and the

European Space Agency (ESA) are advancing force-feedback teleoperation technology, allowing

astronauts in orbit to remotely manipulate robotic rovers on planetary surfaces [3, 4]. The Analog-
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1 experiment exemplifies this innovation, demonstrating the feasibility of controlling a rover on

Earth from the ISS. These advancements significantly enhance the efficiency and safety of space

operations by enabling complex tasks to be executed remotely, thereby mitigating risks to human

personnel and broadening the scope of future deep-space missions, including those targeting the

Moon and Mars.

1.2.3 Underwater Robotics

Underwater teleoperation is widely used in deep-sea exploration, marine research, and industrial

applications where direct human intervention is impractical or dangerous. Remotely Operated

Vehicles (ROVs) are one of the most common teleoperated systems used for deep-sea missions.

For example, the ROV Jason, developed by Woods Hole Oceanographic Institution, has been used

to explore hydrothermal vents and shipwrecks at depths exceeding 6,500 meters [5]. In industrial

settings, teleoperated ROVs like the Saab Seaeye Falcon assist in offshore oil and gas inspections,

pipeline maintenance, and subsea infrastructure repairs [6]. Additionally, teleoperated underwater

robots are used in search and rescue missions, such as locating aircraft wreckage or recovering

lost equipment from the ocean floor. Advances in haptic feedback and autonomous assistance are

improving underwater teleoperation, allowing operators to perform delicate tasks like sampling

marine life or assembling underwater structures with greater precision.

1.2.4 Heavy Machine Operation

Teleoperation is increasingly used in heavy machinery to enhance safety, efficiency, and preci-

sion in hazardous or remote environments. In mining, teleoperated haul trucks, bulldozers, and

drilling rigs, such as Caterpillar’s Command series and Komatsu’s Autonomous Haulage System

(AHS), allow operators to control machinery from safe locations, reducing exposure to danger-
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ous conditions like cave-ins or toxic gases. In construction, companies like Built Robotics and

Bobcat have developed teleoperated and autonomous excavators, enabling remote operation of

digging and grading tasks, particularly in high-risk areas such as disaster zones or unstable terrain.

Teleoperation is also widely used in nuclear decommissioning, where robotic arms and teleoper-

ated cranes help dismantle reactors and handle radioactive materials without endangering human

workers. These advancements in heavy machinery teleoperation not only improve safety but also

increase productivity in industries where manual operation poses significant risks.

1.3 Research Questions

This study aims to answer the following key research questions:

1. What role does movement offset play in user performance and perception?

2. What role does movement animation play in user performance and perception?

3. What role does movement handedness play in user performance and perception?

4. Are there significant interactions between offset, animation style, and handedness that impact

accuracy?

1.4 Problem Statement

While previous research has explored alignment, visualization techniques, and teleoperation strate-

gies, few studies have examined their combined impact on movement accuracy in VR-based tele-

operation. This study seeks to bridge that gap by evaluating how animation style, offset, and

handedness influence movement imitation accuracy. We hypothesize that:
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• Offset movement will result in higher accuracy than in-place movement.

• Discrete animation will result in higher accuracy than continuous animation.

• Unimanual handedness will result in higher accuracy than mirrored bimanual or asynchronous

bimanual.

1.5 Overview

This thesis includes five chapters and two appendices. Chapter 2 reviews related works. Chapter

3 details the application and methodology design. Chapter 4 reviews the user results from the

application and surveys. Chapter 5 offers a conclusion based on the findings. Appendix A outlines

the three questionnaires given to the participants, while Appendix B provides the Institutional

Review Board (IRB) approval.
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CHAPTER 2: LITERATURE REVIEW

While numerous studies have explored the applications of virtual reality (VR) in education, vi-

sualization, and movement-based learning, research on object alignment in VR remains relatively

limited. This chapter reviews key literature related to visualization techniques, movement imita-

tion, and educational applications of VR, highlighting the existing findings and identifying gaps in

the research.

2.1 Visualization

In their systematic review, Korkut and Surer (2023) examine the current landscape of visualiza-

tion techniques within virtual reality environments. The authors categorize existing literature into

three dimensions: background and theory, evaluation and design considerations, and empirical

studies assessing the effectiveness and usability of visualization methods. A significant number

of implementations utilize game engines due to their accessibility and flexibility. However, the

authors note that these platforms may not be optimal for rigorous scientific applications. The re-

view reveals a lack of visualization guidelines for VR visualization, with most studies developing

individual frameworks or adapting existing 2D visualization principles. While this paper focuses

mostly on visualizations of scientific data rather than movement data, they do highlight that as VR

technology changes and the number of new interaction techniques increases, it is important to keep

the target user in mind to design visualizations around [7].

Visualization techniques play a crucial role in user interaction and performance in virtual envi-

ronments. A study by Martin-Gomez, Eck, and Navab (2019) investigates different approaches

to assist users in aligning objects within a virtual space. Four shading techniques were evalu-
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ated: semi-transparent, wireframe, Fresnel-derivative, and silhouette. Results indicated that the

silhouette shader, which highlights significant geometric features of an object, performed best in

orientation tasks under "no time constraints" (NTC). However, semi-transparent shading was most

effective for "translation" tasks, which measured the accuracy of moving an object from its initial

orientation to a target position [8].

Visualization techniques have also been explored in medical augmented reality (AR). Fischer et

al.’s (2020) research extends the work of Martin-Gomez et al. [8] by applying similar shaders—outline,

semi-transparent, wireframe, and high-contrast replicate—to medical AR applications. The study

involved aligning a virtual model of abdominal tissue with a physical 3D-printed counterpart using

a HoloLens. Results indicated that the outline shader received the highest orientation accuracy and

user preference ratings, whereas semi-transparent shading achieved the fastest alignment times.

The authors suggest that less visually complex shading techniques, which emphasize key anatomi-

cal features such as veins, may be more effective for medical applications. However, the absence of

a time constraint may have influenced the results, as no significant differences in task completion

speed were observed [9].

In the context of motion data representation, shader selection is not the sole factor influencing user

comprehension. The 2012 study by Coffey et al. examines various methods of displaying object

motion both spatially and temporally. Three approaches were analyzed for each aspect: interactive,

animated, and static. Interactive allows the user control time (move forward or backward) and the

scene, rotating and repositioning to access multiple view points. Animated plays time normally

with a loop and the scene is rotated automatically. Static time is shown as multiple still snapshots,

while space is also static with additional widgets to enhance depth cues. There were a total of nine

combinations consisting of every pair of time or static and interactive, animated, and static. Find-

ings suggested that animated time yielded the fastest results, whereas users exhibited the highest

confidence levels when interacting with both space and time interactively [10].

7



Kloiber et al. (2020) introduce an innovative framework for analyzing user motion within virtual

reality. This approach emphasizes the importance of conducting motion analysis with the same

immersive context in which the data was captured, thereby enhancing the understanding of user

behaviors and interactions. User movements are represented as trajectories and highlights key

motion frames, which facilitates intuitive exploration and analysis of complex motion patterns.

This aid sin uncovering insight into user behaviors, task performance, and integration strategies

within VR. The utility of this framework can be useful for evaluating design choices and training

progress. By analyzing motion data, developers and researchers can make more informed decisions

to improve user experience and training efficacy [11].

2.2 Movement

One domain where VR-based movement training has been explored is dance instruction. Chan et

al. (2010) investigates a system that captures whole-body movement using motion capture. The

system provides two types of feedback: immediate and delayed. Immediate feedback involves

a stick-figure avatar that mirrors the user’s movement in real-time, with segments highlighted in

yellow for correct alignment and red for incorrect positioning based on joint angles. The delayed

feedback includes a score report after each performance, where users receive a detailed score based

on the Euclidean distance between their postures and the instructor’s movements. A comparison

between a control group that learned via video instruction and an experimental group using the

VR system demonstrated that the VR-trained participants achieved a significantly higher rate of

improvement [12].

Similarly, a 2011 study by Charbonneau, Miller, and LaViola examines the effectiveness of three

feedback modes—video-only, game-only, and training mode (video + game)—using an Optrima

Optricam depth camera for motion tracking. The game mode visualized the user’s movement as

8



particles, with discrepancies in motion indicated by red points. The instructor was represented in

a similar fashion, with different colors. Additionally, the instructor’s silhouette was either overlaid

on the player (game mode) or placed above the player (training mode). Results from both game

scores and an expert panel suggested that video-only mode led to better performance, indicating

that the visualization method in game mode may have been insufficient for effective learning [13].

Another approach to dance training in VR is explored in Sun et al.’s research (2014). This study

utilizes a Microsoft Kinect for motion tracking and a gesture recognition database for ballet pose

analysis. Unlike previous studies that rely on head-mounted displays (HMDs), this system employs

a CAVE (Cave Automatic Virtual Environment), which uses three projectors to create an immersive

virtual space. Three feedback mechanisms are implemented: side-by-side comparison, overlay

visualization, and score graphs. By analyzing postures, the system is able to provide immediate

feedback to students, which was shown to increase performance scores [14].

Beyond dance, VR has been investigated for improving fine motor skills. Martirosov et al. (2021)

examines how VR training affects users’ ability to follow precise movement patterns using either

a one-handed tool (glue gun) or a two-handed tool (caulking gun). Participants were required to

trace straight lines, sine waves, and circular paths as quickly and accurately as possible. After

seven VR training sessions, real-world tests were conducted before and after the VR exposure.

Findings indicated that accuracy increased and task completion time decreased in real-world tests,

though performance improvements plateaued after the fourth VR session [15].

There have also been several studies focusing on hand movement rather than full-body. The re-

search by Nomoto et al. in 2016 explores a novel approach to assist users in performing precise

manual tasks through the integration of visual and haptic feedback in a mixed reality (MR) envi-

ronment. The system overlays a virtual hand onto the user’s real hand, which is designed to guide

and correct the user’s hand movements during manual tasks. The experiment utilized viso-haptic

9



feedback, which allows for virtual drawing while the user feels a sensation similar to an ink brush.

The results of using this system showed improved accuracy and consistacy in task performance

compared to those with such feedback [16].

Bertrand et al. (2015) examines specifically bimanual motion and the acquisition of bimanual

motor skills. The study explores whether symmetrical or asymmetrical tasks influence learning

outcomes and user performance in VR-based training. They found that tasks that had dimensional

symmetry were learned faster and improved coordination compared to asymmetrical tasks, which

suggests that symmetry plays a crucial role in enhancing motor skill acquisition. The study high-

lights the importance of incorporating symmetrical task structures in the design of training modules

aimed at fields requiring precise hand coordination [17].

2.3 Education

The study conducted by Jensen and Konradsen in 2017 examines the effectiveness of VR HMDs

in educational settings. With cognitive skills, five studies compared HMDs to less immersive

technologies, such as CAVEs and desktops, and discovered that led to better learning outcomes,

especially with spatial awareness. For psychomotor skills, the experiments did improve skills

in certain tasks that translated to the real world, but in some cases only made the user better

at playing the game. Simulator fidelity was also discussed, but there is conflicting information

about higher fidelity leading to better learning outcomes. Some have argued that if environmental

elements are too complex, it can confuse the user and cause worse outcomes [18]. A downside

to using HMDs as a learning tool is cybersickness and physical discomfort. It has been shown

to negatively influence learning, and has made some participants drop out of experiments due to

the discomfort. These effects are very rare however, and is able to be lessened with repeated 3D

gaming experiences. Despite these challenges, participants report positive attitudes. Ultimately,
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the findings indicate that HMDs are merely a medium for learning, no different from a classroom

or other games, emphasizing that the effectiveness of a simulation depends on application design

rather than immersion alone [18].

In a similar vein, Rourke (2020) conducted a systematic review to evaluate the comparative ef-

fectiveness of virtual reality simulation versus traditional simulated practice in facilitating the de-

velopment of clinical psychomotor skills among pre-registration nursing students. The review

included nine quasi-experimental studies of varying methodological quality. Despite the limitation

of missing data and heterogeneity in methods, the majority of studies reported that participants

in VR simulation groups showed greater improvements in post-test knowledge scores, cognitive

processing, and psychomotor performance compared to those undergoing conventional simulated

practice. Some evidence also suggested faster task completion times in the VR groups, though

this finding was not consistent across all studies. The authors conclude that VR simulation is at

least as effective, and in many cases more effective, than traditional simulated practice for teach-

ing clinical psychomotor skills. However, they emphasize the need for further research employing

standardized outcome measures and robust study designs to strengthen the evidence base and in-

form curriculum development [19].

A study that focuses on robot-assisted surgical training by Caccianiga et al. (2020) compares the

effectiveness of physical (inanimate) models and virtual reality simulators in training psychomotor

skills. Eighteen participants followed a custom needle driving task, where both formats had im-

provements on their respective platforms. However, the inanimate group performed better than the

VR group during the cross-platform evaluation (inanimate on VR, and VR on inanimate). These

results were true for the slow and moderate task speeds, but the fast task had no significant improve-

ment in either simulator. Other studies with similar tasks received similar results, showing that the

skill transfer from VR to inanimate is not significant, which might be caused by the difficulty of

the task for the VR groups [21]. This hypothesis is supported by the previously discussed studies
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by Rourke and Jensen and Konradsen, that shows that skill transfer is possible across multiple

applications and disciplines.

Pastel et al. (2022) studied whether virtual reality enables learning of complex karate techniques,

specifically the Soto Uke movement in the Zenkutsu Dachi stance. Thirty-three participants were

split into four groups of visualizations: whole-body (VR-WB), forearm (VR-FA), video-based

(VB), and control. The researchers assessed improvements in the upper body, lower body, and

fist posture in the pre-test, post-test, and retention phases across four training sessions. Results

indicated that all training groups showed significant improvements, while the control group did

not exhibit notable changes. The study also found no significant difference in the effectiveness of

whole-body versus forearm-only representation. This suggests that simplified VR representations

can be as effective as full-body models or traditional video instruction for teaching complex motor

skills These findings support the viability of VR as a tool for motor skill acquisition, offering

flexibility in visualization styles without compromising training efficacy [20].
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CHAPTER 3: METHODOLOGY

This chapter outlines the experimental design, application development, and data collection meth-

ods used to evaluate how different visualization styles impact movement imitation accuracy. The

study was designed to systematically test the effects of offset, animation, and manual types in a

virtual environment. We created an application in Unity 2022.3.7f1 for the Meta Quest 2 head-

set (1832 x 1920 resolution per eye, 120Hz refresh rate, 97◦ field of view) using the Meta XR

SDK package. Users participated in 12 randomized trials, each incorporating a different visual-

ization combination, with 3 movements each. Video of the movements can be viewed at https:

//youtu.be/ieZxalfBxis?si=Pho64lnhll4ZyjHq&t=66 and the data used to create the paths

are available at https://github.com/GabyShamblin/movement-visualization-data. Both

performance and perception were collected through the application data and surveys respectively.

3.1 Application Design

Upon startup, a virtual table appears in a white room where the gray controllers are displayed. Par-

ticipants are given time to prepare and adjust their position in front of the virtual table before the

recorded session begins. To enhance visibility, the table, back wall, and side walls are black, while

the animation icons follow a rainbow gradient (red, orange, yellow, green, blue, and purple). This

gradient transitions from fully opaque to mostly transparent, aiding participants in understanding

their movement sequence, synchronizing both hands in bimanual tasks, and differentiating posi-

tions within the continuous animation (detailed later).

During movement execution, a predefined tolerance is applied to determine correctness. Position

and rotation are considered correct within 0.05 meters (5 cm) and 40◦, respectively. A time restric-
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Figure 3.1: The experiment room

tion is also enforced: if one hand lags more than 120 frames (approximately 2 seconds) behind

the other, the user must restart, and previously saved data is overwritten. Successful completion of

the movement advances the program to the next sequence or visualization type. To prevent order

effects and artificial score inflation, the presentation order of visualizations is randomized.

3.1.1 Visualization

The appearance of the hands plays a critical role in user interaction. The study examines three visu-

alization categories, offset, animation, and handedness, which results in 12 unique combinations.
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Figure 3.2: The virtual room

These are explored in-depth in the following sections.

3.1.1.1 Animation

Discrete and continuous movement are used in the beginning of every movement to show the user

how to perform the motion. Discrete displays one static frame at a time, progressing sequentially

from the start to the end of the motion. Continuous displays every seventh frame, initially showing

only one and progressively increasing the number of visible frames as the movement continues.

These styles assess the impact of information quantity on movement accuracy. In both cases, all

frames are saved and analyzed, regardless of whether they are displayed. In discrete mode, as users

match the current frame, it disappears, and the next frame appears, creating the illusion of fluid

motion. In continuous mode, the matched frame just disappears (if it is visible). Video of the two

animation types can be seen at https://youtu.be/ieZxalfBxis?si=B1Ffpwrh4KGA3tX-.
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(a) Continuous (b) Discrete

Figure 3.3: Animation types

3.1.1.2 Hands

Unimanual (one hand) and bimanual (two hands) will also be accounted for to determine how the

coordination of both hands affects the user’s accuracy. Two routes were recorded for each move-

ment, one for each hand, which will be used for the bimanual mode. For unimanual, users follow

movements using only their right hand, regardless of dominance. With mirrored bimanual, both

hands follow the left hand movement, which is replicated and mirrored for the right hand. Each

hand follows its individual recorded movement sequence for asynchronous bimanual. Video of the

three handed types can be seen at https://youtu.be/ieZxalfBxis?si=JxFuu3TOP84tNXV9&

t=21.

3.1.1.3 Offset

Offset enables the user to see the hands from a different angle. This involves "ghost" controllers

that are offset 0.5 meters forward from the actual controllers but follow the exact movements of

the controllers. In addition, the tracing visualizations are moved forward the same amount as
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(a) Asynchronous bimanual (b) Mirrored bimanual (c) Unimanual

Figure 3.4: Manual types

(a) In-Place (b) Offset

Figure 3.5: Offset types

the "ghost" controllers, and users’ representation of their real controllers are hidden to create the

illusion that the offset hands are their hands. While offset mode is turned off, the traces are within

reach of the users’ controllers, and the user must follow the traces with their hands directly. Video

of the close and offset visualization types can be seen at https://youtu.be/ieZxalfBxis?si=

zeeiQALgmLk6MAgE&t=46.
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3.1.2 Feedback

Each movement begins with an animation demonstrating the expected motion. The animation con-

trollers follow a rainbow gradient to provide users with a temporal reference, aiding synchroniza-

tion between hands. Upon successful movement completion, a confirmation jingle plays, the ani-

mation controllers reset, and position controllers reappear. If the user’s hands exceed a 120-frame

de-synchronization, a failure jingle plays, and the animation automatically replays to indicate a

restart is required.

3.2 Participants

A total of 30 participants (22 males and 8 females) were recruited through an email list at the Uni-

versity of Central Florida and required to complete a questionnaire to ensure eligibility and gather

basic demographic information. The eligibility requirements can be viewed at Appendix A.1. Par-

ticipants ranged in age from 18 to 31 with a mean age of 21.6. 26 of the 30 participants (87%)

were right-handed, 3 were left-handed (10%), and 1 was ambidextrous (3%). Participants were

also surveyed regarding their prior experience with video games and virtual reality (Table 3.1).

Half of users said they played video games often (weekly or daily), while 33% said the games they

played often had a first-person perspective. Only 6 of the 30 (20%) stated that they owned a VR

system, with the majority using a Meta Quest 2, the same model used in the study.

Table 3.1: Questionnaire Results

Question None Yearly Monthly Weekly Daily
How often do you play video games? 3% 13% 33% 33% 17%

How often do you play first-person video games? 10% 23% 30% 23% 10%
How often do you play VR video games? 37% 37% 20% 3% 0%
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3.3 Experiment Design

The tasks were designed to evaluate how different visualization configurations affect movement

accuracy. A within-subjects design was employed, allowing each participant to experience all

visualization conditions. This approach controls for individual variability and provides a more

robust set of comparative data across conditions.

Prior to starting the trials, users received instructions and were given time to familiarize themselves

with the VR environment and controls. Each participant completed a total of 36 trials, consisting

of 3 unique movements presented under 12 different visualization combinations. To prevent learn-

ing effects or ordering biases, the sequence of combinations were randomized for each participant.

Before each movement, users positioned their controllers within a set of opaque gray controllers.

This action triggers an animation that demonstrates how to complete the movement. Once com-

plete, users placed their hands back in the initial position to begin execution. Both hands follow

the same gradient, and the participant is instructed to keep both hands on the same color at the

same time, ensuring participants remain aware of the temporal aspect of the motion.

The independent variables were the offset, animation, and handed types, and the dependent vari-

ables were the position, rotation, and average scores.

3.4 Procedure

Participants are given instructions on how to use the program and then prompted to sit down, place

the headset on their head, and adjust the straps as needed. The chair was placed in the middle of the

room away from all other furniture, and the Roomscale boundary created a roughly 4’ x 4’ square

around the chair. The user may move freely within the confines of the virtual environment using
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the character controls. The left controller stick is used for movement and the right controller stick

is used for snap rotation, which has an increment of 10◦ and a 0.5 second delay between rotations.

Users may click the Y button on the left controller to manually reset the current movement. They

were given guidance by the researcher for the first three movements if needed, then were only

helped if it was specifically requested.

Each participant must complete all three movement sequences across all 12 visualizations, result-

ing in 36 trials, estimated to take approximately 45 minutes. Between each visualization combina-

tion, a "pause" message is displayed to remind the participant to stop and complete the between-

trial questionnaire. After completing all trials, a "done" message indicates completion, followed

by the final between-trial questionnaire and the end-of-trial questionnaire.

3.5 Data Collection

Data from the simulation is saved in a .csv at the end of every movement, totaling 36 sections

within each file. Each section contains a code which consists of the internal visualization code,

an offset identifier, an animation identifier, a handed identifier, the movement code (0-2), the reset

count, and the user-initiated reset count. The visualization code is a number 0-11 which aligns

with one of the 12 visualization combinations and is used to tell the program what trial was chosen

at random. For example,

8: offset_cont_asyc_0_3_1

means the section of the data is from the offset, continuous animation, and asynchronous bimanual

combination, which has an internal code of 8. It is from movement 0 (the first movement), and the

user was reset three times, one of those being a result of them hitting the reset button. This means

the user was reset twice as a result of error.
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For each frame in a movement, the following information is saved:

• Trial code

• Left position (x, y, z)

• Left position score

• Left rotation (x, y, z, w)

• Left rotation score

• Right position (x, y, z)

• Right position score

• Right rotation (x, y, z, w)

• Right rotation score

• Timestamp

• Score

3.5.1 Scoring

Accuracy was calculated based the distance between the correct position and rotation, and the

user’s hand. It must fall within a predefined allowance, with 0% representing the maximum al-

lowable deviation and 100% indicating perfect alignment. Score for position and rotation are

calculated independently, using the following formulas:

Position: 1− (Vector3.Distance(correct,user)/positionAllowance)

Rotation: 1− (Quaternion.Angle(correct,user)/rotationAllowance)
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For example, assuming a position allowance of 0.25 meters, a correct Vector3 of (0,0,0), and a

user Vector3 of (0.1,0.07,0.12) results in a distance of 0.17 and will have a score of:

1− (0.17/0.25) = 0.32 = 32%

Scores were calculated for every frame, and the overall score was computed as the average of the

position and rotation scores. In the case of unimanual movement, the left hand information is

populated with all zeros and is left out of the average.
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CHAPTER 4: RESULTS

This chapter presents the findings from both the quantitative and qualitative analyses during the

user study. The participants’ motion data was recorded while they performed the given tasks, and

heir subjective experiences were evaluated using a series of questionnaires. The findings provide a

comprehensive view of how visualization design choices impact motor performance and user satis-

faction, which can be found at https://github.com/GabyShamblin/movement-visualization-data.

All data analysis and visualization was completed in R. Each set of data (position, rotation, overall)

was tested for normal distribution, which was confirmed. Significance is defined as follows: . (p <

0.1), * (p < 0.05), ** (p < 0.01), and *** (p < 0.001).

4.1 User Performance

A repeated measures ANOVA using a mixed-effects model was conducted to compare the effect of

each variable on user accuracy across conditions. The independent variables are offset, animation

type, and the manual type. The user ID was added as a random effect, to account for individual

variation. For the dependent variable, a mean score is calculated from each trial for each user and

this is what will be used for subsequent calculations. Plotting this data This is written as an R

formula which looks like:

score ∼ o f f set ∗anim∗hand +(1|user)

The analysis was performed assuming that in-place, continuous, and asynchronous bimanual were

the default conditions (the Intercept in Table B.3). Each variable in Table B.3 represents a change

from this baseline. For example, "Offset" refers to the offset visualization, "Anim" refers discrete
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animation, and "Hands" refers to mirrored and unimanual (which is further broken down in the

"Hands" section). Mean scores and confidence intervals for the position, rotation, and overall

average of each visualization type were calculated and plotted (Figure B.1, Figure B.3, Figure

B.5).

Offset had a significant effect on position (p < 0.001), rotation (p < 0.05), and overall (p < 0.001),

with in-place achieving slightly higher scores across all combinations. Animation type had a statis-

tically significant impact on all scores as well (p < 0.001), with discrete animation yielding higher

scores overall than continuous. There was a very slight increase for position, but rotation saw an

increase of about 10% for discrete. Manual type had highly significant results for all scores as

well (p < 0.001). Mirrored bimanual scored the lowest for overall and rotation scores (p < 0.001),

followed closely by asynchronous bimanual. Mirrored had slightly higher position scores, but had

less significance when paired with asynchronous (p < 0.05). Unimanual had the highest scores by

almost 10% for all scores.

The interaction effect Offset:Anim (offset and animation) was not statistically significant, but Off-

set:Hands was slightly significant for position (p < 0.1). In-place unimanual had the highest scores

of the other combinations by a small margin, followed closely by offset unimanual. Asynchronous

and mirrored had about the same scores regardless of the distance of the visualization compared

to the user. The interaction Anim:Hand (animation and hands) however, had a high significance

(p < 0.001) for every score type. Discrete unimanual had the highest scores, with every other

combination following the same patterns as the individual scores. The three-way interaction Off-

set:Anim:Hands was not significant.
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4.2 User Experience

4.2.1 Between Trial Questionnaire

We performed an Aligned Ranks Transformation (ART) Analysis of Variance (ANOVA) to analyze

each variable and the interactions between variables. The independent variables are the offset (in-

place vs. offset), the animation type (discrete vs. continuous), and manual type (unimanual vs.

mirrored bimanual vs asynchronous bimanual). The dependent variable is the user’s score for each

question. This analysis followed the formula:

score ∼ o f f set ∗anim∗hand

The full questionnaire can be found in Appendix A.2.

Manual type had a highly significant impact for how mentally demanding the task was (p < 0.001),

as seen in Table 4.2. Specifically, Figure 4.3c demonstrates that unimanual received the lowest

mental demand scores for this question by a large margin (p < 0.001), followed by mirrored bi-

manual. In addition, animation type received significance (p < 0.01), with discrete being less

mentally demanding than continuous animation (Figure 4.3b). The offset visualization was not

statistically significant and shows little difference on Figure 4.3a.
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Table 4.1: How mentally demanding was the task?

Variable DoF DoF Res. F Value p Value Significance
Offset 1 348 0.689 0.407
Anim 1 348 8.791 0.003 **
Hands 2 348 14.656 7.74e-07 ***

Offset:Anim 1 348 1.61e-05 0.997
Offset:Hands 2 348 0.558 0.573
Anim:Hands 2 348 1.881 0.153

Offset:Anim:Hands 2 348 0.193 0.824
Hands

Async - Mirrored 348 0.552
Async - Unimanual 348 9.71e-07 ***

Mirrored - Unimanual 348 3.75e-04 ***

(a) Offset (b) Animation (c) Hands

Figure 4.1: How mentally demanding was the task?

For the physical demanding (Table 4.3), only handedness received any level of significance (p <

0.001). Results mirrored those of mental demand: unimanual was rated significantly lower (p <

0.001) and was followed by mirrored by a large margin (Figure 4.4c). The offset visualization was

not statistically significant and shows little difference on Figure 4.4a.
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Table 4.2: How physically demanding was the task?

Variable DoF DoF Res. F Value p Value Significance
Offset 1 348 0.412 0.521
Anim 1 348 2.082 0.150
Hands 2 348 11.030 2.27e-05 ***

Offset:Anim 1 348 0.053 0.817
Offset:Hands 2 348 0.180 0.835
Anim:Hands 2 348 1.083 0.340

Offset:Anim:Hands 2 348 0.022 0.978
Hands

Async - Mirrored 348 1.000
Async - Unimanual 348 1.01e-04 ***

Mirrored - Unimanual 348 3.20e-04 ***

(a) Offset (b) Animation (c) Hands

Figure 4.2: How physically demanding was the task?

None of the visualization types affected the perceived pace of the task and no variables received

significance.
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Table 4.3: How hurried or rushed was the pace of the task?

Variable DoF DoF Res. F Value p Value Significance
Offset 1 348 1.591 0.208
Anim 1 348 2.139 0.144
Hands 2 348 1.306 0.272

Offset:Anim 1 348 0.393 0.531
Offset:Hands 2 348 0.143 0.867
Anim:Hands 2 348 0.016 0.984

Offset:Anim:Hands 2 348 0.023 0.978
Hands

Async - Mirrored 348 0.487
Async - Unimanual 348 0.487

Mirrored - Unimanual 348 1.000

(a) Offset (b) Animation (c) Hands

Figure 4.3: How hurried or rushed was the pace of the task?

Users felt slightly more successful while using the unimanual than the mirrored handed visualiza-

tion, but this result is less significant (p < 0.01) than the previous questions (Table 4.5). Asyn-

chronous bimanual had a slightly lower median than unimanual (p < 0.05), but had a larger range

of scores. The offset visualization was not statistically significant and shows little difference on
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(a) Offset (b) Animation (c) Hands

Figure 4.4: How successful were you in accomplishing what you were asked to do?

Figure 4.6a.

Table 4.4: How successful were you in accomplishing what you were asked to do?

Variable DoF DoF Res. F Value p Value Significance
Offset 1 348 0.009 0.926
Anim 1 348 3.084 0.080
Hands 2 348 6.370 0.002 **

Offset:Anim 1 348 4.34e-04 0.983
Offset:Hands 2 348 0.002 0.998
Anim:Hands 2 348 0.502 0.606

Offset:Anim:Hands 2 348 0.002 0.998
Hands

Async - Mirrored 348 1.000
Async - Unimanual 348 0.003 **

Mirrored - Unimanual 348 0.014 *
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Stress was primarily associated with animation and manual type (Table 4.6). Discrete animation

was significantly better than continuous animation (p < 0.01), having a smaller range of scores then

the former. The distance between unimanual and asynchronous was more significant (p < 0.01)

then unimanual and mirrored (p < 0.05), as also shown in Figure 4.7c. The offset visualization was

not statistically significant and shows little difference on Figure 4.7a.

Table 4.5: How insecure, discouraged, irritated, stressed, and annoyed were you?

Variable DoF DoF Res. F Value p Value Significance
Offset 1 348 0.002 0.969
Anim 1 348 7.840 0.005 **
Hands 2 348 6.326 0.002 **

Offset:Anim 1 348 0.009 0.923
Offset:Hands 2 348 0.379 0.685
Anim:Hands 2 348 0.201 0.818

Offset:Anim:Hands 2 348 0.123 0.884
Hands

Async - Mirrored 348 1.000
Async - Unimanual 348 0.002 **

Mirrored - Unimanual 348 0.029 *
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(a) Offset (b) Animation (c) Hands

Figure 4.5: How insecure, discouraged, irritated, stressed, and annoyed were you?
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4.2.2 End of Experiment Questionnaire

After experiencing all visualization combinations, participants were given a questionnaire about

which techniques were preferred (Appendix A.3). Most users preferred in-place as opposed to

offset (Figure 4.8a). Animation type preference was more evenly split, with a slight preference

for discrete animation. Most users favored single-handed movements over the dual-handed move-

ments, likely due to the increased coordination required for bimanual tasks. Asynchronous biman-

ual received the least positive response, ranking just below mirrored bimanual.

Table 4.6: End of Experiment

Variable DoF X-squared p Value Significance
In-place - Offset 1 10.8 0.001 **

Cont - Disc 1 0.533 0.465
Async - Mirrored 1 0.077 0.782

Uni - Async 1 5.261 0.022 *
Uni - Mirrored 1 4.167 0.041 *
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(a) Which animation technique do
you prefer?

(b) Which visualization technique
do you prefer?

(c) Which handed technique do you
prefer?

Figure 4.6: End of Experiment Questionnaire Results
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4.3 Discussion

The results of this study highlight several key findings regarding the effects of different visualiza-

tion techniques on user performance and perception on a VR-based movement task. The primary

variables examined were offset (in-place vs. offset), animation type (discrete vs. continuous), and

manual type (unimanual vs. mirrored bimanual vs. asynchronous bimanual).

Despite the between-trial questionnaire showing similar ratings for in-place and offset, the major-

ity of users (80%, Figure 4.8a) preferred the in-place visualization when asked at the end of the

experiment. This suggests that while offset may not have significantly impacted perceived men-

tal or physical demand, stress, or performance during individual trials, the cumulative experience

likely influenced user perception. Our first hypothesis offset will result in a higher accuracy was

incorrect, as in-place yielded slightly higher scores (p < 0.001). This may be because the offset

visualizations may have introduced a subtle sense of disorientation or disconnect, as users had to

rely on information that did not align precisely with their proprioceptive feedback. This aligns with

user’s overall accuracy as well, as even though offset had a significant impact when it was the only

changed variable (p < 0.001), it had little effect when combined with other factors and for rotation

and position individually. Future research could explore whether familiarity with VR systems or

extended exposure to offset visualizations influences user experience and adaption over time.

In terms of animation style, user preference was more evenly split between continuous and dis-

crete. However, performance results demonstrated that discrete animation had significantly higher

accuracy scores than continuous (p < 0.001). This confirms our second hypothesis, and aligns with

previous research suggesting that breaking down complex movements into discrete steps can en-

hance learning and execution by reducing cognitive load [10]. The discrepancy between subjective

preference and objective performance may indicate that some users found continuous animation

to be more natural or engaging, even if it was less effective in guiding precise movements. Future

34



studies could explore hybrid animation approaches that blend the benefits of both styles, such as

showing a small amount of the path at a time that progresses as the user continuous through the

motion.

The manual type had the most profound impact on both subjective and objective measures. Uni-

manual movements resulted in the highest overall accuracy scores and were rated as significantly

less mentally and physically demanding compared to bimanual conditions (p < 0.001), which

means we accept our third hypothesis. Both bimanual conditions were not significant from each

other with regards to the questionnaires. Interestingly, asynchronous bimanual received the high-

est rotation accuracy scores, followed by mirrored and unimanual (p < 0.001). This suggests that

users were more self-critical when coordinating both hands, possibly due to heightened aware-

ness of minor inaccuracies when attempting to maintain synchronization. Asynchronous bimanual

movements, on the other hand, introduced a greater challenge but also exhibited higher variability

in user responses, indicating that some participants may have adapted more effectively than others.

Given these results, future studies might consider implementing adaptive difficulty settings based

on individual user performance. For example, if a user struggles with asynchronous bimanual

movements, the system could introduce training phases, starting with unimanual movements and

gradually increasing independence between hands. Additionally, investigating whether expertise

in musical instruments, sports, or other activities that require bimanual coordination influences

performance in this context could yield valuable insights.

Another important aspect of the study was the error correction mechanism, which required users

to restart if one hand fell more than 120 frames behind the other. This system ensured that par-

ticipants remained engaged with the task and maintained synchronization, but it may have also

contributed to increased frustration or stress, particularly in bimanual conditions. The stress rat-

ings indicated that discrete animation and unimanual movement were associated with the lowest

stress levels, whereas asynchronous bimanual movements in a continuous animation style resulted
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in the highest stress. This suggests that providing more structured feedback in these challenging

conditions could help mitigate frustration. Future implementations could explore alternative error

correction strategies that provide real-time feedback instead of requiring a full reset. For instance,

a dynamic difficulty adjustment mechanism could slightly relax accuracy thresholds when a user

is struggling, allowing for smoother progression without sacrificing learning outcomes. Addition-

ally, auditory or haptic feedback could be introduced to guide users toward correct positioning in

real-time, potentially reducing the number of resets required and potentially reducing stress.

4.4 Future Research

The findings of this study have direct implications for the design of VR-based motor learning ap-

plications. The preference for in-place visualizations suggests that developers should be cautious

when implementing offset-based visualizations, particularly for novice users. If offset representa-

tions are necessary, they should be accompanied by clear calibration or adaptation phases to help

users adjust.

The superior performance of discrete animation suggests that step-by-step guidance is particularly

beneficial for precision tasks, though user preference indicates a demand for more fluid representa-

tions. This suggests that VR training applications might benefit from hybrid animation techniques

that are discrete, but use sections of continuous to highlight a clear path, providing both structure

and natural movement flow.

Finally, the impact of manual type on both subjective and objective measures suggests that VR

training programs should be tailored to user skill levels. Beginners may benefit from starting with

unimanual tasks before progressing to mirrored bimanual movements and finally asynchronous

movements as proficiency improves. Adaptive training systems that respond to user performance
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could provide a more personalized and effective learning experience.
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CHAPTER 5: CONCLUSION

This study demonstrated that visualization techniques in VR significantly influence both user ac-

curacy and subjective experience. While offset representations did not significantly impact per-

formance, they were largely disliked. Discrete animation led to better accuracy but was not over-

whelmingly preferred, suggesting a tradeoff between effectiveness and perceived usability. Bi-

manual movements, particularly asynchronous ones, were the most challenging, requiring greater

cognitive and motor coordination. These insights can inform the development of VR-based train-

ing systems, emphasizing the importance of balancing user preference with performance opti-

mization. Future research should explore adaptive feedback mechanisms, long-term adaptation to

offset conditions, and hybrid animation approaches to further enhance VR training effectiveness.

Furthermore, research could explore real-world applications of these findings in fields such as re-

habilitation, skill training, and remote teleoperation, and how these VR visualization techniques

translate to long-term skill retention.
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APPENDIX A: EXPERIMENT QUESTIONNAIRES
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A.1 Qualification Questionnaire

This questionnaire is filled out before the participant is allowed to schedule their participation time,

to make sure they qualify and gather basic demographic information.

Eligibility Verification

Q1: I am 18-64 years old. ⃝ Yes ⃝ No

Q2: I have 20/20 vision with or without contacts and do not regularly wear glasses for corrected

vision. ⃝ Yes ⃝ No

Q3: I have the ability to walk, extend both arms above my head, and use both hands. ⃝ Yes ⃝ No

Q4: I can read, write, speak, and understand English. ⃝ Yes ⃝ No

Q5: I am NOT pregnant. ⃝ Yes ⃝ No

Q6: I do NOT have a pre-existing serious medical condition (e.g., heart ailment, cancer, or other

serious disease). ⃝ Yes ⃝ No

Q7: I do NOT have a pre-existing psychiatric condition (e.g., an anxiety or post-traumatic stress

disorder). ⃝ Yes ⃝ No

Q8: I do NOT have any visual disabilities (e.g., blindness, color blindness, low vision). ⃝ Yes ⃝

No

Q9: I do NOT have any auditory disabilities (e.g., deafness, hard of hearing). ⃝ Yes ⃝ No

Q10: I do NOT have any neuropathy disabilities (e.g., hypersensitivity, numbness). ⃝ Yes ⃝ No

Q11: I do NOT have any neurological disabilities (e.g., autism, memory impairments). ⃝ Yes ⃝

No

Q12: I do NOT have any physical disabilities (e.g., amputation, tremors and spasms). ⃝ Yes ⃝

No

Q13: I do NOT have any recurring history of the following symptoms: Convulsions, Disorienta-

tion, Dizziness, Drowsiness, Excessive sweating, Eye pain or discomfort, Eye strain, Eye twitch-
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ing, Fatigue, Impaired hand-eye coordination, Impaired sense of balance, Increased salivation,

Involuntary movements, Lightheadedness, Loss of awareness, Motion sickness, Nausea, Seizures,

Vision abnormalities (such as altered, blurred, or double vision). ⃝ Yes ⃝ No

Informed Consent Verification

Q14: Please fully review the informed consent form below before deciding whether to proceed with

participation. https://drive.google.com/file/d/1f2BxMAlBDSG4Vc38E3jD7bpfkb6UBvox/view?usp=sharing

Q15: Have you read the information about the risks involved? ⃝ Yes ⃝ No

Q16: Have you read the information on who to contact with questions about the study? ⃝ Yes ⃝

No

Q17: Have you read the information about withdrawing from the study? ⃝ Yes ⃝ No

Q18: Have you read the information about how your data will be used? ⃝ Yes ⃝ No

Q19: Do you voluntarily consent to participate in this study? ⃝ Yes ⃝ No

Demographics Survey

Q20: What is your gender? ⃝ Male ⃝ Female ⃝ Other ⃝ Prefer not to say

Q21: What is your age?

Q22: What is your height?

Q23: Which hand is your dominant hand? ⃝ Right hand ⃝ Left hand ⃝ Either hand

Video Game Survey

Q24: On average, how often do you play video games? ⃝ None ⃝ Yearly ⃝ Monthly ⃝ Weekly

⃝ Daily

Q25: On average, how often do you play games with first-person perspectives? ⃝ None ⃝ Yearly

⃝ Monthly ⃝ Weekly ⃝ Daily

Virtual Reality (VR) Survey

Q26: On average, how often do experience VR applications and games? ⃝ None ⃝ Yearly ⃝
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Monthly ⃝ Weekly ⃝ Daily

Q27: Do you own or possess a VR system? ⃝ Yes (please specify) ⃝ No

Email Address

Q28: What is your email address? We will contact you via email to schedule your in-person partic-

ipation.

A.2 Between Trial Questionnaire

This questionnaire is filled out after experiencing each visualization technique, to a total of 12

timers per participant. It is based on the NASA Task Load Index (NASA-TLX) to determine how

demanding the participant felt a task was on a scale from 0-20.

Q1: Rate your experience with the previous task:

How mentally demanding was the task? Very low ⃝⃝⃝⃝⃝ Very high

How physically demanding was the task? Very low ⃝⃝⃝⃝⃝ Very high

How hurried or rushed was the pave of the task? Very low ⃝⃝⃝⃝⃝ Very high

How successful were you in accomplishing what you were asked to do? Very low ⃝⃝⃝⃝⃝

Very high

How insecure, discouraged, irritated, stressed, and annoyed were you? Very low ⃝⃝⃝⃝⃝ Very

high

42



A.3 End of Experiment Questionnaire

This questionnaire is filled out after completing all visualization techniques.

Q1: Which animation technique do you prefer? ⃝ Discrete (one icon at a time) ⃝ Continuous

(all icons at once)

Q2: Which handed technique do you prefer? ⃝ Single-handed ⃝ Mirrored two-handed ⃝ Asyn-

chronous two-handed

Q3: Which visualization technique do you prefer? ⃝ In-place (close) ⃝ Offset (far away)
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(a) Distribution of position scores for each trial (b) Mean position scores of each visualization group

Figure B.1: The position scores

Table B.1: User position accuracy ANOVA results

Variable DoF DoF Res. F Value p Value Significance
(Intercept) 1 319 3832.793 <.001 ***

Offset 1 319 14.008 <.001 ***
Anim 1 319 12.847 <.001 ***
Hands 2 319 145.621 <.001 ***

Offset:Anim 1 319 1.280 0.259
Offset:Hands 2 319 2.411 0.091 .
Anim:Hands 2 319 20.758 <.001 ***

Offset:Anim:Hands 2 319 0.292 0.747
Hands

Async - Mirrored 319 0.019 *
Async - Unimanual 319 <.001 ***

Mirrored - Unimanual 319 <.001 ***
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(a) Offset (b) Animation (c) Hands

(d) Animation:Hands (e) Offset:Hands

Figure B.2: The significant position results
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(a) Distribution of rotation scores for each trial (b) Mean rotation scores of each visualization group

Figure B.3: The rotation scores

Table B.2: User rotation accuracy ANOVA results

Variable DoF DoF Res. F Value p Value Significance
(Intercept) 1 319 4403.027 <.001 ***

Offset 1 319 4.419 0.036 *
Anim 1 319 217.614 <.001 ***
Hands 2 319 149.080 <.001 ***

Offset:Anim 1 319 0.039 0.844
Offset:Hands 2 319 0.009 0.991
Anim:Hands 2 319 9.590 <.001 ***

Offset:Anim:Hands 2 319 0.211 0.810
Hands

Async - Mirrored 319 <.001 ***
Async - Unimanual 319 <.001 ***

Mirrored - Unimanual 319 <.001 ***
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(a) Offset (b) Animation (c) Hands

(d) Animation:Hands

Figure B.4: The significant rotation results
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(a) Distribution of scores for each trial (b) Mean scores of each visualization group

Figure B.5: The overall scores

Table B.3: User accuracy ANOVA results

Variable DoF DoF Res. F Value p Value Significance
(Intercept) 1 319 6801.902 <.001 ***

Offset 1 319 15.082 <.001 ***
Anim 1 319 193.905 <.001 ***
Hands 2 319 266.879 <.001 ***

Offset:Anim 1 319 0.537 0.464
Offset:Hands 2 319 0.461 0.629
Anim:Hands 2 319 20.339 <.001 ***

Offset:Anim:Hands 2 319 0.409 0.665
Hands

Async - Mirrored 319 <.001 ***
Async - Unimanual 319 <.001 ***

Mirrored - Unimanual 319 <.001 ***
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(a) Offset (b) Animation (c) Hands

(d) Animation:Hands

Figure B.6: The significant overall results
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Table B.4: Position post-hoc analysis results (P - In-place, O - Offset) (C - Continuous, D - Dis-
crete) (U - Unimanual, M - Mirrored bimanual, A - Asynchronous bimanual)

Pair Z? p Value Significance
Anim:Hands
CA - DA -0.009 0.101
CA - CM -0.021 <.001 ***
CA - DM -0.009 0.108
CA - CU -0.046 <.001 ***
CA - DU -0.083 <.001 ***
DA - CM -0.012 0.030 *
DA - DM <.001 0.974
DA - CU -0.038 <.001 ***
DA - DU -0.074 <.001 ***
CM - DM 0.012 0.028 *
CM - CU -0.026 <.001 ***
CM - DU -0.062 <.001 ***
DM - CU -0.038 <.001 ***
DM - DU -0.074 <.001 ***
CU - DU -0.037 <.001 ***
Offset:Hands
PA - OA 0.004 0.413
PA - PM -0.013 0.019 *
PA - OM -0.003 0.528
PA - PU -0.068 <.001 ***
PA - OU -0.048 <.001 ***
OA - PM -0.017 0.002 **
OA - OM -0.008 0.143
OA - PU -0.073 <.001 ***
OA - OU -0.052 <.001 ***
PM - OM 0.009 0.090 .
PM - PU -0.056 <.001 ***
PM - OU -0.035 <.001 ***
OM - PU -0.065 <.001 ***
OM - OU -0.044 <.001 ***
PU - OU 0.021 <.001 ***
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Table B.5: Rotation post-hoc analysis results (C - Continuous, D - Discrete) (U - Unimanual, M -
Mirrored bimanual, A - Asynchronous bimanual)

Pair Z? p Value Significance
Anim:Hands
CA - DA -0.049 <.001 ***
CA - CM 0.047 <.001 ***
CA - DM -0.021 0.019 *
CA - CU -0.048 <.001 ***
CA - DU -0.150 <.001 ***
DA - CM 0.100 <.001 ***
DA - DM 0.028 0.003 **
DA - CU 0.001 0.907
DA - DU -0.101 <.001 ***
CM - DM -0.068 <.001 ***
CM - CU -0.095 <.001 ***
CM - DU -0.197 <.001 ***
DM - CU -0.027 0.003 **
DM - DU -0.129 <.001 ***
CU - DU -0.102 <.001 ***
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Table B.6: Overall post-hoc analysis results (C - Continuous, D - Discrete) (U - Unimanual, M -
Mirrored bimanual, A - Asynchronous bimanual)

Pair Z? p Value Significance
Anim:Hands
CA - DA -0.029 <.001 ***
CA - CM 0.013 0.014 *
CA - DM -0.015 0.005 **
CA - CU -0.046 <.001 ***
CA - DU -0.116 <.001 ***
DA - CM 0.042 <.001 ***
DA - DM 0.014 0.008 **
DA - CU -0.017 0.001 **
DA - DU -0.087 <.001 ***
CM - DM -0.028 <.001 ***
CM - CU -0.060 <.001 ***
CM - DU -0.129 <.001 ***
DM - CU -0.031 <.001 ***
DM - DU -0.101 <.001 ***
CU - DU -0.070 <.001 ***
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