
PEN-BASED METHODS FOR RECOGNITION AND ANIMATION OF
HANDWRITTEN PHYSICS SOLUTIONS

by

SALMAN CHEEMA
B.Sc Computer Science. Lahore University of Management Sciences, 2005

M.S Computer Science. University of Central Florida, 2012

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2014

Major Professor: Joseph J. LaViola Jr.

c⃝ 2014 Salman Cheema

ii

ABSTRACT

There has been considerable interest in constructing pen-based intelligent tutoring systems

due to the natural interaction metaphor and low cognitive load afforded by pen-based interaction.

We believe that pen-based intelligent tutoring systems can be further enhanced by integrating an-

imation techniques. In this work, we explore methods for recognizing and animating sketched

physics diagrams. Our methodologies enable an Intelligent Tutoring System (ITS) to understand

the scenario and requirements posed by a given problem statement and to couple this knowledge

with a computational model of the student’s handwritten solution.

These pieces of information are used to construct meaningful animations and feedback

mechanisms that can highlight errors in student solutions. We have constructed a prototype ITS that

can recognize mathematics and diagrams in a handwritten solution and infer implicit relationships

among diagram elements, mathematics and annotations such as arrows and dotted lines. We use

natural language processing to identify the domain of a given problem, and use this information

to select one or more of four domain-specific physics simulators to animate the user’s sketched

diagram. We enable students to use their answers to guide animation behavior and also describe

a novel algorithm for checking recognized student solutions. We provide examples of scenarios

that can be modeled using our prototype system and discuss the strengths and weaknesses of our

current prototype.

iii

Additionally, we present the findings of a user study that aimed to identify animation re-

quirements for physics tutoring systems. We describe a taxonomy for categorizing different types

of animations for physics problems and highlight how the taxonomy can be used to define require-

ments for 50 physics problems chosen from a university textbook. We also present a discussion

of 56 handwritten solutions acquired from physics students and describe how suitable animations

could be constructed for each of them.

iv

This dissertation is dedicated to my parents, Shaukat Ali Cheema and Rubina Shaukat

my wife Sana Aziz,

and my siblings Arslan, Hassaan and Anum

Thanks for being there.

Without your support and encouragement, this would not have been possible.

v

ACKNOWLEDGMENTS

I want to thank my advisor, Dr. Joseph J. LaViola Jr, for his continued support and advice. His

guidance helped shape and clarify several important aspects of this work. I would also like to thank

the members of my dissertation committee, Dr. Charles E. Hughes, Dr. Tracy Anne Hammond,

and Dr. Gita Sukthankar for their feedback. I also want to thank Dr. Kurt VanLehn for his input

on bayesian networks and deductive reasoning. I thank Dr. Sumit Gulwani for his guidance and

support on the QuickDraw project, which was designed and developed under his supervision during

a summer internship at Microsoft Research. I want to thank Clayton Andrews for his help. I also

want to thank the members of the Interactive Systems and User Experience (ISUE) lab for their

support during my stay at UCF.

My friends in Orlando deserve a special mention: Nazim Ashraf, Zain Masood, Sana

Khosa, Mumtaz Sheikh, Adeel Ali, Asher Ahmad, Imran Saleemi, Nadia Imran, Kamran Sadiq,

Rizwan Ashraf, Faisal Moinuddin, and Siddhant Mohapatra. Thank you guys for making my time

in Florida fun and worthwhile.

This work is supported in part by NSF CAREER award IIS-0845921 and NSF awards

IIS-0856045 and CCF-1012056.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xiv

LIST OF TABLES . xxii

CHAPTER 1 INTRODUCTION . 1

1.1 Motivating Examples . 4

1.1.1 Example 1: Acceleration of a Moving Box 5

1.1.2 Example 2: Deduce Mass Using Force Equation 6

1.1.3 Example 3: Motion Under Constant Acceleration 7

1.2 Proposed Features for Pen-based Intelligent Tutors 8

1.3 Research Challenges . 10

1.4 Reader’s Guide . 13

CHAPTER 2 LITERATURE REVIEW . 14

2.1 Sketch Recognition and Understanding . 14

vii

2.1.1 The Ideal Sketch Recognition Pipeline 17

2.1.2 Ink Preprocessing . 18

2.1.3 Region Segmentation and Page Layout Analysis 19

2.1.3.1 A Note on Text/Non-Text Division Strategies 20

2.1.4 Symbol Recognition . 21

2.1.4.1 Heuristic or Rule-based Methods 22

2.1.4.2 Graph-based Methods . 23

2.1.4.3 Statistical, Template-based and Machine Learning Methods . . . 24

2.1.4.4 Hybrid Methods . 26

2.1.4.5 Miscellaneous Methods . 27

2.2 Pen-based Systems . 27

2.2.1 Pen-based Systems for Physics . 27

2.2.2 Pen-based tools for other Domains . 29

2.3 Traditional Tutoring Systems . 32

2.4 Commercial Tools and Teaching Aids . 34

CHAPTER 3 PROTOTYPE PEN-BASED PHYSICS TUTORING SYSTEM 35

3.1 User Interface . 36

viii

3.2 Ink Stroke Preprocessing . 39

CHAPTER 4 UNDERSTANDING HANDWRITTEN PHYSICS SOLUTIONS 40

4.1 Natural Language Processing . 41

4.2 Mathematics Recognition Engine . 43

4.3 Diagram Recognition . 44

4.3.1 Text/Non-Text Division Strategy . 45

4.3.2 Bottom-up Recognition Phase . 46

4.3.3 Top-Down Recognition Phase . 47

4.3.4 Unistroke and Multistroke Recognition Heuristics 48

4.4 Clustering and Implicit Associations . 52

4.5 High Level Reasoning Engine . 55

CHAPTER 5 BEAUTIFICATION OF RECOGNIZED DIAGRAMS 57

5.1 The QuickDraw Framework . 57

5.1.1 Recognition and Constraint Inference in QuickDraw 59

5.1.2 Constraint-based Beautification Framework 59

5.1.3 Example: A Sketched Square . 63

ix

5.2 Beautification in our Prototype ITS . 66

5.2.1 Initial Beautification: Individual Elements 67

5.2.2 Secondary Beautification: Annotations and Groups of Elements 68

CHAPTER 6 ANIMATION RUNTIME . 69

6.1 Free Fall Kinematics Simulator . 72

6.2 Friction Simulator . 72

6.3 Equilibrium Simulator . 73

6.4 Momentum Simulator . 74

CHAPTER 7 SOLUTION CHECKER . 75

7.1 A Graph Model for Solution Steps . 76

7.2 Rules for Checking a Solution Graph . 78

7.3 A Worked Example . 79

7.4 Discussion . 80

CHAPTER 8 ANIMATION CAPABILITIES . 82

8.1 Animations for Toy Examples . 82

8.1.1 Doodling: 3-Spring System . 82

x

8.1.2 Change in Gravitational Potential Energy During Free-Fall 84

8.1.3 A Contrived Equilibrium Problem . 86

8.2 Animations for Real Physics Problems . 88

8.2.1 A Simple Force and Acceleration Problem 88

8.2.2 A Projectile Constrained in 1-dimension 89

8.2.3 A Projectile Constrained in 2-dimensions 91

8.2.4 A Box Held in Equilibrium . 92

8.2.5 A Box Sliding on a Rough Surface . 93

8.2.6 Computing the Coefficient of Kinetic Friction 96

8.2.7 Elastic Collisions . 97

8.2.8 Using the Work-Energy Theorem to Calculate Initial Velocity 99

8.3 Observed Animation Patterns in Modeled Solutions 99

8.4 Known Cases That Cannot Be Modeled Using our Approach 102

8.4.1 Kinematics Problems . 102

8.4.2 Friction and Sliding Contact Problems 103

8.4.3 Momentum Problems . 105

xi

8.4.4 Equilibrium Problems . 106

8.5 Summary of Supported Animations . 107

CHAPTER 9 ANALYSIS OF STUDENT SOLUTIONS 109

9.1 A Database of Physics Problems and Student Solutions 110

9.1.1 Subjects and Apparatus . 111

9.2 Animation Requirements for Chosen Physics Problems 112

9.3 Analysis of Student Solutions . 129

9.3.1 Analysis of Equilibrium Solutions . 130

9.3.2 Analysis of Momentum Solutions . 134

9.3.3 Analysis of Pulley Solutions . 137

9.3.4 Analysis of Work and Energy Solutions 140

9.3.5 Analysis of Kinematics Solutions . 148

9.4 Summary . 157

CHAPTER 10 CONCLUSION . 163

10.1 Contributions . 163

10.2 Future Work . 165

xii

10.2.1 Improvement in Diagram Recognition 165

10.2.2 Improvement in Mathematics Recognition 166

10.2.3 Support for New Types of Diagram Elements and Annotations 167

10.2.4 Multimodal Interaction Methods . 167

10.2.5 Improvements in Animation Capabilities 168

10.2.6 Usability Testing . 169

APPENDIX A EARLIER PROTOTYPES . 170

A.1 Prototype 1: Proof of Concept . 171

A.2 Prototype 2: Sketch Beautification . 171

A.3 Prototype 3: PhysicsBook . 173

APPENDIX B IRB DOCUMENTATION . 174

LIST OF REFERENCES . 177

xiii

LIST OF FIGURES

Figure 1.1 Friction problem statement taken from University Physics 13 Ed [226], Page 129. 2

Figure 1.2 A handwritten solution for the kinematics problem presented in Figure 1.1. . . 3

Figure 1.3 Source: University Physics 13 Ed [226], Page 116. In this example, the textbook

provides the answer and also indicates possible strategies for a student to approach such problems.

5

Figure 1.4 Source: University Physics 13 Ed [226], Page 129. 6

Figure 1.5 Three solutions to the physics problem presented in Figure 1.4 that use the same

principle (f = ma) to solve the problem, yet show wide variation in notation and diagrams. 7

Figure 1.6 Source: University Physics 13 Ed [226], Page 130. 7

Figure 1.7 Two solutions to the physics problem presented in Figure 1.6 that use the same prin-

ciple (S = v0t +
1
2
at2) to solve the problem, yet show wide variation in notation and diagrams.

8

Figure 2.1 Two-part kinematics problem from University Physics 13 Ed [226], Page 165. 14

Figure 2.2 A handwritten solution to the problem presented in Figure 2.1. The interesting (from a

sketch understanding perspective) elements of the solution are marked for demonstrative purposes.

16

Figure 2.3 A typical sketch recognition workflow is depicted here consisting of ink preprocess-

ing, stroke grouping/segmentation, a classification step subdivided into a low and high level recog-

nition steps, and a final beautification step. 17

xiv

Figure 3.1 System Architecture . 35

Figure 3.2 A screenshot of our prototype ITS . 37

Figure 4.1 A problem statement, a solution, and recognized mathematics are inputs to the recog-

nition system. These are used to 1) recognize and beautify the diagram, 2) identify and set up

simulation engine(s) for the student’s diagram and 3) output a list of ordered solution steps. 41

Figure 4.2 An overview of the Diagram Recognition Pipeline in our prototype ITS. . . . 45

Figure 4.3 Bottom-up Sketch Recognition Workflow showing the order in which low-level rec-

ognizers are applied. After each recognizer is finished, a pruning step removes false positives (FP)

in the recognition results. 46

Figure 4.4 Examples of unistroke diagram elements supported by our prototype ITS. . . 47

Figure 4.5 Examples of multistroke diagram elements supported by our prototype ITS. . 49

Figure 4.6 An example diagram of a ball resting on a surface, with a tag and two annotations (

an arrow and an interval). 52

Figure 4.7 Spatial proximity of a tag and the ball necessitates clustering. 53

Figure 4.8 A mathematical expression written close to the head of an arrow necessitates cluster-

ing. 53

Figure 4.9 Different ways to specify a velocity of 50m/s at an angle of π/4 to the horizontal

using an arrow . 54

Figure 4.10 In this example, the arrow with its associated equation will be clustered with the

dotted line of the interval which itself will be clustered with the ball. 54

Figure 5.1 A roughly sketched square. 63

Figure 5.2 Examples of geometric diagrams that can be precisely beautified using the QuickDraw

beautification framework. 65

xv

Figure 5.3 The diagram recognition pipeline in our prototype ITS. Beautification occurs at two

points during recognition, and may also occur when a user makes an explicit association. . 66

Figure 6.1 High-level overview of the animation module showing components of each domain-

specific simulator, the common elements shared between simulators and the interdependence be-

tween the animation module and parts of the Solution Checker. 70

Figure 7.1 Figure showing the solution graph constructed for a gravitational potential energy

problem where a ball of mass 10 kg falls a distance of 50 meters. 79

Figure 8.1 A box suspended using three springs. Deriving a closed-form solution for the behavior

of this system can be very difficult whereas generating a simulation for this scenario is very easy

within our prototype system. 83

Figure 8.2 Example scenario where a ball of mass 10kg is dropped from a the roof of a building

of height 50m. The student is asked to work out the change in gravitational potential energy of the

ball. 84

Figure 8.3 An example of the solution checker in action. 85

Figure 8.4 A contrived equilibrium problem based on the real world scenario presented in Sec-

tion 8.2.4. 86

Figure 8.5 Simple problem that requires the use of f = ma. 87

Figure 8.6 Animation for the scenario in Figure 8.5. 88

Figure 8.7 Simple projectile scenario with limits on vertical movement. The recognized diagram

and graph are also shown. 89

Figure 8.8 Projectile problem with limits on vertical and horizontal movement. 90

Figure 8.9 Animation and Graph for solution shown in Figure 8.8. 91

Figure 8.10 Equilibrium problem taken from Young’s University Physics [226] and modeled using

our system. 92

xvi

Figure 8.11 Sample Problem taken from Young’s University Physics [226]. 93

Figure 8.12 An animation of the friction problem in Figure 8.11, highlighting the use of graphing.

94

Figure 8.13 A student is asked to work out the coefficient of kinetic friction µk such that a moving

ball comes to rest after traveling a given distance. 95

Figure 8.14 An animation of the friction problem in Figure 8.13, highlighting the use of graphing.

96

Figure 8.15 An example of a scenario with perfectly elastic collisions in 1-Dimension. . . 98

Figure 8.16 A snapshot of the animation for Figure 8.15, before collision happens. 99

Figure 8.17 An after-collision snapshot of the animation for Figure 8.15, showing that the student

derived the correct values for velocity. 100

Figure 8.18 An Example of a scenario that uses the Work-Energy Theorem. 101

Figure 8.19 A weight hanging from a pulley pulls a box resting on a rough surface. The student

is asked to work out the coefficient of kinetic friction that will cause the box to move at a constant

speed. 104

Figure 8.20 Example scenario depicting an elastic collision between two objects moving on a

1-dimensional surface. 106

Figure 9.1 Equilibrium Problem (E-02) and a corresponding student solution, showing an in-

stance of Open-Ended Animation. 130

Figure 9.2 Equilibrium Problem (E-04) and a corresponding student solution, showing a scenario

where no animation is possible. 131

Figure 9.3 Equilibrium Problem (E-05) and a corresponding student solution, showing an in-

stance of Open-Ended Animation. 131

xvii

Figure 9.4 Equilibrium Problem (E-06) and a corresponding student solution, showing an in-

stance of Open-Ended Animation. 132

Figure 9.5 Equilibrium Problem (E-01). 132

Figure 9.6 Four student solutions for E-01, shown in Figure 9.5. 133

Figure 9.7 Problem statements for M-03 and M-05. 134

Figure 9.8 Two solutions for M-03, each depicting instances that can be modeled using Open-

Ended Animation. 135

Figure 9.9 Two solutions for M-05, each depicting instances that can be modeled using Open-

Ended Animation. 135

Figure 9.10 Momentum Problem (M-02) and a corresponding student solution, showing an in-

stance of Time-of-Interest Animation. 136

Figure 9.11 Pulley Problem (P-02) and a corresponding student solution, showing an instance of

Open-Ended Animation. 137

Figure 9.12 Pulley Problem (P-04) and a corresponding student solution, showing an instance of

Open-Ended Animation. 138

Figure 9.13 Pulley Problem (P-05) and a corresponding student solution, showing an instance

where both Time-of-Interest and Point-of-Interest animations are required. 139

Figure 9.14 Pulley Problem (P-06) and a corresponding student solution, which can be categorized

as either Time-of-Interest or Point-of-Interest Animation. 139

Figure 9.15 Pulley Problem (P-07) and a corresponding student solution, showing an instance of

Open-Ended Animation. 140

Figure 9.16 Work and Energy Problem (W-07) and an incomplete student solution. 141

Figure 9.17 Two additional student solutions for the problem in Figure 9.16. 141

xviii

Figure 9.18 Work and Energy Problem (W-06). 141

Figure 9.19 Two student solutions for the problem in Figure 9.18. 142

Figure 9.20 Work and Energy Problem (W-09). 143

Figure 9.21 Two student solutions for the problem in Figure 9.20. 143

Figure 9.22 Work and Energy Problem (W-01) and a corresponding student solution, showing an

instance of Point-of-Interest Animation. 144

Figure 9.23 Work and Energy Problem (W-02) and a corresponding student solution, showing an

instance of Point-of-Interest Animation. 145

Figure 9.24 Work and Energy Problem (W-03) and a corresponding student solution, showing an

instance of Point-of-Interest Animation. 145

Figure 9.25 Work and Energy Problem (W-05) and a corresponding student solution. In this in-

stance, the problem statement indicates a Point-of-Interest animation category but the solution does

not contain a diagram. Such instances cannot be animated. 146

Figure 9.26 Work and Energy Problem (W-08). As with Figure 9.25, the statement indicates a

Point-of-Interest animation but the student solution does not contain a diagram. 146

Figure 9.27 Work and Energy Problem (W-11) and a corresponding student solution, showing an

instance of Point-of-Interest Animation. 147

Figure 9.28 Work and Energy Problem (W-13) and a corresponding student solution, showing an

instance of Point-of-Interest Animation. 147

Figure 9.29 Kinematics Problem (K-03), and a student solution. This example belongs to the

Open-Ended animation category. 148

Figure 9.30 Two additional student solutions for the problem in Figure 9.29, one of which does

not contain a diagram. 149

xix

Figure 9.31 Kinematics Problem (K-04), and a student solution. This example belongs to the

Open-Ended animation category. 149

Figure 9.32 Two additional student solutions for the problem in Figure 9.29, one of which is

incomplete. 150

Figure 9.33 Kinematics Problem (K-02), representing an instance of Open-Ended Animation. 151

Figure 9.34 Two student solutions for the problem in Figure 9.33, one of which does not contain

a diagram. 151

Figure 9.35 Kinematics Problem (K-05), representing an instance where either Point-of-Interest

or Time-of-Interest animation may be used. 152

Figure 9.36 Two student solutions for the problem in Figure 9.35 152

Figure 9.37 Kinematics Problem (K-06), representing an instance of Open-Ended Animation. 153

Figure 9.38 Two student solutions for the problem in Figure 9.37 154

Figure 9.39 Kinematics Problem (K-07), representing an instance of Point-of-Interest Animation.

154

Figure 9.40 Two student solutions for the problem in Figure 9.39 155

Figure 9.41 Kinematics Problem (K-08), representing an instance of Time-of-Interest Animation.

155

Figure 9.42 Two student solutions for the problem in Figure 9.41, neither of which contains a

diagram. 156

Figure 9.43 Kinematics Problem (K-11), representing an instance of Time-of-Interest Animation.

157

Figure 9.44 Two student solutions for the problem in Figure 9.43, one of which does not contain

a diagram. 158

xx

Figure 9.45 Kinematics Problem (K-12), representing an instance of Point-of-Interest Animation.

159

Figure 9.46 Two student solutions for the problem in Figure 9.45 159

Figure 9.47 Kinematics Problem (K-01), and a student solution. This example belongs to the

Open-Ended animation category. 160

Figure 9.48 Kinematics Problem (K-09), and a student solution. This example belongs to the

Open-Ended animation category. However, the student solution does not contain a diagram, and

hence cannot be animated. 160

Figure 9.49 Kinematics Problem (K-13), and a student solution. This example belongs to the

Point-of-Interest animation category. 161

Figure 9.50 Kinematics Problem (K-14), and a student solution. This example belongs to the

Point-of-Interest animation category. 162

Figure A.1 A spring system sketched in our proof-of-concept system. The user writes down only

the masses of the ball and the board. All the remaining mathematical description necessary for

animation is provided transparently by our system. 172

Figure A.2 A typical inclined plane diagram drawn by a student. 173

xxi

LIST OF TABLES

Table 2.1 Listing of Pen-based Systems by Year . 30

Table 4.1 Confusion Matrix for NLP Heuristics . 43

Table 4.2 Recognition Heuristics for Unistroke and Multistroke Symbols. The last column lists

the rule for pruning false positives of each type. 49

Table 5.1 List of constraints used by QuickDraw for beautification. 58

Table 6.1 Simulation Configuration . 71

Table 9.1 List of 50 problems selected from Young’s University Physics 13th Edition [226]. 112

xxii

CHAPTER 1
INTRODUCTION

Intelligent Tutoring Systems (ITS) are an important area of research. In recent years, several re-

searchers have attempted to use pen-based input to create better intelligent tutoring systems for

a variety of domains such as Circuit Analysis [53, 72, 229], Chemistry [156, 198], Mechanical

Design [5, 104, 153], Mathematics [14, 31, 48, 98, 120], Computer Science [33, 103], and Intro-

ductory Physics [17, 40, 121, 123, 174].

This interest in using pen interaction to build educational software is well founded because

pen-based interfaces are natural and transparent [1], allow users to input mathematics faster than

typing [12, 13] and may help reduce cognitive load on students compared to menu-based sys-

tems [194, 195]. A good discussion of the affordances of pen-based interfaces for educational

software is presented in [14] and [17]. In summary, pen-based interaction closely mimics the ease

of using pen and paper to take notes and communicate ideas, and is more natural than using a

WIMP-based system or typing up solutions. These factors make pen-based interaction particularly

suitable for educational software.

The act of drawing (or sketching)1 is an important part of the design process [129, 106,

204, 205] and has important benefits in science education [3, 117, 208]. Larkin and Simon [117]

examine the importance of visualization and drawing, concluding: ”Diagrams can group together

all information that is used together, thus avoiding large amounts of search for the elements needed

to make a problem solving inference”.
1For clarity, drawing or sketching is different from writing text or mathematics. It relates either to freeform sketch-

ing or using domain specific notation for diagramming.

1

Additionally, diagrams represent information in a spatial rather than a sequential manner

(a.k.a textually), enabling easier spatial inferences [117]. Spatial skills have been found to cor-

relate strongly with improved performance in STEM2 disciplines [208]. Additionally, sketching

diagrams has positive benefits for students in the form of increased engagement and improved

learning [3]. In conclusion, drawing is an integral aspect of problem solving in science. Pen-based

input provides the ability to leverage the natural problem solving behavior, including writing math-

ematics and sketching diagrams for constructing a unique class of intelligent tutoring systems.

Figure 1.1: Friction problem statement taken from University Physics 13 Ed [226], Page 129.

An important goal is to understand the natural workflow that students employ in scientific

problem solving, so that it can be supported in a tutoring system. Alvarado et al. [7] have done

preliminary work in this vein with respect to drawing logic diagrams. For physics, it is instruc-

tive to examine some physics problems and their solutions. Figure 1.1 depicts the statement of

a multipart kinematics problem that requires the application of f = ma for a correct solution.

Figure 1.2 shows a written solution acquired from a student for this problem. The solution demon-

strates that writing mathematics and making diagrams are two integral aspects of problem solving.

The solution in Figure 1.2 shows a sketched diagram that has been annotated with arrows, distance

measurements and an equation for force. Both parts of the solution are clearly labeled. For part

(a), the student uses the equation of motion (S = v0t +
1
2
at2) to reach an answer. For part (b),

the student first uses the principle of work done to derive a value for the velocity which is used to

reach the required answer. Alternatively, it is also possible to solve part (b) with just the equations

2Science, Technology, Engineering and Mathematics

2

of motion (Use v21 − v20 = 2aS to derive velocity). When we examine the contents of this solution,

the diagram was sketched to model the scenario of the assigned problem and it was annotated with

the initial conditions provided in the statement. The student used physics and mathematics princi-

ples to write a series of equations which lead to an answer which was a numeric quantity in both

these instances. Generally, the answer to a physics problem may be a function or a number, and in

special cases, an identity or a statement.

Figure 1.2: A handwritten solution for the kinematics problem presented in Figure 1.1.

On paper, the solution to a solved problem is static, providing no insight into how the

answer would affect the scenario provided in the problem. Research indicates that when solving

mechanical problems, many people report consciously simulating what would happen [44, 101,

3

181, 182]. Hegarty [87] presents a good introduction to various aspects of mental animation as

applied to mechanical reasoning. We hypothesize that by providing the ability to animate student’s

diagrams, we will be able to construct better tutoring systems, because, on paper, the answer to

an assigned problem in mathematics or science itself does little to impart intuitive knowledge to a

student.

Our primary research goal, therefore, is to investigate methods and techniques to enhance

the state-of-the-art for pen-based intelligent tutoring systems in the domain of physics, with an em-

phasis on supporting natural workflow and providing animation support for sketched diagrams. To

support a natural workflow, students must be allowed to write in an unconstrained manner. An ITS

must also develop a deep understanding of each student’s problem solving process including what

is asked in the statement, what has the student written down, and abilities to reason about sketched

diagram(s). We hypothesize that given this level of understanding, an ITS will be better suited to

check solutions for correctness, provide meaningful feedback, and aid knowledge scaffolding and

student learning.

1.1 Motivating Examples

This section presents three example problems taken from Young and Freedman’s University Physics

13th Edition [226] that demonstrate the desired functionality of our proposed system and also high-

light inherent research challenges.

4

Figure 1.3: Source: University Physics 13 Ed [226], Page 116. In this example, the textbook

provides the answer and also indicates possible strategies for a student to approach such problems.

1.1.1 Example 1: Acceleration of a Moving Box

Figure 1.3 shows an worked example taken from a university level physics textbook. The task

is to find the acceleration of a box moving under the action of a horizontal force. The scenario

involves 1-Dimensional motion and requires the use of the f = ma equation along the x-axis to

find the answer. However, if considered from the perspective of an intelligent tutoring system, there

are several complex issues. First, there is the problem of specification. Each problem statement

assigned to students must be properly instrumented by an instructor or teaching assistant. This is

necessary because the system needs to be aware of what information is provided to the student

if it is to judge whether the student has used the information correctly. Second, if the problem

was solved in an unconstrained manner (e.g., freeform input with pen and paper.), then sketch

recognition principles need to be applied to:

5

• Disambiguate the diagram and its annotations from the equations in the solution.

• Construct a computational model of the diagram by recognizing its elements and correlating

them with their annotations.

• Recognize the mathematical equations in the solution and infer their logical ordering.

• Determine if the solution is mathematically and logically sound.

Finally, there is the need to animate the sketched diagram by using the derived answer. For

this purpose, the ITS needs information about the domain of the problem in order to use the proper

animation mechanisms. Additionally, knowledge of domain-specific mathematical notation is also

required to understand and use the student’s answer for animation.

1.1.2 Example 2: Deduce Mass Using Force Equation

Figure 1.4: Source: University Physics 13 Ed [226], Page 129.

Figure 1.4 shows the statement of a simple kinematics problem that can be solved by the

direct application of f = ma. Figure 1.5 depicts three solutions to this problem collected from

students. All three solutions use the same physics principle to solve the problem yet there is

significant variation in the notation used. Figure 1.5(a) annotates the diagram with the initial

conditions, while Figure 1.5(c) writes down the initial conditions and only labels the forces on

the diagram. Figure 1.5(c) also labels an arrow for the normal force acting on the box which is

6

extraneous information for the problem at hand. Figure 1.5(b) does not draw a diagram and also

shows how the units for mass are derived in his solution.

(a) Solution1 (b) Solution2 (c) Solution3

Figure 1.5: Three solutions to the physics problem presented in Figure 1.4 that use the same

principle (f = ma) to solve the problem, yet show wide variation in notation and diagrams.

These solutions show that even for a simple problem, there is potentially huge variation in

how students sketch diagrams and write down their solutions. This is in agreement with the findings

of Alvarado et al. [7] one of which is explicitly stated as ‘Symbol recognizers must incorporate a

wide range of drawing styles (for most users)’.

1.1.3 Example 3: Motion Under Constant Acceleration

Figure 1.6: Source: University Physics 13 Ed [226], Page 130.

Figure 1.6 shows the statement of a another kinematics problem. Figure 1.7 depicts two so-

lutions to this problem collected from students. Again, we observe significant variation in notation

between both solutions, which use the same physics principle (equation of motion S = v0t+
1
2
at2)

7

to solve the problem. The diagram in Figure 1.7(a) consists of a large box labeled with mass and

annotated with arrows for weight and force. Figure 1.5(b), on the other hand, contains a free body

diagram consisting of a point mass annotated with labeled arrows. Figure 1.7(b) also includes text

phrases, interspersed within the solution that explain the student’s reasoning.

(a) Solution1 (b) Solution2

Figure 1.7: Two solutions to the physics problem presented in Figure 1.6 that use the same principle

(S = v0t+
1
2
at2) to solve the problem, yet show wide variation in notation and diagrams.

1.2 Proposed Features for Pen-based Intelligent Tutors

The solutions presented in Figures 1.2, 1.5, and 1.7 clearly demonstrate that mathematical equa-

tions and sketched diagrams are the most important aspects of written solutions. However, notation

and problem solving strategy can vary widely, even for relatively simple problems. Diagrams con-

tained within physics solutions contain complex, interrelated elements, such as shapes (denoting

moving objects), annotation symbols, labels, equations denoting initial conditions, and possible

text phrases explaining the student’s reasoning.

8

We propose the following set of high-level features for pen-based physics tutoring systems:

1. Natural Workflow: The ability to solve a given problem in a natural manner. In mathematics

and physics, the workflow begins with a text statement outlining a scenario. A student

then provides a handwritten solution containing diagram(s) and mathematical equations. We

believe that providing an approximation of unconstrained pen-input is the ideal interaction

metaphor for this purpose.

2. Deep Understanding: Given a problem and its handwritten solution, the tutoring system

should be able to:

• Infer what information is provided to the student, e.g., what are the initial conditions in

the problem statement?

• Understand the objective of the question. Is the student asked to compute the value of

some quantity or derive a function?

• Construct a computational model for the diagram in the solution.

• Construct a computational model for the mathematical steps in the solution.

3. Multiple Sources of Input: In order to achieve the deep understanding goal, sketch recogni-

tion techniques alone are not enough. The tutoring system must use different input sources

in parallel: the text of a given problem, the mathematical steps in the solution, and possibly,

contextual information provided by the instructor (problem authoring)3.

4. Integrated Domain Knowledge: A tutoring system must necessarily incorporate knowledge

about its target domain(s). This knowledge enables the system to understand the recognized

solution to a given problem, in light of the notation and rules of a particular domain. Domain
3One of our guiding principles is to minimize the need for authoring and instrumenting by instructors and teaching

assistants. This makes the deep understanding goal more difficult, as metadata for the assigned problem must now
be inferred rather than specified by a power user. In this work, we utilize Natural Language Processing techniques to
extract this information from the problem statement.

9

knowledge can be used to aid the recognition process by providing contextual clues for

diagram elements. Additionally, it can be used to determine if the student has correctly used

mathematical and physics rules, given the requirements inferred from the text of the problem.

5. Animation Capabilities: Given the importance of visual feedback and animation [44, 87, 101,

117, 181, 182], an tutoring system should be able to animate the diagram(s) in a student’s

solution. Students should be able to interact with and manipulate the animation of sketched

diagrams, by use of hand-written mathematics and/or gestures. This functionality enables

students to explore alternate answers to a given scenario. This is important because the

ability to construct models of alternate possibilities leads to an improvement in reasoning

capabilities [101].

6. Feedback: Feedback can take several forms. First, the ITS should be able to detect and

highlight mistakes in a given solution. Second, students should be able to view how physics

quantities vary over time. Graphing is an important tool in this respect. Step by step feedback

and error highlighting may also be used for knowledge scaffolding [217].

1.3 Research Challenges

We need to address three fundamental challenges to reach out stated goals: 1) parsing a text state-

ment via natural language processing, 2) recognition of a written solution to generate a computa-

tional model for animation and feedback, and 3) the ability to animate a recognized diagram. A

sizable body of work exists for generating realistic physics animations in video games and simu-

lation [22, 21, 61, 213, 140]. Such techniques can be adapted for tutoring purposes [40, 41, 42].

However, the task of making an animation system general enough to deal with a variety of physics

concepts is non-trivial and poses significant design challenges. With respect to natural language

10

processing, our needs are modest and can be met via simple heuristics built around existing frame-

works such as SharpNLP [180] which provides a wrapper around the powerful WordNet lexical

database [62, 139].

Therefore, unconstrained sketch recognition is the most challenging research question for

our goals. Animation techniques are well-known for narrow domains but using them in a gen-

eral purpose system presents a significant design challenge. Given a written solution, there is an

initial need to distinguish the mathematical steps from diagram(s) and associated annotations. Ide-

ally, sketched diagrams and mathematical equations in the solution ought to be two separate input

modalities 4, but in unconstrained solutions, they must be separated by the use of sketch recog-

nition techniques. The recognition problem is made harder by the fact that some mathematical

equations are part of the sketched diagram in the form of annotations.

Reliable recognition of mathematical equations is another important challenge. With re-

spect to handwriting and mathematics recognition, evidence suggests that adult users are not will-

ing to accept accuracies lower than 97% [114] while children are willing to accept accuracies as

low as 91% [167], allowing us to specify theoretical bounds on the required recognition accuracy

for a tutoring system as between 91% to 97%. These figures also correspond well with human

recognition of handwriting, which ranges from 94.9% to 96.5% [148].

Research challenges for understanding physics diagrams can be summarized as [40]:

1. Unknown Elements: The number of diagram elements in a target domain should be well-

known, so that recognition systems can be customized for them. However, given the vast

scale of physics problems, the number of potential diagram elements is potentially bound-

less.
4Indeed, some existing pen-based systems [98, 17, 123, 121] treat diagrams and solution steps as separate input

modalities by forcing users to draw and write in separate panes on the same interface. We believe this approach
detracts from the natural interaction afforded by pen-based systems and induces extraneous cognitive load.

11

2. Inference of Context: Oftentimes, there are multiple ways of sketching a diagram, which

can be annotated and labeled with arrows, dotted lines, alphanumeric symbols and even

equations 5. Similar annotations can carry different meaning in different contexts.

3. Partial Specification: The information contained in sketched diagrams may be incomplete or

even redundant in some cases. Such scenarios can be confusing from a recognition stand-

point.

4. Imprecision: Sketched diagrams are approximate, by nature. Their purpose is to condense

and clarify the provided information to aid the problem solving process. From an animation

perspective, an imprecise diagram may lead to an incorrect animation, necessitating the use

of sketch beautification techniques to properly represent user intent.

We envision the use of animation as a core feedback mechanism in future tutoring systems.

Existing animation systems can be tailored to specific types of problems. However, for intelligent

tutoring, it is unfeasible to write specific animation scenarios for particular problems. Therefore,

intelligent tutoring systems must support general-purpose animation mechanisms which can be

used in conjunction with pen-based input. Yet, any such animation mechanism must be limited by

definition, i.e., it will always be possible to find examples of physics problems from the targeted do-

main that cannot be handled by it (due to generality). The key design challenge here is to describe

general animation behaviors that will allow a student to build an animation for a representative

sample of problems for a particular domain by using a small set of diagram elements.

5This set of annotations is not exhaustive. Depending on the chosen domain, different annotation symbols may
need to be supported.

12

1.4 Reader’s Guide

This document is outlined in the following manner. Chapter 2 presents a review of existing work

related to sketch understanding and physics tutoring. We outline the high-level design and the user

interface of our prototype tutoring system in Chapter 3. Chapters 4 and 5 describe our strategies for

1) extracting information from the problem statement and 2) recognizing and beautifying written

solutions and diagrams. Chapter 6 describes our framework for animating recognized physics

diagrams. In Chapter 7, we outline a method for modeling recognized solution steps and describe

rules for verifying the correctness of a written solution. Next, Chapter 8 presents examples of

physics problems taken from a textbook and modeled using our prototype system. This chapter

also discusses the limitations of our methodology and identifies categories of animations that need

to be supported for physics solutions. In Chapter 9, we analyze 50 physics problems selected

from a university level textbook [226] for animation requirements. Chapter 9 also discusses how a

corpus of 56 student solutions may be animated. Chapter 10 concludes this work by summarizing

its contributions and outlining avenues of future work.

A brief description of our earlier prototypes is given in Appendix A. Appendix B con-

tains IRB approval and closure letters for our user study which was used to construct the dataset

examined in Chapter 9.

13

CHAPTER 2
LITERATURE REVIEW

Figure 2.1: Two-part kinematics problem from University Physics 13 Ed [226], Page 165.

2.1 Sketch Recognition and Understanding

Pen-based systems provide the ability to manipulate a computer system via a stylus. Sophisticated

methods and techniques are needed to parse and understand sketches drawn by users. The goal

of sketch recognition systems is to construct models of input sketches in order to do something

interesting. Sketch recognition systems are either interactive (update model after each ink stroke),

work in batch mode (process entire sketch in one go, triggered by either a gesture or a button

press) or mixed mode (can work in both batch and interactive modes). Gestures can be employed

to control various aspects of the user experience.

These choices depend on the chosen objectives of the system and have direct design and us-

ability implications [30, 209]. User perception of sketch recognition has been explored by Wais et

al. [209], who conclude that 1) Users prefer to trigger recognition once they have finished drawing

14

2) The method of triggering recognition must be reliable1. Additionally, they also tested methods

for indicating annotations and receiving recognition feedback. Similarly, Bott et al. [30] have ex-

plored user preferences for batch and realtime recognition feedback for math recognition results

via a Wizard of Oz study. Their findings indicate that recognition accuracy has little impact on

user preference of feedback mechanism which is instead dictated by the amount of mathematical

equations a user is expected to write. In particular, Bott et al [30] found that users prefer realtime

feedback when they are expected to write more than a one expression.

Each sketch consists of a collection of digital ink strokes representing different categories

of data: text (letters, dots, words, phrases, sentences), mathematics (numbers and equations), and

drawings (art, scientific diagrams, tables, etc). There is considerable variation in writing styles

and notation between different domains and even between individual users, leading to immense

differences in sketched symbols in each of the above categories [131]. Symbols can be written in

different sizes, positions, and orientations (rotation and tilting). Users can speed up or slow down

their writing while tracing different parts of the same ink strokes. This variation in writing speed

is measurable and can serve as an important feature for recognition. Similarly, pause time between

ink strokes can also be an important feature for recognition [7]. Users sometimes finish their

ink strokes with flourishes2. Furthermore, users can sometimes add ink strokes that are intended

to correct something drawn earlier3. From a user’s perspective, a sketch is logically organized

into regions containing different types of data. Identification of such regions is a difficult research

problem in itself. Some of these issues are highlighted in the two-part solution shown in Figure 2.2,

which corresponds to the statement in Figure 2.1.

1In their experiments, users preferred the button press method over gesture based recognition, because it was
consistently more reliable.

2Such flourishes at or near the terminal points of ink strokes are called hooks [119] or tails [84] in sketch recognition
literature.

3Such extraneous strokes are usually intended to fix or extend existing ink and include behaviors such as overtrac-
ing, continuation, touching up, and unintentional strokes [84].

15

Figure 2.2: A handwritten solution to the problem presented in Figure 2.1. The interesting (from a

sketch understanding perspective) elements of the solution are marked for demonstrative purposes.

In conclusion, sketch understanding is a complex problem at a low level. Extracting high-

level information from a sketch is yet harder. As mentioned before, there is wide variation in

domain-specific notation and individual handwriting. Domain symbols (unistroke or multistroke)

must be considered in groups to extract interesting information. Additionally, contextual infor-

mation, typically encoded as a set of domain-specific rules assumes a critical importance at this

stage. For example, in Figure 2.2, a low level recognition engine may recognize the numbers and

letters in the equations and text. However, a high-level recognizer must group recognized letters

and numbers with shapes and use physics domain knowledge to understand the units and formulae.

Resolving ambiguity is a difficult problem, and in our opinion, may not always be possible (e.g.,

see the regions marked ‘ambiguous’ in Figure 2.2).

16

Figure 2.3: A typical sketch recognition workflow is depicted here consisting of ink preprocessing,

stroke grouping/segmentation, a classification step subdivided into a low and high level recognition

steps, and a final beautification step.

2.1.1 The Ideal Sketch Recognition Pipeline

Sketch understanding systems are usually organized as a sequential pipeline (depicted in Fig-

ure 2.3. Initially, ink strokes are preprocessed to remove noise and prepare them for recogni-

tion, followed by an optional grouping (also called segmentation) step4. Then, low-level domain-

agnostic recognizer(s) are employed to extract sketched symbols. Recognized symbols are exam-

ined in the context of domain-specific rules (which may possibly trigger reclassification if some-

thing illogical is detected) to construct a model of the input sketch. At this point, the job of the

4Grouping or Segmentation is an interesting and non-trivial problem. It is inextricably linked to low- and high-
level recognition. Deciding which strokes are to be combined to create a single symbol is a partial solution to the
symbol recognition problem. Similarly, at a higher level, deciding which groupings of domain symbols are interesting
requires the knowledge about notation and domain context. Common methods for grouping ink strokes rely on spatial
proximity, temporal order, and encoded context rules. There is considerable flexibility in this step. It can be a part
of low and high level recognition or can be performed as a separate preprocessing step. Sometimes, ink strokes must
be subdivided during this step to create sub-strokes that correspond to unique domain symbols. For example, the text
fragments in Figure 2.2 are written in joined handwriting and need to be segmented. Yet, the F in the mathematics is
written with 3 different ink strokes, which need to be grouped.

17

sketch understanding system is over and the model is passed onto some other module in the system

for further computation and/or interaction.

2.1.2 Ink Preprocessing

An input sketch is a collection of digital ink strokes, each of which is represented by a sequence of

2D points with position (x,y), timestamp, pen pressure (usually as a floating point number in the

0-1 range) and tilt information5. Different pen-input systems (on a hardware level) may support

different subsets of these raw features. However, position (x,y) and timing are always available.

During preprocessing, ink strokes in the input sketch are cleaned and prepared for classification.

Sezgin et al. [176] proposed a recognition methodology consisting of approximation, beautifica-

tion, and basic recognition. This strategy is useful for low-level recognition in simple domains

where the number of symbols and contextual rules for beautifying them are well known. However

for complex domains, this approach is inadequate. Preprocessing can consist of several tasks:

• Dehooking [119]: Removal of areas of sharp curvature near the terminal points of each ink

stroke. Hooks are usually artifacts of the sketching process and can confuse cusp detectors

by adding false positives.

• Noise Filtering: Use filtering methods (from signal processing) to smooth the points in each

ink stroke. This remove kinks and constructs a more uniform view for classification.

• Resampling: Users draw ink strokes with variable speed, leading to a high density of points

in some areas of the stroke. During resampling, interpolation methods are used to reduce

each stroke to a fixed number of equidistant points. This strategy is used in several corner

finding and stroke classification methods [88, 89, 215, 216, 219].
5In the past, ink strokes have also been represented by 2D pixel matrices but such representations are quite uncom-

mon nowadays.

18

• Cusp (Corner) Detection: Cusps or Corners are points of sharp curvature in the ink stroke.

They play an important role in stroke segmentation and low level recognition [176, 161]6.

Strategies for cusp detection usually examine geometric and temporal features of stroke

points. Some recent reliable methods for cusp detection include [88, 89, 215, 216, 219],

each of which defines a preprocessing methodology for noise filtering and resampling. Of

these, ClassySeg [88] is one the most recent methods and uses AdaBoosted C4.5 decision

trees to achieve 94.6% ‘all-or-nothing’ cusp recognition accuracy, when trained in a user-

optimized configuration.

2.1.3 Region Segmentation and Page Layout Analysis

Identification of interesting regions in a sketch can guide a recognition system to select appropriate

algorithms for the class of data in each region. This avenue of research is not entirely related to

sketch-based interaction. Instead, it was initially motivated by the need to extract structure from

scanned pages and documents. However, there are several insights which are useful for free-form

sketch understanding. Some popular techniques in this domain include the Docstrum system [151]

(based on bottom-up, nearest neighbor clustering), CLIDE [187] (based on Kruskal’s Algorithm),

Kise et al. [109] (Approximated Area Voronoi Diagrams) and Lee et al. [122] (Pyramidal Quadtree

Representation coupled with Texture Analysis), the RXYC algorithm [145] (Recursive X-Y Cut,

top down approach similar to space partitioning algorithms), Morphological Smearing [86], and

Whitespace Analysis [20]. Good comparative surveys of early techniques for document analysis

have been published by Cattoni et al. [37] and Mao et al. [134].

6Cusp detection is not necessarily a preprocessing step. Systems such as Paleosketch [161] and Hammond et
al. [84] employ it during the low-level recognition step.

19

Wang et al. [211] attempted to use machine learning methods (decision trees, HMMs, etc)

to identify the contents of known regions, with a reported accuracy of 98.5%. More recently, com-

parative performance analyses were conducted by Shafait et al. [178] and Indermühle et al. [95]

to benchmark classification performance and identify scenarios where different document analy-

sis algorithms prove more suitable. Their results indicate that for non-Manhattan layouts (layouts

with text in different orientations), the voronoi diagram based approach by Kise et al. [109] and

morphological smearing [86] perform best. This has direct bearing on the design on sketch-based

interfaces as user’s often write and draw in non-Manhattan layouts.

2.1.3.1 A Note on Text/Non-Text Division Strategies

Deciding if an ink stroke belongs to a text or a non-text symbol is an important question for sketch

understanding systems, helping to optimize recognition algorithms. Therefore, it is quite common

to treat stroke grouping as part of the text/non-text classification process [184].

Jain et al. [97] did early work in this domain, developing a hierarchical approach based on

2-feature classification to identify regions containing either text or text and graphics, followed by

use of a distance-based minimum spanning tree to group non-text strokes into regions containing

either tables or diagrams. They report a text/non-text classification accuracy of 99%. However, in

practice, this figure is useful as a theoretical bound as their dataset mostly included figures with

text in Manhattan layouts. Other methods have since been investigated, notably Spatio-temporal

heuristics [184], Probabilistic Feature Grammars coupled with Genetic Programming [28], Hidden

Markov Models (HMMs) [25], Stochastic Context Free Grammars [146], Data Mining [160], Ad-

aBoost [224] (with decision trees as a weak learner), Markov Random Fields [233] (with Support

Vector Machines used for individual stroke classification, with an accuracy of 96%), Support Vec-

tor Machines with Spatio-Temporal Graphs [212], BLSTM Neural Networks [96] (Bidirectional

20

Long-Short Term Memory) . Zhou et al. [234], Matsushita et al. [137] and Mochida et al. [143]

have adapted similar techniques for distinguishing text in Japanese from non-text strokes. Almost

all of these methods include a stroke grouping or recognition step after the text/non-text classifier

has labeled each ink stroke.

Bhat and Hammond [24] have developed a lightweight technique using a single feature

measuring entropy based on Shannon’s formula. An experimentally determined threshold is used

to classify ink strokes as either text or non-text. Bhat and Hammond report a accuracy of 92% for

their entropy-based technique but it is worthwhile to note that their test dataset consisted of exam-

ples of two unique diagrams collected from only seven users. More recently, Blagojevic et al. [26]

have also investigated the entropy metric and found that in practice, the entropy based classifier

yields roughly 83% accuracy. Additionally, Blagojevic et al. [27] have conducted extensive bench-

marks experiments to determine the performance of data mining techniques for the text/non-text

classification task. Using 114 ink features for training, they found that the LogitBoost7 [69] and

LADTree8 [90] classifiers yield the best accuracy for this task, at roughly 97%. In similar vein,

Delaye et al. [56, 55] have developed methods based on Conditional Random Fields which seem

to corroborate the findings of Blagojevic et al. [27] with overall classification accuracies at around

93.5% and 97%.

2.1.4 Symbol Recognition

Methods for recognizing sketched symbols can be categorized in several ways such as by type of

symbols recognized (unistroke9 or multistroke symbols), by target domain (handwriting, chemi-

cal drawings, math recognition, etc), by granularity (low-level, high-level, segmentation, etc), by

7Additive Logistic Regression.
8Alternating decision tree using the LogitBoost strategy.
9Methods for recognizing unistroke symbols are sometimes referred to as gesture recognition methods.

21

choice of representation (structural methods vs image-based methods vs stroke or trajectory based

methods) or by type of classification method used (machine learning, heuristics, ensembles, etc).

Of these, listing by symbol type fails to capture the variety and nuances of approaches used for

symbol recognition (by reducing methods to an either/or choice). Listing methods by domain

or by granularity can make it confusing to identify trends. Similarly, categorization by choice is

representation is too limited to account for hybrid approaches such as recognizer fusion or ensem-

ble based methods. Therefore, we prefer to categorize symbol recognition methods by choice of

classification method:

2.1.4.1 Heuristic or Rule-based Methods

Heuristic approaches attempt to apply hand-coded rulesets to determine domain classifications for

ink strokes. Early work in this domain includes CALI [66], a multistroke recognition algorithm

for 12 different symbols. CALI was presented in both heuristic and machine learning forms10,

with its heuristic formulation providing the better recognition accuracy at around 95%. Yu and

Cai [227] also created a domain independent, low-level unistroke recognizer. A popular recent

system is the PaleoSketch [161], which describes rules for recognizing and beautifying 9 low-level

unistroke primitives with high accuracy (over 98%). The PaleoSketch system was modified to use

a Neural Network based classifier [84, 162] and a novel clustering algorithm, in order the support

the recognition of multistroke symbols.

Hammond and Davis have also developed LADDER [83] which is a shape description

language that allows a user to specify sketch recognition rules in a domain independent manner.

Users can describe sketch primitives and some high level semantics for individual domains in

10The machine learning flavor of CALI was tested with K-Nearest Neighbor, Naive Bayes, and Decision Tree
formulations, with the Naive Bayes providing best accuracy at around 93.5%.

22

text form, which is then used to generate domain specific recognizers. LADDER is a powerful

and expressive system, yet it slows down considerably for sketches containing a large number of

strokes. This is fundamentally a design problem, as it is performing close to exhaustive search for

grouping primitive elements (which is known to be exponential [124, 131, 132, 177]). Hammond

and Davis [85] present an interesting approach based on indexing recognized primitives that helps

reduce the size of the search space.

2.1.4.2 Graph-based Methods

Graph-based recognizers usually attempt to model ink strokes in an input sketch by constructing

graphs with ink strokes as labeled vertices and assign edges based on some interesting relation-

ships between ink strokes. Lee et al. [124] present a good overview of graph-based recognition

techniques. Graph-based methods have been applied to multistroke symbol recognition [34, 49,

80, 112, 124, 135, 225], handwritten numerals [43], and recognition of stick figures [132] with

varying degrees of success. Symbol recognition with graph-based techniques requires identify-

ing subsets of input graphs that fit the description of domain symbols. Framing sketch recogni-

tion in this way poses the problem of stroke grouping and multistroke symbol recognition as a

Subgraph Isomorphism problem (which is NP-Complete) [124, 131, 132, 177]. Hall, Pomm and

Widmayer [80] present a very nice formalism that frames sketch recognition as a combinatorial op-

timization problem, reducing it to the well-known Hamiltonian Circuit problem (which is known

to be NP-Hard).

Graph-based methods are interesting for two reasons. First, they model recognition in a

manner that can be visualized and understood intuitively11. Second, graph theoretic constructions

11It is difficult to visualize the operation of machine learning and statistical approaches such as Support Vector
Machines and Hidden Markov Models in a similar manner.

23

enable researchers to reason about the overall difficulty of sketch recognition, showing that the

stroke grouping problem (which is an integral part of the sketch recognition pipeline) is at least

NP-Complete, if not NP-Hard. In practice, most sketch recognition systems include workarounds

that avoid exhaustive search through all subsets of ink strokes by either limiting ways in which

symbols can be drawn or by approximation.

2.1.4.3 Statistical, Template-based and Machine Learning Methods

Template matching methods use the notion of visual similarity to train simple classification algo-

rithms that use various distance metrics (e.g. Hausdorff distance, Yule Coefficient, and Tanimoto

Coefficient) to determine the label for new symbols. A very popular and lightweight template

matching algorithm is the $1 Recognizer [214] which uses a ‘path distance’ to classify unistroke

symbols with very good accuracy (reported accuracy of 99% with 5 training samples per symbol).

The $1 recognizer has been extended to yield the $N recognizer [10] (generalization of $1 to mul-

tistroke symbols), Protractor[126] (Nearest Neighbor classifier with angular distance measure)

and the $N-Protractor [11] systems. Similarly, Ouyang and Davis [155] use a deformable template

matching (using an image-based stroke representation in conjunction with a custom image defor-

mation model) to recognize handwritten symbols, Powerpoint shapes and circuit diagrams with

over 95% accuracy.

Statistical methods and traditional machine learning formulations have been another pop-

ular source of sketch recognition methods. Some representative examples include diagram recog-

nition with neural networks [2, 71, 70, 84], multi-domain sketch understanding with Bayesian

networks [6], circuit diagram recognition with Naive Bayes-based classifiers [72], a Bayesian

classification approach using visual language models [185] for the SILK system [116], various

recognition methods based on Hidden Markov Models (HMMs) [8, 16, 175, 177, 186], Condi-

24

tional Random Fields [165, 223], Support Vector Machines (SVMs) [32, 102, 128, 147, 154, 222],

Constellation Models [179], Zernike Moments [92], and AdaBoost-based Classifiers [118, 183].

Most of the machine learning methods described above seem to perform fairly well on their target

domain or dataset, yielding accuracies in the 90-95% range.

However, comparing the results between different classification algorithms reveals instances

where one algorithm performs better vs another. With this view, hybrid or ensemble methods that

fusing the strengths of individual classifiers hold the promise for increased recognition perfor-

mance (See Section 2.1.4.4). With respect to machine learning and data mining based methods,

exhaustive feature libraries [160, 54] have been developed that can be used for classification algo-

rithms on a variety of domains. One such library [160] lists 114 stroke-based features (categorized

using grounded theory [192]). Blagojevic et al. [26] have examined strategies for automatically

selecting subsets of these features using the WEKA framework [81], and have also used it in con-

junction with Rubine’s classifier [169] to establish its effectiveness. This same feature library has

been used to identify good text/non-text classifiers [27] (mentioned in Section 2.1.3.1). Stahovich

et al. [190] have also developed a 2-step method to group and recognize multistroke symbols in

logic diagrams. They first use a single stroke classifier (AdaBoost with c4.5 decision trees as weak

learners) to assign a class (gate, wire, text) to each stroke (features adapted from [160]. For clus-

tering, they compare two methods based on threshold-based and AdaBoost-based grouping as a

second step. Delaye et al. [54] have constructed a competing feature library, called the HBF49

feature set, consisting of 49 different ink features that have been tested using a Support Vector

Machine (SVM) classifier, with good accuracy.

25

2.1.4.4 Hybrid Methods

Hybrid sketch recognition methods aim to combine the strengths of different techniques, in order

to yield an improvement in overall accuracy. Cates [36] presents a terminology for describing

multiple sketch representations as spatial, temporal and conceptual, and describes methods that

combine multiple representations for recognition to yield better accuracy than a single representa-

tion. Kara and Stahovich [105] describe an ensemble-based approach that combines four template

matching classifiers12 (input is represented as a pixel array). The method for combining these

template matching classifiers is based on [110]), with a polar-coordinate based representation to

mitigate issues with rotational invariance. Using this method, Kara and Stahovich report a recog-

nition accuracy of around 98% on a dataset containing graphic symbols and an accuracy of around

95% on a dataset containing digits.

Tumen et al. [201] present another method for achieving feature-level fusion between sev-

eral image-based methods, including Zernike Moments, IDM (Image Deformation Models), and

Shape Context. Additionally, they introduce the Extended Trace Transform (ETT) as novel method

for calculating features from sketch data. Their results show that ETT results in more compact and

representative feature vectors. They describe methods for extracting and fusing features, as well as

methods for identifying relative importance. Additionally, they tested their extracted features us-

ing 10 different classifiers and demonstrated that using combined features from different methods

yields a significant boost in recognition accuracy.

In a similar vein, Arandjelovic and Sezgin [15] describe a method for fusing an image-

based sketch recognition method (Zernike Moments) with a recognition method usually employed

for temporal representations of sketches (Hidden Markov Models). Three methods for fusing the

results of both classifiers were tested: Naive Bayes, Mean Combination Rule [110], and Dempster-

12Distance metrics used are Hausdorff Distance [170], Modified Hausdorff Distance [60], Tanimoto Coefficient [65]
and Yule Coefficient [200].

26

Shafer [220]. Additionally, the outputs of the HMM and Zernike moment based classifiers was also

used to train Support Vector Machines in ‘One-against-All’ and ‘One-against-One’ configurations.

Their findings indicate that the fused classifiers yield better performance than single classifiers.

2.1.4.5 Miscellaneous Methods

In addition to the methods described the previous sections, Agent-based recognition frameworks

have also been used for sketch recognition [63, 130, 35].

2.2 Pen-based Systems

2.2.1 Pen-based Systems for Physics

As stated earlier, our overarching goal is to construct pen-based intelligent tutors for physics,

particularly classical mechanics. While no sketch-based tutoring system of sufficient capability

exists for this target domain, several researchers have made strides toward one in recent years.

Alvarado [5], Oltmans [153] and Kara [104] have constructed systems for sketch understanding in

the domains of computer aided design, mechanical design and vibratory systems. These tools can

recognize and animate relevant diagrams but none of these allow users to write down mathematics

that can influence animation. Scott and Davis [174] have constructed PhysInk that allows users to

specify physically correct behaviors via sketching techniques.

The MathPad2 [120] system is an interesting tool because (1) it is domain independent (2)

allows for unconstrained sketch input and (3) allows users to explicitly associate equations with

diagrams to guide animation behavior. However, MathPad2 is difficult to use as a tutoring system,

27

because it includes no domain knowledge and lacks deep reasoning mechanisms about sketched

solutions. Additionally, users must specify all aspects of animation through hand-written math-

ematics. CogSketch [67] is another sketch-based system that emphasizes conceptual labeling of

sketches by its users. While CogSketch permits unconstrained sketch input and aims to aid devel-

opment of sketch-based educational software, its focus is very broad, ranging from investigating

cognitive aspects to running simulations. This makes it unsuitable as a tutoring system, as it lacks

the focus on understanding student solutions automatically and providing visual feedback.

Newton’s Pen [123], Newton’s Pen II [121], and Mechanix [17] are important sketch-based

systems targeted at the domain of Statics. Newton’s Pen [123] and Newton’s Pen II [121] focus on

drawing free body diagrams and writing equilibrium equations. Both do not use animation or allow

unconstrained sketch input. Instead, users must adhere to a particular workflow while sketching

diagrams. Additionally, diagrams and equations must be drawn/written in separate pre-defined

areas. Newton’s Pen II [121] also describes an interesting method based on Hidden Markov Models

(HMM) to correct errors in recognized equations. Mechanix [17] is another tutoring system for

statics that allows students to sketch truss and free-body diagrams. Mechanix is a deployed system

and has been thoroughly user-tested, with encouraging results. It allows instructors to easily author

and assign new problems to students via a web-based interface. Students solve assigned problems

via a sketch-based interface. If a diagram is incorrect, the student can make corrections until it

matches the instructor’s correct solution [64]. While Mechanix allows students to sketch drawings

in an unconstrained manner, it is focused on a very narrow type of diagram, and does not support

handwriting recognition. Students must enter the values for different labeled forces via a text box.

While mechanix provides useful feedback and hints, it does not provide any animation of sketched

diagrams.

We have previously made strides toward our stated goals with a prototype physics tutor-

ing system titled PhysicsBook [40], which is an extension of our older work [41, 42]. Our initial

28

prototype [42] was a simple proof of concept that could recognize unconstrained written solutions

containing both diagrams and mathematics and used a customized physics engine to animate di-

agrams. Users could associate their answers with components of a diagram to guide animation

behavior. This was extended by incorporating sketch beautification methods and additional anima-

tion capabilities [41]. At this stage, the animation parameters were limited to physics quantities

directly related to motion such as the use of position, velocity, acceleration and force variables

defined as functions of time [41]. By providing support for diagram annotations such as arrows

and dotted lines, and by using realtime data transformations, we constructed PhysicsBook [40],

which was able to provide additional animation support for select cases of pulley systems, work

done, kinetic and gravitational potential energy.

In summary, very few existing sketch-based systems for physics provide animation capabil-

ities or allow for unconstrained input. Additionally, most are focused on particular sub-domains of

physics. We have made initial strides toward these goals with our previous prototype PhysicsBook,

but our approach has so far been limited by reliance on a single monolithic physics engine for an-

imation. Additionally, we have focused exclusively on the answer step in the solution, not using

any of the information provided in the problem statement or the rest of the solution. In this paper,

we describe an extensible framework that overcomes the shortcomings of our previous approach,

in order to better meet our stated goals.

2.2.2 Pen-based tools for other Domains

The previous section highlighted a few prominent examples of recent pen-based tools constructed

to augment some aspect of physics education. However, the domain of pen-based interaction is

quite old, beginning with Sutherland’s seminal work [193]. In addition to physics, researchers

have also leveraged pen-based interaction for educational tools targeting other STEM (Science,

29

Technology, Engineering and Mathematics) disciplines. Some recent examples include pen-based

tools for Circuit Analysis [53, 72, 229], Chemistry [156, 198], Anatomy [164], Mathematics [14,

31, 39, 48, 98, 120], and Computer Science [33, 103, 125, 159, 228].

There has also been significant work on using pen-based interaction for other creative and

design tasks. Table 2.1 provides a representative listing of such tools from the last two decades and

briefly describes their intended use.

Table 2.1: Listing of Pen-based Systems by Year

Year Name Purpose

1994 PerSketch [172] Perceptual Image Editor

1995 Silk [116] User Interface Design

1996 Sketch [232] 3D Modeling

1996 Electronic Cocktail Nap-

kin [77]

Design Diagrams

1996 Gross & Do [78] Diagramming Tool based on Electronic Cock-

tail Napkin [77]

1997 Pegasus [93] Rapid Geometric Design

1997 QuickSet [46] Multimodal Training Tool

1998 Music Notepad [68] Musical Score Creation

1999 Teddy [94] 3D Modeling

2000 Harold [45] 3D Modeling

2000 SATIN [91] Plush Toy Design

2002 Tahuti [82] UML Class Diagrams

2003 Scanscribe [171] Perceptual Text and Graphics Editor

Continued on next page

30

Year Name Purpose

2003 Denim [149] Website Design

2003 SketchPoint [127] Informal Presentations

2004 GIDeS++ [163] 3D Modeling

2005 Okabe et al. [152] Tree Modeling

2005 HHReco [92] Sketching and Beautifying Symbols On Power-

point Slides

2005 Yang et al. [221] 3D Modeling

2006 Motion Doodles [199] Animation

2007 Plushie [144] Plush Toy Design

2007 MaramSketch [79] Software Design & Diagramming

2007 SketchUML [166] UML Diagrams

2008 AgentSketch [35] UML Diagrams

2008 Matisse [23] 3D Modeling

2008 K-Sketch [51] Animation

2008 Lineogrammer [231] Diagramming Tool with Beautification Support

2008 ILoveSketch [18] 3D Modeling

2009 EverybodyLovesSketch [19] 3D Modeling

2010 Inkus [133] Business Process Models

2010 ICanDraw [58] Sketching Faces

2010 LAMPS [196] Teaching Mandarin Phonetic Symbols

2012 QuickDraw [39] Geometry Diagrams

2012 Vignette [108] Artwork and Texturing

Continued on next page

31

Year Name Purpose

2012 Concepture [59] Regular language based framework for Repeti-

tive Drawings

2012 Dragimation [210] Technique for Manipulating Animations

2012 Sketch It, Make It(SIMI) [99] Design tool for fabrication

2013 SimSketch [29] Simulation

2014 Draco [107] Animation

2014 EulerSketch [52] Euler Diagrams

2014 PatternSketch [38] Structured Drawings

2.3 Traditional Tutoring Systems

VanLehn [206] describes Tutoring Systems as:

”...having two loops. The outer loop executes once for each task, where a task usually

consists of solving a complex, multi-step problem. The inner loop executes once for each step

taken by the student in the solution of a task. The inner loop can give feedback and hints on each

step. The inner loop can also assess the students evolving competence and update a student model,

which is used by the outer loop to select a next task that is appropriate for the student.”

This is, perhaps, the simplest and most intuitive way to describe the function of an intel-

ligent tutoring system. VanLehn [206] presents an excellent introduction to the domain of intelli-

gent tutoring systems and summarizes different approaches for interacting with students, providing

coarse and fine grained feedback and for student modeling using cognitive methods. Additionally,

a listing of tutoring systems is also provided for laymen. Representative examples of Intelligent

32

Tutoring Systems presented in [206] include Steve [100, 168], Andes [207], Algebra Cognitive

Tutor [9], AutoTutor [74, 75, 76], SQL-Tutor [141, 142].

Of these, Steve [100] is an animated agent to aid training in physical procedural tasks, in

a virtual reality environment. Steve includes mechanisms for monitoring students and providing

proactive assistance, and is also capable of demonstrating entire tasks. Andes [207] is a physics

tutoring system, which provides step by step guidance (by pre-computing solution steps) in prob-

lem solving, and has been extensively tested in the classroom. AutoTutor [74, 75, 76] is another

tutoring system that emphasizes natural language dialogue with the student for feedback. AutoTu-

tor uses Latent Semantic Analysis (LSA) [115] to compare the semantic content of a student’s step

with encoded learning events to generate feedback. It has been shown to correlate with improved

learning in the domains of Newtonian physics and computer literacy. SQL-Tutor [141, 142] is a

constraint-based tutoring system for teaching the basics of the SQL query language.

The Algebra Cognitive Tutor [9] belongs to the family of Cognitive Tutors, which are based

around the idea that instruction and interventions by the tutoring system should be designed with

reference to a cognitive model. Cognitive tutors [111] have been developed for teaching LISP,

geometry and algebra, with the Algebra Cognitive Tutor being one of the most popular and well-

known systems. More recently, Anthony et al. [14] have coupled the ideas behind Cognitive Tutors

with a pen-based interaction methodology to create a tutoring system for algebraic equation solv-

ing. Their system uses the math parser behind the Freehand Formula Entry System (FFES) [189]

for recognizing handwritten input. The system presented by Anthony et al. [14] is nice because it

1) presents a unified view and workflow of a pen-based tutoring system 2) is grounded in sound

cognitive principles and 3) is well tested by students. However, it does not utilize animation, and

also requires the students to type in their final answer, to mitigate recognition errors. We believe

these two factors detract somewhat from the overall natural interaction metaphor provided by using

a pen-based interface.

33

Tutoring systems usually require a student model to measure learning progress, and to

determine if intervention and/or feedback is needed. Bayesian Networks are very popular for this

purpose [47, 57, 73, 138]. Traditionally, tutoring systems have relied on using WIMP (Windows,

Icons, Menus, Pointers) interfaces, which impose cognitive load [194] on the student. Ideally, the

process of learning new concepts in an education setting should not be synonymous with learning

a new interface. With pen-based interfaces, students can write their solutions in a natural manner.

While pen-based systems may also involve some learning curve, we conjecture that the cognitive

load is significantly less when using pen-based interaction.

Tutoring systems in general must utilize some understanding of a given problem and its so-

lution, in order to provide feedback. An advantage of pen-based tutoring systems is the promise of

a more natural mode of interaction. Compared to WIMP based interfaces, they can also incorporate

sketch understanding techniques to provide better feedback/animation mechanisms.

2.4 Commercial Tools and Teaching Aids

Lastly, several commercial tools are also available that let users construct animations for physics

concepts. Representative examples include Algodoo [4], Working Model 2D [218], Newton’s

Playground [150] and Crayon Physics [50]. Such tools can create animations but they do not let

students work out a given problem and then directly associate the answer with a diagram to do

the animation. In such tools, a student would solve the problem in a notebook and then have to

separately reconstruct the diagram using the tool to perform the animation. Other commercial tools

such as Maple and Matlab allow experienced users to construct physics animations programmatic

ally, but are difficult and complicated to use.

34

CHAPTER 3
PROTOTYPE PEN-BASED PHYSICS TUTORING SYSTEM

Figure 3.1 depicts the high level architecture of our prototype ITS which is logically divided into

four modules: User Interface, Recognition, Animation Runtime and Solution Checking.

Figure 3.1: System Architecture

In our idealized workflow, students load up a problem statement and solve it in a natural

manner. After completing the solution, they can tell the system to recognize and animate any dia-

grams in the solution, view graphs of interesting quantities, or ask for verification. Our prototype

system requires is aimed purely at students. We aim to provide students with powerful anima-

tion tools that they can use to experiment and see physics concepts in action. The key feature of

our prototype ITS is to use the student’s own answer to a problem and their sketched diagrams

to generate an animation. Our prototype ITS requires no input/instrumentation from an instructor

35

and instead relies on natural language processing techniques to infer contextual information about

each problem.

Animation is a core mechanism in our prototype ITS. It can be difficult to provide animation

support for all types of physics problems due to the requirement of modeling the vast number of

physics concepts. We have designed our animation system to allow a student to model elements of

diagrams via a simple set of shapes (circles and polygons) that may be attached to pulleys, wires

or springs. Shapes can be free falling or constrained to move along a surface (represented by a

line segment or a polyline). Initial conditions can be indicated via mathematical expressions and

supplemented with annotations such as arrows and dotted lines. Dotted lines and intervals (parallel

dotted lines) also enable students to indicate a particular event in the simulation or to define a

displacement range. We demonstrate that these behaviors provide good animation support for a

variety of physics problems in kinematics.

3.1 User Interface

The key feature of our prototype ITS is to use a student’s answer to a given problem to animate

the diagram that was drawn as part of the solution. We allow students to write in an unconstrained

manner and place no explicit restrictions on how or what to draw. The user interface (Shown in

Figure 3.2) is simple with a big writing area and an always visible toolbar for system functions.

The toolbar contains the text of the problem and allows a user to trigger recognition, animation,

and solution checking. A stylus to write down the solution to a given problem on the writing area.

We impose no constraints on the user’s input. For editing, the ‘Scribble’ gesture can be used to

erase parts of the solution which can then be rewritten correctly. When the writing area is filled,

users can scroll down for more space. The system menu can also be used to save and load solutions

(along with problem statements) from disk.

36

Figure 3.2: A screenshot of our prototype ITS

37

Once a solution is complete, the ‘Recognize’ button can be used to trigger sketch recogni-

tion. This interaction method is chosen because earlier studies by [209] have indicated that users

prefer to trigger sketch recognition after they finish solving a problem. However, experiments

by [30] have found that users prefer realtime recognition feedback for mathematics when they are

expected to write more than one expression. To balance both of these concerns, the math recog-

nition engine in our prototype is continuously active and provides realtime feedback as the user is

writing. If needed, this behavior can be disabled via a checkbox on the system menu.

During the recognition phase, the solution is parsed to produce 1) physics simulator(s) for

the diagram, and 2) a series of ordered mathematical steps. During recognition, our prototype

uses spatial proximity and label matching to implicitly associate initial conditions written by the

user with recognized diagram elements. Implicitly associated equations can be viewed by hov-

ering the stylus over recognized diagram elements. Any associations missed during recognition

can be explicitly indicated by the user. To make an explicit association, users select mathemati-

cal expression(s) with the ‘Lasso’ gesture and use the ‘Tap’ gesture to link them with a diagram

element.

Hitting the ‘Animate’ button triggers the animation runtime, which uses domain-specific

physics simulator(s) to animate the recognized diagram. Our prototype also generates a list of

ordered solution steps during recognition, which can be used to check if the solution is correct,

according to the rules of physics. To trigger solution checking, a user hits the ’Check’ button on

the system menu, which displays the results of analysis on a separate window. The system menu

can also be used to view realtime graphs of physics quantities during animation.

38

3.2 Ink Stroke Preprocessing

A written solution in our prototype system is a collection of digital ink strokes, each of which is

a sequence of 2D points. After each ink stroke is completed, it is passed through a preprocessing

step that performs the following operations to prepare it for eventual recognition:

1. Remove hooks near stroke endpoints using method described in [119]

2. Filter stroke to remove kinks and to ensure equally spaced points using method described

in [219]

3. Compute bounding box, centroid and average radius

4. Enumerate cusps using the IStraw algorithm [219]

5. Count self-intersections

6. Check if this stroke is a gesture (Tap, Lasso, or Scribble)

If the stroke denotes a gesture, the gesture’s effect is applied and the stroke is discarded.

Each non-gesture ink stroke is immediately added to the math recognizer after preprocessing which

yields realtime recognition results. Realtime mathematics recognition also allows us to speed up

the recognition phase which can then be customized to only recognize diagram elements.

39

CHAPTER 4
UNDERSTANDING HANDWRITTEN PHYSICS SOLUTIONS

A written solution to a given problem needs to be parsed in order to construct a computational

model that can be animated and checked to provide feedback. As we focus purely on the student

experience, our prototype ITS does not provide support for an instructor/teacher to author indi-

vidual problems for students. Therefore, important information about each problem (such as its

domain, initial conditions, objective) needs to be inferred from the problem statement. Each solu-

tion is logically divided into two parts: an annotated diagram and a series of mathematical steps,

which must be disambiguated by a recognition system. To complicate matters, our mathematics

recognition engine is continuously active, incorporating each new ink stroke and providing real-

time recognition feedback. Taken together, these form three distinct modes of input which must be

considered in unison to yield a good animation.

Figure 4.1 depicts the workflow of our sketch recognition system. The three inputs to the

system are: 1) the text of the current problem, 2) the entire handwritten solution and 3) the results

of the math recognizer. With the problem statement, we use a heuristic-based approach built around

the SharpNLP framework [180] and WordNet [139, 62] to infer the problem domain (e.g. momen-

tum, linear motion, etc), to extract the initial conditions for objects in the described scenario, and

to identify the objective of the question (what quantity is the student asked to work out?). The so-

lution is parsed to identify low-level diagram elements which are then linked implicitly with initial

conditions via a set of heuristics. The ink for the recognized diagram is removed from the math

recognizer which outputs a list of ordered solution steps. Finally, information gleaned from the

40

text of the problem is used to identify simulation engine(s) which are then added to the animation

runtime , along with beautified diagram elements.

Figure 4.1: A problem statement, a solution, and recognized mathematics are inputs to the recog-

nition system. These are used to 1) recognize and beautify the diagram, 2) identify and set up

simulation engine(s) for the student’s diagram and 3) output a list of ordered solution steps.

4.1 Natural Language Processing

The input to the NLP subsystem is the text of the problem. We use the SharpNLP framework [180]

to parse the problem statement into sentences, which are in turn parsed into tagged chunks. Chunks

corresponding to noun phrases are clustered together to yield fragments. Using regular expressions,

we filter each fragment to identify patterns that contain names of physical quantities followed by

a number followed by physics units. Each such fragment denotes a possible initial condition or

41

information about the scenario. Fragments that do not conform to this pattern are compared with

a known list of names for physics objects to construct a list of entities in the diagram. We have

examined a set of 50 physics problems 1 selected at random from Young’s University Physics 13th

Ed [226] to compile this list of common object names:

Names = { circle, ball, sphere, orange, skater, baseball, puck, skaters, truck, car, monkey,

square, crate, box, bananas, supertanker, sled, wagon, rock, building, floor, table, surface, ice,

pond, ramp, horizontal, spring, wire, pulley }.

Our prototype contains four simulation engines for free fall kinematics, friction and sliding-

contact problems, equilibrium problems and for momentum problems. Based on our analysis of

50 representative problems, we have identified a set of key words that help identify each problem’s

domain:

Freefall Kinematics {moving, falling, spring, dives, falls, hits, dropped, pulley, hangs, rope }.

Friction { friction, rough, surface, rests, rest, slides, downhill, inclined plane, stops, ramp, in-

clined, pulley, hangs, rope }.

Momentum { momentum, impulse, collision, collides, elastic, head-on, rest }.

Equilibrium { tension, rope, hangs, wire, chain, suspended, weights, break}.

Given the text of a new physics problem, we simply count all the occurrences of each do-

main’s keywords in the statement to get a score for each domain. The highest scoring domain

is picked as the primary candidate. The secondary options are passed to the high level reason-

ing engine along with the primary candidate. If two domains acquire the same score, we use the

following precedence order to break the tie: Free fall Kinematics, Friction, Momentum, and Equi-

librium to decide the primary domain. There is a good reason for considering secondary candidate

1The selected problems are listed in Table 9.1 in Chapter 9.

42

simulators. In some cases (See Section 8.4.2), it is possible that the primary simulator can only an-

imate part of the recognized diagram, forcing the animation runtime to use the secondary simulator

to animate the remaining parts of the diagram.

We analyzed the statements of 50 physics problems (See Table 9.1) to measure the accuracy

for this keyword-based recognition scheme. Using this method, the primary domain was correctly

identified for 78% of the problems in Table 9.1. This is not a discouraging result, because some

of the test problems are out of scope for our prototype system. For the sample problems presented

in Chapter 8, the domain is correctly identified every time. A confusion matrix for the problem

statements is presented in Table 4.1:

Table 4.1: Confusion Matrix for NLP Heuristics

Kinematics Equilibrium Friction Momentum

Kinematics (13 problems) 9 1 2 1

Equilibrium (11 problems) 0 8 3 0

Friction (18 problems) 2 0 16 0

Momentum (8 problems) 1 0 1 6

4.2 Mathematics Recognition Engine

Our math recognition system is built around the StarPad 0.1.3 system [191], which in turn is based

on techniques presented in MathPaper [230]. This system maintains a list of ink strokes which

are analyzed to yield realtime recognition results. The StarPad system uses rule-based symbol

recognition with the Microsoft Ink Analyzer as a fallback for unknown symbols and is capable

of recognizing and updating multiple mathematical expressions simultaneously, and also provides

support for limited forms of matrices and algorithmic notation. The MathPaper [230] system which

43

underlies StarPad was tested in a user evaluation and received favorable feedback, yet recognition

accuracy numbers were not recorded. However, the recognition performance appears to be quite

robust given its use in several recent systems [125, 103, 48].

The Math Recognizer in our prototype is always active and maintains a list of ink strokes

that are analyzed to provide realtime recognition results. Each ink stroke, after it is completed and

preprocessed, is immediately added to this list, causing the recognition results to be updated. We

manipulate the recognition results to 1) generate a set of alphanumeric tags, which are numbers

and/or strings of characters in isolation, and can denote either labels for diagram elements or the

value of some quantity. 2) Mathematical equations recognized by StarPad are split up into one of

two categories: a constant expression or a variable expression. Constant expressions have a single

variable on the left hand side of the equation and either an real number or fraction on the right hand

side. Variable expressions are equations that contain one or more variables in the right hand side.

4.3 Diagram Recognition

Our prototype ITS supports the animation of diagrams from different domains of physics. There-

fore, physics solutions are processed in two separate stages, initially using domain-agnostic heuris-

tics to detect diagram elements and group related annotations in a bottom-up manner. This step

explicitly separates the diagram from the mathematical steps in the solution, and also performs

some initial beautification. The second recognition pass works top-down, assigning meaning and

context to the recognized diagram by using physics domain knowledge. The domain of the problem

is inferred from the text by our NLP engine. The recognized diagram elements are beautified and

added to the animation runtime. Figure 4.2 shows the steps in our diagram recognition pipeline.

44

Figure 4.2: An overview of the Diagram Recognition Pipeline in our prototype ITS.

4.3.1 Text/Non-Text Division Strategy

It should be noted that we do not use stroke-based text/non-text divider strategies (See Section 2.1.3.1.

While existing methods for text/non-text stroke division can promise very robust performance (up

to 97.5% [27]), they have some shortcomings. The best performance in this regard is usually

achieved via machine learning algorithms which require training from large datasets of labeled

examples. Additionally, while the time cost of classifying each ink stroke as text or non-text is

quite fast (usually under a second), the computational cost of training the best performing classifi-

cation algorithms can be quite prohibitive [27]. Rule-based methods have also been developed for

this purpose [24] but they do not perform as well as machine learning approaches. At the current

stage of our system, we do not have a large dataset of labeled physics problems to train a good

text/non-text classifier.

Our solution is to apply the unistroke and multistroke recognizers to the entire solution

in a particular order (Shown in Figure 4.3). This approach yields a considerable number of false

positives (FP). After each recognizer is finished, we apply a threshold to the size of its results to

prune the false positives. This method works quite well at this stage of our system but eventually,

we may need to incorporate a more robust text/non-text divider strategy.

45

Figure 4.3: Bottom-up Sketch Recognition Workflow showing the order in which low-level recog-

nizers are applied. After each recognizer is finished, a pruning step removes false positives (FP) in

the recognition results.

4.3.2 Bottom-up Recognition Phase

During the first (bottom-up) recognition step, domain-agnostic recognizers work in a bottom-up

manner to identify unistroke (circles, polygons, polylines, helixes, and line segments) and multi-

stroke diagram elements (arrows, dotted lines, intervals and pulleys). Figure 4.3 shows the order in

which low-level recognizers are applied to the solution. This order of the recognizers is chosen to

enable a feed-forward architecture where initial results are used in conjunction with raw ink data

for succeeding recognizers. Each recognizer works on the entire set of ink strokes. Recognition re-

sults are pruned for false positives (See Section 4.3.4 for details), and the ink strokes corresponding

to successful recognition results are labeled. Unlabeled strokes and results from earlier recognizers

are passed onto the next recognizer in the pipeline. Section 4.3.4 gives details of heuristics used

by each recognizer in Figure 4.3.

46

(a) Circle (b) Polygon (c)

Helix

(d) Line Segment (e) Polyline

Figure 4.4: Examples of unistroke diagram elements supported by our prototype ITS.

After unistroke and multistroke symbol recognition, the ink strokes corresponding to rec-

ognized elements are removed from the solution, updating the math recognition results which now

only include text labels and equations. Some multistroke symbols (arrows, dotted lines, and in-

tervals) denote annotations for diagram elements. Bottom-up recognition is finalized by inferring

relationships between diagram elements, annotations, labels, and solution steps based on spatial

proximity (clustering) and label matching (implicit association). As a result of the cleanup process,

the ink strokes pertaining to the diagram are removed from the math recognizer, leaving only the

solution steps, which are assigned a logical ordering based on their spatial position (for details, see

Chapter 7).

4.3.3 Top-Down Recognition Phase

The second recognition pass assigns meaning to the recognized diagram and its annotations by

leveraging the information extracted from the text of the problem. This functionality is logically

contained in the ‘High Level Reasoning Engine’ that accepts the results of diagram recognition

and information from the problem statement, and uses the two together to construct one or more

47

domain-specific simulators for animation. Each simulator incorporates specific rules for physics

quantities and unit conversions, allowing it to extract information from associated equations and

properly apply initial conditions to recognized diagram elements. As an example, during this

step, reasonable values are assigned for the physical properties of diagram elements, such as mass,

weight, moment of inertia, etc.

4.3.4 Unistroke and Multistroke Recognition Heuristics

Our prototype supports the recognition of 5 unistroke diagram elements: Circles, Helixes, Line

Segments, Polylines and Polygons (Examples shown in Figure 4.4) and 4 multistroke diagram

elements: vertical and horizontal dotted lines, intervals, arrows, and pulleys (Examples shown in

Figure 4.5). We do not support alternative classifications. Therefore, once each stroke is classified

as one of the 5 unistroke elements, it is removed from both the pool of available strokes and from

the math recognizer. Our heuristics for detecting these basic elements are adapted from [40, 39]

and are summarized in Table 4.2.

48

(a) Dotted

Line

(b) Interval (c) Arrow (d) Pulley

Figure 4.5: Examples of multistroke diagram elements supported by our prototype ITS.

Table 4.2: Recognition Heuristics for Unistroke and Multi-

stroke Symbols. The last column lists the rule for pruning

false positives of each type.

Symbol Heuristic Pruning Rule

Line Segment Two distant2 cusps, at beginning and end of ink

stroke. Linearity < 0.05, where

Linearity = ∥1.0−

n−1∑
i=1

∥pi, pi+1∥

∥p1, pn∥
∥

Length > 20% of

screen height

Continued on next page

2‘distant’ implies the two points are not within touch distance. Touch Distance = 2.5% of screen width.

49

Symbol Heuristic Pruning Rule

Circle Two nearby3 cusps at the beginning and end of

the ink stroke. Uniform curvature, where ‘Cur-

vature = standard deviation in distance from

each stroke point to stroke centroid’. Thresh-

old value of ‘Curvature < 2% of screen width’

is used

Area > 750 square pix-

els

Polygon ∥Cusps∥ > 3, First and last cusp must be

nearby. Stroke segment between each consec-

utive pair of cusps must be a line4

Same as Circle

Polyline ∥Cusps∥ > 2, First and last cusp must be dis-

tant. Stroke segment between each set of cusps

must be a line

Same as Line Segment

Helix Two distant cusps, Number of self intersections

≥ 3

Same as Line Segment

Arrow Two stroke corresponding to shaft and arrow-

head. Arrow shaft must pass linearity test. Ar-

row head must have 3 cusps. Middle cusp of ar-

rowhead must be near (within Touch Distance)

of one of the endpoints of an arrow shaft

Shaft must be longer

than 15% of screen

width

Continued on next page

3Two points are ‘nearby’ if they are within Touch Distance.
4For polygons, pen strokes must finish at the initial point, yielding 4 points for a triangle (with the first and last

vertex repeated).

50

Symbol Heuristic Pruning Rule

Dotted Line Set of 4 or more ink strokes that each pass the

linearity test, are vertical or horizontal, and have

length between 1-6% of screen height. The en-

tire set is clustered around a certain x- or y-

value and does not deviate more than 1.5% of

the screen width. Maximum inter-segment dis-

tance is approximately half of maximum seg-

ment length

Dotted lines must be

longer than 30% of

screen height

Interval Set of parallel dotted lines with an overlapping

projection along the major axis.

None required

Pulley A recognized circle to act as hinge, two recog-

nized line segments (tangent to hinge) to act as

wires, and one small line segment (that passes

linearity test) to act as anchor. Anchor must

touch hinge center with one end. Methods

adapted from QuickDraw [39]

None required

51

Figure 4.6: An example diagram of a ball resting on a surface, with a tag and two annotations (an

arrow and an interval).

4.4 Clustering and Implicit Associations

With a list of recognized diagram elements, tags and equations, our prototype tries to infer im-

plicit relationships between them. Some diagram elements (arrows, dotted lines, and intervals) are

annotations for other elements and do not depict objects in an animation, e.g., arrows (annotated

with equations) denote the direction and magnitude of vector quantities to be associated with some

simulation object. Figure 4.6 presents an example where a tag and two annotations need to be

clustered with the ball and surface. We use the following rules for clustering tags, equations and

annotations with recognized diagram elements:

1. Associate Tags: User defined tags are associated with diagram elements based on a euclidean

distance check. If a tag is contained with a circle or polygon, it is associated. If the tag is not

fully contained but is written close to a diagram element5, an association is created6. In case

5Measure of proximity = Distance threshold equal to 0.05% of screen width.
6this rule is applied to all diagram elements, not merely circles and polygons

52

of a tie or multiple possible associations, the tag is associated with the diagram element that

was drawn first. An example is shown in Figure 4.7.

Figure 4.7: Spatial proximity of a tag and the ball necessitates clustering.

2. Associate Equations with Nearby Arrows: If an equation is written close to the head of an

arrow, an association is created. A distance threshold D = 75% of current arrow’s shaft

length is used for this purpose. An example is shown in Figure 4.8. Arrows are especially

tricky for making implicit associations because it is possible to specify the quantity associ-

ated with an arrow in several ways. Figure 4.9 demonstrates some ways in which a velocity

of 50m/s at an angle of π/4 with the horizontal may be represented by an arrow using our

prototype ITS.

Figure 4.8: A mathematical expression written close to the head of an arrow necessitates clustering.

3. Tag Matching Using user defined tags, we associate equations depicting initial conditions

with recognized diagram elements in the following way:

(a) Equations and Arrows: As mentioned previously, Arrows are a complex case for im-

plicit associations because their tags can denote a physical quantity rather than a sym-

bolic name. To associate the proper equation with a tagged arrow, it is sufficient to

examine the left hand side of each equation to see if it matches the arrow’s tag.

53

Figure 4.9: Different ways to specify a velocity of 50m/s at an angle of π/4 to the horizontal using

an arrow

(b) Equations and Diagram Elements: If an equation has only one variable on its left hand

side, and its subscript matches the tag for a diagram element, an association is made.

For example, a ball depicted by a circle may be tagged ‘B’ by the user. if there is an

equation in the solution such as mB = 15, it is logical to assume that the ball tagged

‘B’ by the user has a mass of 15 kg.

Figure 4.10: In this example, the arrow with its associated equation will be clustered with the

dotted line of the interval which itself will be clustered with the ball.

4. Cluster Annotations with Diagram Elements: Our prototype supports three annotations: dot-

ted lines, intervals and arrows. First, all arrows are examined to see if their shaft is partially

contained within or in close spatial proximity7 to a diagram element (including intervals and

dotted lines). If so, the arrow with all its implicit associations is itself associated with the

7distance threshold = 3% of screen width.

54

diagram element. Second, dotted lines and intervals are examined to check if they intersect a

diagram element (excluding annotations). If an intersection is found, an association is made.

Figure 4.10 depicts a scenario where an arrow denoting a horizontal velocity of 5m/s will

initially be clustered with an interval. The interval itself is clustered with the ball resting

on a surface. The order of clustering is not important because rules for inferring associated

values from connected annotations are built into each simulation engine in our system.

Our method for inferring implicit relationships between diagram elements has a time com-

plexity of O(n2), where n is the number of diagram elements. This is not an optimal strategy for

performing comparisons, and may possibly see improvement by incorporating spatial partitioning

methods (grids, quadtrees, etc). However, given the small number of elements, tags and equations

usually found in physics diagrams, this is not a significant bottleneck at this stage.

Inferring associations in this manner eliminates the need for users to associate all required

initial conditions with the diagram manually. For each association (either inferred implicitly or

indicated explicitly by the user), the system needs to extract the actual value of the physical quantity

denoted by the association. Annotations denoted by arrows indicate vector quantities. Arrows can

have dotted lines associated with them to indicate the angle with vertical or horizontal axes. By

examining arrow labels, in combination with associated angle and axis annotation, the system is

able to infer any of the following vector quantities: velocity, force, momentum, acceleration.

4.5 High Level Reasoning Engine

This phase of the recognition process merges the information extracted from the text of the prob-

lem with the recognized diagram elements. First, an appropriate primary simulator is chosen and

assigned to the animation runtime. A series of secondary simulators is also instantiated, if the NLP

55

Engine indicates a need to do so, and assigned to the animation runtime. If no problem statement is

provided, then the Free Fall Kinematics simulator is chosen as the primary simulator. We anticipate

that this scenario can arise when the user wants to doodle or to quickly prototype an idea using our

system. The Free Fall Kinematics simulator is the most general purpose of our simulation engines

and allows for multiple granularities of input, making it ideal as the default choice.

Second, the high level reasoning engine passes the list of initial conditions to the Solution

Checking module for later use. Once the correct simulator(s) are identified and instantiated, they

are used to construct the simulation from the recognized diagram elements. Recognized elements

are passed via the Animation Runtime to the correct simulators which match equation variables to

domain-specific physics quantities, and assign initial conditions to each element based on either

user defined annotations/equations or the element’s spatial appearance. The responsibility for han-

dling communication between the different simulators and for performing the overall animation

lies with the Animation Runtime.

56

CHAPTER 5
BEAUTIFICATION OF RECOGNIZED DIAGRAMS

In this chapter, we first describe QuickDraw [39], a diagram beautification framework based on

geometric constraint solving, that we have developed independently of our physics tutoring pro-

totype. QuickDraw provides a powerful and robust method of globally beautifying an entire geo-

metric diagram. it is able to work iteratively or in batch mode and is robust to recognition errors

where some constraints are not properly recognized. .

We then describe the beautification procedures employed in our prototype ITS, some of

which are based off of our earlier prototypes [40, 41] and some which have been adapted from the

quickdraw system.

5.1 The QuickDraw Framework

QuickDraw [39] is a pen-based diagramming tool for geometry diagrams containing line segments

and circles. Key contributions of this work include a novel diagram beautification algorithm based

on realtime geometric constraint solving. QuickDraw first infers a series of geometric constraints

between recognized drawing elements. Then, the notion of iterative refinement is applied to suc-

cessively assign values to attributes of each diagram element such that the inferred constraints are

obeyed. Table 5.1 lists all the constraints recognized by the QuickDraw system.

57

Table 5.1: List of constraints used by QuickDraw for beauti-

fication.

Primitive Types Constraint

Line Segments

Vertical line segment

Horizontal line segment

Collinear line segments

Parallel line segments

Perpendicular line segments

Equidistant line segments

Touching line segments

Intersecting line segments

Line segments with same length

Line segments with endpoint(s) at same horizontal level

Line segments with endpoint(s) at same vertical level

Circles

Circles with same radius

Concentric circles

Circles touching at their circumference

Intersecting Circles

Circle passing through the center of another circle

Circles & Line

Segments

Line segment tangent to circle

Line segment intersecting circle

Line segment passing through center of circle

Line segment touching circumference with an endpoint

Continued on next page

58

Primitive Types Constraint

Line segment touching circle center with an endpoint

5.1.1 Recognition and Constraint Inference in QuickDraw

A sketched diagram is first parsed into primitive diagram elements (line segments and circles).

The recognition heuristics are described in [39]. Recognized primitives are assigned a canonical

ordering O, from left to right followed by top to bottom. This ensures a deterministic view of each

diagram, independent of the order in which its elements were drawn.

5.1.2 Constraint-based Beautification Framework

Once primitive elements C (lines and circles) are recognized, QuickDraw infers the intended con-

straints between them (See Table 5.1 for supported constraints). After inferring constraints, a

novel beautification algorithm (Algorithm 1) is used to processes the recognized primitives and

inferred constraints to generate a precise geometric diagram whose elements satisfy the intended

constraints.

Each primitive diagram element C has attributes s such that it can be uniquely determined

after some appropriate subset of its attributes are known. For example, the attributes of a line

segment are its slope, intercept (y-intercept if slope is not vertical; otherwise x-Intercept), length,

and x- and y- coordinates of its two end points. A line segment can be uniquely determined from

the x- and y- coordinates of the two end points, or alternatively from its slope, intercept and y

59

Algorithm 1 Beautification Algorithm
{C̃ = Set of Primitives; α = Set of Constraints; }

Require: C̃, α

A := Set of all attributes of primitives in C̃;

B := ∅;

while B ̸= A do

if A− B contains an attribute s that is computable from attributes in B because of α (using V)

then

Compute s;

else

s := attribute from A− B with the highest rank.

Read value of s from sketch.

end if

B := B ∪ {s};

C := parent primitive of s.

if C is determined from its attributes in B (using U) then

Beautify C; B := B ∪ attributes of C;

end if

end while

60

coordinates of its two end points (if the slope is not vertical). Similarly, the attributes of a circle

are its radius and the coordinates of its center. A circle is uniquely determined if all of its attributes

are known. This knowledge is captured as an extensible set of rules U .

The idea behind defining constituent attributes for each diagram primitive is that constraints

between primitives uniquely identify some of their attributes. This knowledge is captured as an

extensible set of rules V , each of which specifies how to compute the value of some attribute from

values of some other attributes under appropriate constraints. For example, if a line L is tangent

to a circle C, C.radius can be computed from C.center, L.slope, and L.intercept. Specifically,

C.radius can be computed as the perpendicular distance between C.center and the line determined

by L.slope and L.intercept. As another example, under the same constraint that a line L is tangent

to a circle C, L.intercept can be computed from L.slope, C.center, and C.radius.

The beautification framework in QuickDraw maintains a worklist B that holds the set of

all attributes whose values have been computed. B is initialized to the empty set. The main loop

of the beautification algorithm is repeated until B is equal to set A that holds all attributes of all

recognized primitives. Each iteration of the main loop attempts to identify an attribute s ∈ (A−B)

(of some diagram primitive C) whose value can be computed from the attributes in B using any of

the rules V : s is then added to B. If the primitive C is uniquely determined from its attributes in B

using any of the rules U , then C is beautified and all of its attributes are added to B.

If no such attribute s exists, then to maintain progress, the algorithm identifies an attribute

s ∈ (A− B) with the highest rank. The rank of an attribute s of a diagram primitive C is given by

lexicographic ordering on the following tuple:

Rank(s) =

MaxS


∑

s′∈S∩B
W (s′)∑

s′∈S
W (s′)

 ,O(C),
1

W (s)



61

An interesting element of the above rank tuple is a weight function W that maps each at-

tribute type to some score between 0 and 1 and is used to assert the relative importance of knowing

some attribute over another. More specifically, the relative weight ordering reflects the order of

observing any visual discrepancies (thereby avoiding the need to edit diagram primitives unless

really required), and also the order of ease of editing diagram primitives if QuickDraw didn’t get

it right.

QuickDraw uses the following relative weights: (a) Attributes of a line-segment: x-y coor-

dinates of the two end-points and length (0.5 each), intercept (0.75), slope (1). (b) Attributes of a

circle: x-y coordinates of the two end-points (0.5 each), radius (1).

The first element of the rank tuple identifies a diagram primitive C that is closest to being

determined. This is estimated by computing the maximum of the weighted ratio of the attributes

that are known from among some minimal set of attributes S of C that uniquely determine the

primitive C. The second element of the rank tuple breaks any ties among C by using the canonical

ordering O(C) assigned to the primitive at recognition time. The third element of the rank tuple

identifies an attribute s of component C that has the lowest weight. The value of the attribute s

with the highest rank is then read off from the sketch. C is then beautified and all of its attributes

are added to B.

This beautification framework has two interesting characteristics: robustness and interac-

tive support. The algorithm is robust due to the powerful deductive reasoning enabled by an exten-

sible set of rules U and V over a saturated set of constraints inferred using sketch understanding

techniques. This allows it to correctly beautify diagrams when the recognition engine misses out

on some constraints. The algorithm also allows for interactive drawing. The main loop of the al-

gorithm can be run in an incremental fashion after adding attributes of any new diagram primitives

sketched by the user to A and updating the set of constraints.

62

Figure 5.1: A roughly sketched square.

5.1.3 Example: A Sketched Square

Given the sketched square in Figure 5.1, QuickDraw should ideally infer the following constraints

between four recognized line segments:

1. Two line segments are horizontal and two are vertical.

2. The horizontal line segments are parallel, and are both perpendicular to the vertical line

segments.

3. The vertical line segments are parallel, and are both perpendicular to the horizontal line

segments.

4. All the line segments in the sketch form a connected path, and are all equal in length.

5. The perpendicular distance between horizontal line segments is the same as that between

vertical line segments.

Beautification now proceeds as follows. (i) After computing the slope of all the line-

segments, the algorithm reads off the x-y coordinates of the top-left corner and the y-coordinate

of the bottom-left corner from the sketch and then beautifies the left line-segment. (ii) Next, the

algorithm computes the y-coordinate of the top-right corner from the y-coordinate of the top-left

corner (because of the top segment having horizontal slope constraint), and then the x-coordinate

63

of the top-right corner from the two left corners (because of the equal length constraint between

the top and left segments), and then beautifies the top line-segment. (iii) In a manner similar to

the previous case, the algorithm computes the y-coordinate of the bottom-right corner from the y-

coordinate of the bottom-left corner (because of the bottom line-segment having horizontal slope

constraint), and then the x-coordinate of the bottom-right corner from the two left corners (because

of the equal length constraint between the bottom and left line-segments), and then beautifies the

bottom line-segment.

Alternatively, suppose that the system had failed to infer any equal length constraint involv-

ing the bottom line-segment. The algorithm can still compute the x-coordinate of the bottom-right

corner from the x-coordinate of the top-right corner (because of the right line-segment having verti-

cal slope constraint). Let us also suppose that the system failed to infer the vertical slope constraint

for the right line-segment. The algorithm can still compute the slope of the right line-segment from

the slope of the top line-segment (because of the perpendicular constraint between the top and right

line-segments) followed by computing the intercept of the right line-segment from the x coordi-

nate of the top-right corner. The algorithm can then compute the x-coordinate of the bottom-right

corner from the two top corners (because of the equal length constraint between the right and top

line-segments).

These instances of missing constraints highlight the robustness of the QuickDraw beautifi-

cation framework, which is able to make up for the missing constraints by making effective use of

other (logically equivalent) constraints. Some examples of diagrams that can be beautified using

QuickDraw are shown in Figure 5.2.

64

Figure 5.2: Examples of geometric diagrams that can be precisely beautified using the QuickDraw

beautification framework.

65

Figure 5.3: The diagram recognition pipeline in our prototype ITS. Beautification occurs at two

points during recognition, and may also occur when a user makes an explicit association.

5.2 Beautification in our Prototype ITS

Sketch beautification is extremely important for constructing a physically correct animation [41].

Hand drawn diagrams are approximate in nature, and must be precisely beautified in order to gen-

erate a plausible and correct animation. For our prototype system, we have adapted beautification

techniques from QuickDraw [39] and our earlier prototypes [41, 40]. Figure 5.3 depicts the dia-

gram recognition pipeline in our prototype. In some instances, recognized diagram elements can be

beautified in isolation, immediately after they are recognized. For other instances of beautification,

the relationship between diagram elements needs to be considered, possibly within the context of

the problem domain. This is handled by a beautification post-processing step that is invoked after

the entire recognition process is complete. Lastly, beautification may be needed when an equation

is explicitly associated with an element by a user.

66

5.2.1 Initial Beautification: Individual Elements

The first beautification pass is conducted immediately after unistroke and multistroke elements

have been recognized, and only affects each element in isolation. This comprises the following

steps:

1. Line Segments, Helixes, and Arrows are aligned vertical or horizontal if their slope falls

within a specified range (within approximately 8 degrees of the x- or y-axes).

2. Polygon vertices are checked to see if they are in counter-clockwise order, and assigned a

counter-clockwise winding if not so. The ordering is checked by taking the 2D cross product

of direction vectors of each pair of adjacent edges1.

3. Each edge in polygons is aligned vertical or horizontal if its slope falls within a specified

range (within 8 degrees of x- and y-axes).

4. Each segment of polylines is aligned vertical or horizontal if its slope falls within a specified

range (within 8 degrees of x- and y-axes).

5. Dotted lines and intervals are aligned vertical or horizontal (within 8 degrees of x- and y-

axes).

6. Pulleys are beautified to ensure that the constraints specifying their appearance are ensured

precisely: One end of anchor touches the center of the hinge and the wires touch at tangent

points to the hinge. We use the QuickDraw [39] framework for beautifying pulleys, because

pulleys are described purely in terms of geometric constraints and are therefore natural can-

didates for constrained-based beautification.
1The 2D cross product is defined as v1 × v2 = x1y2 − y1x2.

67

5.2.2 Secondary Beautification: Annotations and Groups of Elements

The initial beautification pass examines each diagram element in isolation. Yet, in physics dia-

grams, there is sometimes a need to examine interesting groups of elements simultaneously and

ensure their correct positions if a realistic animation is to be constructed. Therefore, we conduct a

second pass after the recognition process is complete, comprising the following tasks:

1. Arrow directions are altered if an equation specifying an angle with the horizontal or vertical

axis is associated.

2. If a shape (Circle or polygon) rests on a surface (line segment or polyline), their positions are

manipulated to ensure touch constraints. Resting contact is determined by checking spatial

proximity, with a threshold = 5% of screen width.

3. For springs and pulleys that are connected to shapes, the connection point is manipulated

to ensure that it exists on the shape boundary. This mitigates imprecise drawing where the

endpoints are usually drawn inside the shape.

Finally, explicit associations can also alter the appearance of diagram elements. For such

associations, we utilize the method described in [41].

68

CHAPTER 6
ANIMATION RUNTIME

In our earlier prototypes, we used a single physics engine [42, 41, 40] for animating student di-

agrams. This approach was limited to modeling scenarios where the student’s answers could be

morphed to concepts related to f = ma which formed the core position update mechanism for

the physic engine (See Appendix A for a listing of earlier prototypes). Student answers resulting

in equations for position, displacement, velocity, acceleration, force and spring stiffness could be

used directly [42, 41] while equations for concepts such as work done, kinetic and gravitational po-

tential energy needed to be transformed during animation [40]. This design was difficult to extend

to new domains of physics problems and was prone to instability as new features were added.

Our current prototype uses separate, domain-specific simulators to provide animation sup-

port for diagrams belonging to linear motion, free fall, projectile motion, equilibrium, momentum,

and friction. This design is more modular and easier to extend. Each simulator is entirely self-

contained, thus localizing logical bugs and minimizing impact on other system areas. Figure 6.1

depicts a high-level overview of the design of our animation module. The fundamental unit of

animation in our new architecture is a shape (circle or polygon). Each simulator defines different

rules for modeling forces, resolving collisions and updating the position of shapes. Each simulator

also integrates rules for understanding domain-specific quantities and equations and for performing

unit conversions. Additionally, we have abstracted out pulleys and springs as an optional add-on

to all simulators1, allowing for reuse of these components between diagrams in different domains.

1However, at this time, pulleys and springs are only supported in the context of Freefall Kinematics and Friction
simulators.

69

Figure 6.1: High-level overview of the animation module showing components of each do-

main-specific simulator, the common elements shared between simulators and the interdependence

between the animation module and parts of the Solution Checker.

Each simulator provides entry points for mathematical equations that can be explicitly as-

sociated with physical properties of simulation elements, altering their animation behavior. As-

sociated equations are evaluated at association time or during animation to yield scalar or vector

values that are used to guide the animation in accordance with the user’s intent. It should be noted

that the modified behavior caused by associated mathematics may or may not be intuitively correct.

This serves as a feedback mechanism indicating whether there is a mistake in the user’s solution.

Each simulator also exposes a list of domain-specific physics quantities for shapes that can be used

to generate realtime graphs.

70

Our animation framework provides a possibility for runtime data transformations. This

affords us the choice to extend one or more simulators at a later date to include animation support

for new types of problems, without writing entirely new simulators. Table 6.1 summarizes the

differences in notations and functionality supported by the three simulators in our prototype ITS:

Table 6.1: Simulation Configuration

Simulator Supported Elements Supported Annota-

tions

Target Problem Do-

mains

Free Fall

Kinematics

Circles, Polygons, Pul-

leys, Springs

Arrows, Dotted Lines Free Fall, Free-hanging

Springs, Projectiles,

Pulleys, Doodling

Friction Circles, Polygons, Pul-

leys, Springs, Line Seg-

ments, Polylines

Arrows, Dotted Lines,

Intervals

Sliding Contact, In-

clined Planes, Kinetic

and Static Friction

Momentum Circles, Polygons, Pul-

leys, Springs, Line Seg-

ments

Arrows, Dotted Lines Momentum problems

involving elastic colli-

sions in 1-dimension

Equilibrium Circles, Polygons,

Wires

Arrows, Dotted Lines Simple Equilibrium

Problems, Tension

Problems, Objects held

with breakable wires

71

6.1 Free Fall Kinematics Simulator

This simulator is based on game physics engine concepts [140, 61]. Its core functionality includes

collision detection and resolution, constant and drag forces and an incremental position update

mechanism based on numerical integration. Sketched shapes (circles and polygons) denote rigid

bodies. Users can associate equations for forces, velocity, position, and acceleration which can

augment or replace the standard position update mechanism. Additionally, equations may be as-

signed to alter mass, spring stiffness, work done, kinetic energy and gravitational potential energy.

Equations for time limits may be associated with the simulator itself by using ‘Lasso’ to select

an equation (usually of the form t = x, where x is the time limit) and ‘tapping’ anywhere on the

writing area2.

This simulator is able to provide support for problems that involve bodies in free fall or are

attached to springs, or for pulley systems released from rest. Within these domains, it is able to

animate diagrams whose corresponding solutions yield an answer in the form of one of the physics

quantities mentioned above.

6.2 Friction Simulator

The friction simulator models kinetic and static friction between two surfaces. This allows it to

animate diagrams where an object is in sliding contact with a fixed surface. It does not have any

collision detection. For this simulator, users must have drawn one fixed surface denoted by a

long line segment or a polyline, upon which a shape rests. Users may sketch intervals to denote

a range of displacement, and may associate equations for displacement with the interval. Users

2This mechanism is supported by all simulators in our Animation Runtime to denote time limits for a particular
animation.

72

may also associate equations for mass, velocity, acceleration, constant force, kinetic friction, static

friction, coefficients of kinetic and static friction, work done, kinetic and potential energy, and

spring stiffness with various recognized diagram elements.

This simulator is able to handle problems from the domain of friction where a single body

is moving along a rough surface, and may or may not be constrained to move within a specified

distance. Additionally, by setting the friction forces to zero, this simulator can be used to pro-

vide animation support for inclined plane problems or problems involving 1-D motion along a

frictionless surface.

6.3 Equilibrium Simulator

The equilibrium simulator provides support for problems where a body is held in equilibrium by a

number of breakable wires. It does not have any collision detection. For this simulator, wires can

be drawn as line segments connected to shapes. Users may associate equations for mass, force, and

tension with diagram elements. At recognition time, the length of each recognized wire is taken as

allowed length. If any wire is stretched beyond 20% of its allowed length, it is tagged as broken,

and its effect is removed from the simulation. Broken wires are not rendered.

This functionality enables us to model a small set of equilibrium problems where systems in

equilibrium are released from rest and the student’s answer determines if equilibrium is maintained.

Possible avenues of future work include providing support for angular effects such as moment of

force, and enabling users to mark or test the center of turning.

73

6.4 Momentum Simulator

This simulator models elastic collisions between two bodies moving in 1-dimension along a fixed

surface. Again, users must draw one fixed surface denoted by a long line segment or a polyline,

upon which two shapes rest. Users may sketch a single dotted line to denote the event of a colli-

sion and may associated equations or arrows denoting velocity with the collision event. For this

simulator, we have adopted the convention that all velocities prior to collision are denoted by u

and all velocities after the collision are denoted by v. Users may only associate equations for mass

and velocity. For collision problems, a coordinate system is usually required, where one direction

is assumed as the positive direction, with any vector quantities that lie in the opposite direction

having a negative sign. In our Momentum simulator, the sign of direction is automatically inferred

from arrow annotations (arrow direction implies direction of associated vector quantity). This also

means that while + and − signs are ignored when matching equations to arrow labels. For an

example, please refer to Section 8.2.7.

This simulator is able to handle limited instances of momentum problems, and serves

merely as a proof-of-concept at the moment. Possible extensions include support for collisions

in 2-dimensions by enabling a top-down viewing volume.

74

CHAPTER 7
SOLUTION CHECKER

Our solution checker is based on building a graph structure to represent the mathematical steps in a

student’s solution. In principle, this scheme is similar to the standard representation for a deductive

proof [136, 173, 188], where one starts with a set of givens and uses logic to reach a conclusion.

In our case, the initial conditions specified in the problem statement are the givens, and the overall

solution is a mathematical (rather than deductive) proof. The steps in the solution can be linked

in a graph-structure where each link signifies an inference based on a mathematical or physical

principle. The initial conditions and the answer then become the leaf nodes for the graph.

As our prototype system does not contain any prior knowledge or instrumentation about

each problem, it does not contain a known model (which can be coupled with model tracing tech-

niques for tutoring). Instead, we extract pertinent information from the text of a given problem,

and generate the graph-model at runtime. Existing ITS’s incorporate sophisticated facilities for

pre-computing the solutions to given problems (Andes [207] is a relevant example). Our method-

ology is different. We construct a model of a written solution and then use path searching methods

to determine if the student has used some path to arrive at an answer. Using a database of physics

and mathematical equations (containing common algebraic variations1), we infer relationships be-

tween solution steps and verify the soundness of each step.

The solution checker can be invoked by hitting the ‘Check’ button from the system menu.

This module contains knowledge of physics concepts in the form of a database of physics and

1In our current prototype, the size of the database is quite small. It is limited to the equations used for solving the
problems in Chapter 8. However, the database is easy to extend by providing examples of new equations in an xml
format.

75

mathematics equations, as well as their variations. Additionally, information extracted from the

text of the problem is also utilized here.

Checking can only happen once the solution has been recognized and parsed into diagram

and solution steps. The solution checker also assumes that the mathematical steps in the solution

are in correct logical order. We infer the ordering by sorting the y-coordinate for the centroid

of each step in ascending order. This enables us to order solutions written vertically in a single

column format. We currently do not have a method to assign ordering to solutions steps written in

two-column format. Lastly, the solution must not contain chained mathematical expression, e.g.,

f = ma = (2)(1.5) = 3N .

7.1 A Graph Model for Solution Steps

We use two key insights to check solutions. First, each step in the solution must be mathematically

sound, i.e., it must use physics and mathematics formulae correctly. Second, the solution must

be sound as a whole, i.e., each step should use well-known mathematics and physics knowledge

and/or be dependent on the preceding steps. Our solution checker assigns a label to each solution

step. Each solution step falls into one of four categories: Initial Condition, Formula Statement,

Manipulation, and Answer.

Initial Condition Usually written in the early stages of a solution. It is also possible for the

student to write them in the middle. Also, sometimes, students may not write them at all.

They can also be identified by examination of the problem statement, as it contains all initial

conditions.

76

Formula Statement Well-known equation that expresses a mathematics or physics principle. Our

domain knowledge database contains a list of equations as well as their variations. These

steps can be identified by a simple lookup.

Manipulation These are steps where the student either substitutes values for quantities, manip-

ulates the equation in some manner (e.g. multiplying/dividing/adding some value to both

sides), simplifies an expression or computes values. In order to speed up the labeling pro-

cess, any solution step that is not an initial condition, a formula, or the answer is labeled a

manipulation step.

Answer Last step in the solution. Based on the analysis of the problem statement, our system can

infer the quantity the student is asked to solve for. We can check the last solution step to see

if it is an expression for the relevant physical quantity.

Labeled solution steps can be used to verify if the solution is correct. A trivial rule is

to check the existence of the answer, indicating if the solution is complete. We then construct a

directed graph data structure S, where each vertex si corresponds to a solution step. The solution

step labeled ‘Answer’ is not added to S. Edges in S are assigned based on the following rules:

R1. If a vertex s denotes a formula statement, an edge is assigned from the list of physics/mathematics

equations E to that vertex.

R2. If the mathematical step in a vertex sj is a manipulated form of another mathematical step

si, an edge is assigned from si to sj . This can include substitution of values into a formula,

arithmetic manipulation or computation.

77

R3. If a vertex sm denotes a computed value or an initial condition e.g. a = 1.5m/s2, and there

exists a subset Sdependent ⊂ S such that each vertex sk ∈ Sdependent uses the value in sm, then

an edge is assigned from sm to each sk ∈ Sdependent.

R4. If the vertex corresponding to the last solution step sn denotes a computation for the quantity

asked for in the question, an edge is assigned from sn to the answer A (which exists as a lone

vertex outside the graph).

7.2 Rules for Checking a Solution Graph

For our purposes, domain knowledge in the form of physics and mathematics formulae and the

answer A are modeled as vertices outside S which are connected to vertices inside the graph. The

solution represented by S is valid if the following conditions are true:

1. S contains no cycles.

2. ∀i = 1...n, si is valid, i.e., uses mathematical and physics formulae correctly, substitutes

values correctly and only uses mathematically valid manipulations.

3. ∀i = 1..n, If si is not labeled ‘Initial Condition’, Indegree(si) ∈ S ≥ 1

4. ∀i = 1..n, Outdegree(si) ∈ S ≥ 1

78

Figure 7.1: Figure showing the solution graph constructed for a gravitational potential energy

problem where a ball of mass 10 kg falls a distance of 50 meters.

7.3 A Worked Example

Figure 7.1 depicts a physics problem where a student is asked to work out the change in grav-

itational potential energy when a ball of mass 10 kg falls a distance of 50 meters. This solu-

tion contains two initial conditions (m = 10 and h = 50), two solution steps (Pe = mgh and

Pe = (10)(10)(50)), and a final answer step Pe = 5000J . The solution graph shown in Figure 7.1

consists of 4 vertices, two initial conditions, one formula. and a manipulation step where the values

of the initial condition are being substituted into the formula. The manipulation step is linked to

79

the answer step, which lies outside the solution graph. The edges of the graph in Figure 7.1 have

been labeled with the appropriate rule (See Section 7.1) that was invoked to construct each edge.

7.4 Discussion

Our solution checking algorithm is user independent, can handle complex solutions and works

fairly fast. The labeling process works in linear time O(n), for an n-step solution2. Constructing

the directed graph representation takes longer, because for each solution step, we need to poten-

tially examine all the steps prior to it, in order to determine dependencies, giving the time cost as

O(n2). Checking the validity of the solution graph is slightly more nuanced. Checking for cycles

can be accomplished in O(|V ertices|+ |Edges|) time (Tarjan’s Algorithm [197]) 3.

The time required to verify the validity of each vertex si in the graph is either constant or

dependent on its total degree, which in the worst case is O(n)4 Counting the in- and out-degrees

of each vertex is an O(1) operation per vertex, giving overall time cost as O(n). Combining all

these factors together, the worst case time complexity for our solution checker is O(n2), for a

solution containing n steps. However, as our mathematics recognizer is continuously active, the

graph structure S can be constructed and modified while the student is writing or editing his/her

solution, mitigating the time required for setting up the solution checker.

However, it may be difficult for a handwriting-based system to fulfill the prerequisites for

our algorithm. First, perfect handwriting recognition accuracy is required, because any recognition

2It can be assumed that any lookup from the database of physics and mathematics formulae is an O(1) operation,
given suitable choice of storage and lookup mechanisms.

3In the worst case, we can envision the entire solution as consisting of interrelated formulae and manipulation
steps, yielding |V ertices| = n and |Edges| = n2.

4In practice, we expect to validate most steps in constant time. The theoretical worst case implies that a solution
step exists that is linked to all the steps preceding it. The ‘Manipulation’ step in Figure 7.1 is an example of this.
However, the solution in Figure 7.1 is a simple one comprising only a few steps. Steps involving such gestalten
computations are likely to be a very small subset of the entire solution.

80

errors would impact the step-labeling process. Second, the logical ordering of the solution steps

must also be known exactly. We require this in order to mitigate ambiguity in assigning dependency

relationships between solution steps. Third, an external library of well-known mathematical and

physics formulae is required, which may grow quite large based on which domains are targeted

by the tutoring system. With a large database, searching for a matching equation may become a

bottleneck.

81

CHAPTER 8
ANIMATION CAPABILITIES

This chapter lists several physics problems modeled using our prototype system. In each instance,

we describe how an animation may be constructed from the written solution. In this way, we

highlight the range of capabilities of our prototype system and discuss supported animation mech-

anisms.

8.1 Animations for Toy Examples

Toy scenarios are usually a first step for any recognition system. The aim is to work with a small

set of driving examples that enable one to identify and construct core functionality that may be

generalized to a range of real world scenarios. This section presents three toy examples (either

adapted from real physics problems or interesting in their own right).

8.1.1 Doodling: 3-Spring System

In Figure 8.1, a box is connected to 3 springs of different stiffness. This is an example of pro-

totyping or doodling where deriving the closed-form solution for the box’s motion trajectory is

non-trivial. Instead, it is easier to sketch the system and generate realtime graphs showing how

different quantities change in realtime.

82

Figure 8.1: A box suspended using three springs. Deriving a closed-form solution for the behavior

of this system can be very difficult whereas generating a simulation for this scenario is very easy

within our prototype system.

The three springs are labeled ‘a’, ‘b’, and ‘c’ by the user, while the box is labeled ‘d’.

Upon recognition, the labels are associated implicitly with each diagram element based on prox-

imity checking. Similarly, the equations for stiffness and mass are also associated implicitly using

label-matching. The graph in Figure 8.1 demonstrates the interplay between the kinetic and po-

tential energy of the box once the system is released from rest. This example highlights the use of

graphing as an important aspect of animation.

83

Figure 8.2: Example scenario where a ball of mass 10kg is dropped from a the roof of a building

of height 50m. The student is asked to work out the change in gravitational potential energy of the

ball.

8.1.2 Change in Gravitational Potential Energy During Free-Fall

Figure 8.2 shows a contrived free fall problem. A ball of mass m = 10kg is dropped from a known

height. The student is asked to determine the change in gravitational potential energy after the ball

has fallen 50m. The student sketches a circle to represent the ball, and annotates the diagram with

an interval (two parallel, horizontal dotted lines) to indicate limits of displacement. From the given

information, the student computes the change in potential energy of the ball to be Pe = 5000J .

To verify the answer, the student animates the sketch with the solution (Pe = 5000) as input.

Upon recognition, the ball is replaced by a circle. The dotted lines are interpreted as an interval.

The circle is labeled ‘a’, and the equation indicating mass (ma = 10) is associated implicitly.

84

The student first selects the expression dx = 50 and associates it with the interval to indicate the

displacement limit. The student then selects the answer, Pe = 5000 with the ‘Lasso’ gesture,

associates it by tapping the circle, and triggers the animation. The system uses the association

Pe = 5000 to derive the magnitude of required displacement. The simulation stops when the

required displacement has been covered. If the computed change in potential energy is correct, the

ball will move exactly 50m. If it is incorrect, then the ball will come to rest either before or after

reaching the end level. This example highlights the usefulness of being able to denote the starting

and ending points of motion by using dotted lines.

Figure 8.3: An example of the solution checker in action.

Figure 8.3 shows what happens if the student hits ‘Check’ after the diagram has been recog-

nized. Each solution step is typeset and displayed to the user, along with the results of the analysis,

i.e., if each step is an initial condition, formula or a computation.

85

Figure 8.4: A contrived equilibrium problem based on the real world scenario presented in Sec-

tion 8.2.4.

8.1.3 A Contrived Equilibrium Problem

The problem in Figure 8.4 is a simplified version of the equilibrium problem depicted in Sec-

tion 8.2.4. Here, a box is suspended using two wires, each at an angle of 45o with the horizontal

direction. The student is asked to work out the tension in each wire such that the box is held in

equilibrium. As the angle with the horizontal is same for each wire, the magnitude of the tension

in each wire is also the same. The student derives a value of wa√
2

for the tension in each wire. After

associating the tension with each wire, the student can hit ‘Animate’. As the tension in each wire

is correct, the box is held in equilibrium. If an incorrect answer for the tension had been derived,

86

the box would move in the direction of the net force. This would cause one or both wires to stretch

(depending on the direction and magnitude of the net force). If any wire is stretched beyond 20%

of its initial length, it is broken, causing the box to potentially fall freely.

This scenario illustrates three important issues. First, the answer is given in symbolic

variables rather than in a numeric form. The animation system must be able to find and extract the

value of wa at runtime for it to work correctly1. Second, sketched wires may not touch the box

at its exact corners and may also not make an angle of 45o with the horizontal direction. Precise

beautification after recognition and explicit association is required to mitigate these problems.

Third, this problem highlights an important feedback mechanism for animation-based tutoring:

”the presence of motion where there should be none”.

Figure 8.5: Simple problem that requires the use of f = ma.

1This can generally be stated as: Given a variable and its subscript, find out 1) the physical quantity represented 2)
the simulation element to which this physical quantity belongs and 3) the value of said physical quantity at this instant
in time.

87

8.2 Animations for Real Physics Problems

8.2.1 A Simple Force and Acceleration Problem

The scenario in Figure 8.5 is a very simple one that can be solved with the direct application of

f = ma. A force and acceleration are provided, and the mass is required. However, in this instance,

the answer cannot be visually verified in a simple way. If the box moves with a constant but wrong

acceleration, a user may not be able to tell the difference. However, if graphing functionality is

employed (shown in Figure 8.6), then the student can observe that the acceleration is precisely that

which is predicted.

Figure 8.6: Animation for the scenario in Figure 8.5.

88

This scenario is not very different from doodling, from the animation point of view. A set of

initial conditions are provided that yield an open-ended animation (no time or distance constraints).

The result can be visually or graphically verified.

(a) Projectile Example (b) Animation and Graph

Figure 8.7: Simple projectile scenario with limits on vertical movement. The recognized diagram

and graph are also shown.

8.2.2 A Projectile Constrained in 1-dimension

The solution shown in Figure 8.7(a) requires the computation of vertical distance traveled in a given

amount of time. This can be computed using motion equation S = ut+ 1
2
gt2. This example shows

an interesting scenario where the answer S = 0.6125 is not used for animation at all. Instead,

the diagram can be animated using only the information provided in the problem statement: initial

velocity, time interval, and gravity. Figure 8.7(b) shows that when the book’s vertical distance

traveled is graphed, it comes out to a little over 0.6 meters. Graphing is again shown to be an

important feedback mechanism.

89

Figure 8.8: Projectile problem with limits on vertical and horizontal movement.

90

8.2.3 A Projectile Constrained in 2-dimensions

Figure 8.8 depicts another projectile problem. Here, both the vertical and horizontal distance

traveled are constrained and the student is asked to solve for a speed such that both constraints

are overcome. By applying the equations of motion in the vertical and horizontal directions, a

minimum speed can be worked out. On the face of it, this scenario doesn’t seem too different from

Figure 8.7. However, from an animation perspective, there are important differences. Here, the

answer is used for animation. Again graphing is used for feedback (Shown in Figure 8.9) but this

scenario indicates that graphing is indispensable for cases where more than one quantities need

to be observed simultaneously as functions of time. An alternative method for animation might

have been to show the vertical and horizontal motion trails, but this approach would not show the

comparison between the two quantities as functions of time.

Figure 8.9: Animation and Graph for solution shown in Figure 8.8.

91

8.2.4 A Box Held in Equilibrium

The problem in Figure 8.10 is a slightly more complicated version of the problem presented in Sec-

tion 8.1.3. Here, due to the different angle with the horizontal direction, the tension in both wires

is not equal. Again, the diagram is beautified upon recognition, and each wire’s angle with the hor-

izontal is corrected upon association. The derived value for tension keeps the box in equilibrium.

For incorrect values, the box would eventually break the wires and drop freely.

Figure 8.10: Equilibrium problem taken from Young’s University Physics [226] and modeled using

our system.

92

Figure 8.11: Sample Problem taken from Young’s University Physics [226].

8.2.5 A Box Sliding on a Rough Surface

For Figure 8.11, the student must work out the friction force such that a moving ball comes to

rest in a specified amount of time. Several factors affect the recognition and beautification of this

scenario. The line denoting the surface is beautified so that it is perfectly horizontal. The circle

is moved so that it is tangent to the line (to satisfy the touch constraint). In this scenario, the

answer (f = 46.7) is not associated with the circle using the ‘Lasso’ + ‘Tap’ method. Instead, it

is simply written down by the user as an arrow annotation. The user can indicate the time limit

by using ‘Lasso’ to select t = 3.52 and tapping anywhere on the draw area. Please note that this

93

is not necessary. If the value for the force is correct, the circle will stop in exactly 3.52 seconds.

However, the moment may pass too quickly for a user to notice. To remedy this, graphing can be

used to show that the circle comes to rest in the specified time. Alternatively, the time limit may be

indicated, causing the system to stop animation when the limit is reached. In either case, the user

will be able to check if he computed the initial conditions for the scenario correctly. Figure 8.12

shows the case where graphing is used for this purpose.

Figure 8.12: An animation of the friction problem in Figure 8.11, highlighting the use of graphing.

94

Figure 8.13: A student is asked to work out the coefficient of kinetic friction µk such that a moving

ball comes to rest after traveling a given distance.

95

8.2.6 Computing the Coefficient of Kinetic Friction

The scenario in Figure 8.13 is more involved than the scenario presented in Figure 8.11. Here,

instead of simply computing the friction force, the student must work out the correct coefficient

of kinetic friction that will cause the ball to stop moving in a given distance. The processes of

recognition and beautification are similar to Section 8.2.5. The recognized diagram is depicted

in Figure 8.14. In this scenario, the initial velocity and mass are associated implicitly while the

student must associate the distance and the coefficient of kinetic friction manually. To do this, they

can Lasso the dx = 30 and tap on of the dotted lines. Similarly, selecting µk = 0.0417 and tapping

the ball associates the coefficient of kinetic friction. When the animation is run, the ball comes to

rest in the correct distance. A different value for µk would cause the ball to either stop before the

appropriate distance or to overshoot the distance limit.

Figure 8.14: An animation of the friction problem in Figure 8.13, highlighting the use of graphing.

96

Modeling this type of physics problem requires the modeling of static and kinetic friction

forces. The Friction simulator in our Animation Runtime is capable of modeling these interactions.

This enables it to generate animations for cases where either an object moving on a rough surface

starts from rest or is already moving with a steady velocity.

8.2.7 Elastic Collisions

As mentioned previously, the momentum simulator in our prototype can handle limited cases of

elastic collisions in 1-Dimension. Figure 8.15. Here, two marbles (labeled ‘a’ and ‘b’) are moving

toward each other at different velocities. In this instance, the event of collision is denoted by a

single vertical dotted line. The before- and after- collision velocities of both marbles are written

using horizontal arrows, with labels. Using physics formulae for perfectly elastic collisions, the

student derives the after collision velocities as va = −1.02 and vb = 0.88. When associated the

equations for before- and after- collision velocities, our system ignores the − sign in the equations,

instead inferring the direction from the recognized arrow. This process is invisible to the user.

This problem is another example of a scenario where the answer itself need not be associ-

ated with the recognized diagram. Here, the initial conditions are sufficient to run the simulation.

After the collision occurs, the student can visually check the velocities of both marbles to see if

they match the derived answer.

97

Figure 8.15: An example of a scenario with perfectly elastic collisions in 1-Dimension.

98

Figure 8.16: A snapshot of the animation for Figure 8.15, before collision happens.

8.2.8 Using the Work-Energy Theorem to Calculate Initial Velocity

The scenario presented in Figure 8.18 uses the work-energy theorem to compute the initial velocity

of a projectile fired vertically. While the physics concepts tested are different from all the examples

presented in this section, the animation mechanism is very similar. Here, again, we have a system

of moving objects where we can indicate initial conditions and are required to verify the value of

some quantity at a known point in time, starting from time t = 0. This can be accomplished by

using the graphing functionality.

8.3 Observed Animation Patterns in Modeled Solutions

By analyzing the examples in the previous section, we can identify some common patterns. It

appears that, from an animation perspective, physics problems and solutions tend to fall into three

broad categories:

99

Figure 8.17: An after-collision snapshot of the animation for Figure 8.15, showing that the student

derived the correct values for velocity.

S1. Open-Ended Animation: Typically, in such scenarios, the initial conditions are either known

or have been computed, in part, by the student. The student is expected to reason about or

assert the correctness of some condition throughout the time frame of the simulation. In some

instances, the student is expected to reason about the properties of an event during the course

of the simulation. An example is inelastic and elastic collision problems. Predicting the time

and place of such events is a non-trivial problem.

S2. Time-of-Interest Animation: Again, the initial conditions for the simulation are known or

have been computed by the student. In time-of-interest simulations, the student is expected to

reason about or assert the correctness of some condition at one or more points in time during

the simulation. If only one time value t = t1 is of interest, then this scenario is reducible to

running a simulation from time t = 0 → t1.

S3. Point-of-Interest Animation Once again, the initial conditions are either known or computed.

In such simulation, one or more points in the trajectory of a simulation object are deemed

interesting. Some condition is held to be true or false, or a question about the value of some

100

Figure 8.18: An Example of a scenario that uses the Work-Energy Theorem.

physical quantity is asked at each point of interest. A representative example is ”At what two

points in its path, is a projectile above x meters?”

For time-of-interest and point-of-interest simulations, it is important to know the interest-

ing points and time values for each simulation element. Our prototype allows a user to write an

expression for time, e.g. t = 5 and associate it with the simulation by tapping the canvas. Simi-

larly, the use of parallel dotted lines allows a user to define a range of motion. Our prototype can

infer some of the limits in time- and space-bounded simulations by the use of annotations and spa-

tial reasoning. If we assume that an easy method can be devised to enable the user to indicate all

101

interesting points in time and trajectory, then we are faced with the immense challenge of tailoring

the simulation with respect to each interesting point (because the same physical property need not

be tested at each interesting point).

8.4 Known Cases That Cannot Be Modeled Using our Approach

Some types of physics problems are obviously outside the scope of our prototype system, because

we have no simulation engine to deal with them. Examples include circuit analysis, fluid dynamics,

gravitation, etc. A more interesting question is:

What are scenarios from the chosen domains that cannot be handled by our current proto-

type?

This question is important for understanding the effectiveness of our overall approach. We

can gain insight into this question by examining it in the view of the categories of animation

identified in Section 8.3. This section discusses particular mechanisms that are not supported in

our current prototype.

8.4.1 Kinematics Problems

Our prototype system allows users to associate any kind of quantity with a diagram element. Scalar

quantities require no special processing while direction for vector quantities can be indicated via

arrows. Some quantities such as mass, velocity, time, weight, force, etc are well-known and can

be processed directly by our system. For some others, realtime data transformations can be used.

The main limitation for our kinematics simulator is defining points of interest. Currently,

we may only define a single point in time (some t = t1) and can only start the simulation at t = 0.

102

We cannot handle scenarios where the simulation starts at some t = t1, while the initial conditions

are provided for some other point in time t = t2, where t2 < t1. Our system always assumes

that the initial conditions indicated only hold at beginning of the simulation. This behavior can

be extended by providing support for modeling progress from initial conditions, t = 0, to some

other state, t = t1 internally, and then allowing a user to view the remainder of the simulation.

There is also no support for defining multiple points of interest (either in trajectory or time). This

inability of defining multiple points of interest extends to all simulators in our prototype system.

To overcome this weakness, two things are needed. First, a robust interaction metaphor must be

devised that allows a user to indicate the interesting points in trajectory or time to the simulator.

Second, the simulation must be able to proceed in segments, with possibly support needed for

handling some segments internally.

8.4.2 Friction and Sliding Contact Problems

Figure 8.19 shows a friction problem that involves pulley systems. A box labeled ‘A’ of weight

45N rests on a rough table and is attached by a wire running over a pulley to a free-hanging block

labeled ‘B’ of mass 25N . When the system is set in motion, the free hanging block descends at a

constant velocity. The student is asked to work out the coefficient of kinetic friction between the

table and box ‘A’. Using the principle that constant velocity implies zero acceleration and in turn,

zero force, the student computes an expression for µk = 0.555.

Our prototype system can accurately recognize and beautify this system, as shown in Fig-

ure 8.19. However, the simulation engine is not sophisticated enough to model this system prop-

erly. In our implementation, the system would remain at rest, starting from t = 0, because kinetic

friction would prevent any net force, resulting in zero motion.

103

Figure 8.19: A weight hanging from a pulley pulls a box resting on a rough surface. The student

is asked to work out the coefficient of kinetic friction that will cause the box to move at a constant

speed.

104

This limitation is grounded in the design of our simulation engine for such problems, which

is set up only to deal with instances where a system is either released from rest2 or is in a steady

state3. In this particular instance, the problem statement specifically states that the system is set

into motion, implying an outside influence, which our prototype cannot model. If the problem were

modified to give a value for the velocity at which either box is moving, then this can be animated

using our prototype ITS.

8.4.3 Momentum Problems

The most important limitation of the momentum simulator is lack of functionality. It is currently

set up only to deal with limited instances of 1-D elastic collisions, and provides no support for

inelastic collisions, 2D collisions of any sort, or for impulse problems. Figure 8.20 shows a simple

1-dimensional scenario about a collision between two pucks ‘A’ and ‘B’. The after-collision veloc-

ities of both ‘A’ and ‘B’ are provided. Additionally, the problem stipulates that ‘B’ is initially at

rest, asking the student to work out the initial velocity of ‘A’. Using the principle of conservation

of momentum, the correct value of the velocity of ‘A’ can be derived. However, in this case, the

problem statement does not indicate if the collision was elastic or inelastic. As our momentum

simulator can properly animate only perfectly elastic collisions, this scenario may yield an incor-

rect looking simulation. Such instances are particularly problematic because they require prior

knowledge, usually provided by the teacher or some domain expert. Automatic identification of

missing information such as this is a difficult problem. The momentum simulator in our prototype

is just a proof-of-concept. However, missing prior knowledge can pose problems for mature sys-

tems as well, because it requires the system to essentially solve the problem and reason about the

solution, in order to identify the missing information.

2Equivalent to saying that simulation begins at t = 0.
3For example, a ball moving at a constant velocity comes to rest under the influence of kinetic friction.

105

Figure 8.20: Example scenario depicting an elastic collision between two objects moving on a

1-dimensional surface.

8.4.4 Equilibrium Problems

The limitations highlighted for the other simulators also apply to the equilibrium simulator. Like

the momentum simulator, this is a proof of concept and only provides limited support for a small

subset of equilibrium problems.

106

8.5 Summary of Supported Animations

Animation in our prototype begins when the user hits the ‘Animate’ button and ends either when

the ‘Stop’ button is hit or a user specified time limit is reached. Our prototype provides support for

the following types of animation:

1. Reasoning about Motion: This can happen in two ways. First, a simulation element that is

meant to be immobile moves as a result of the student’s answer. Second, some interesting

aspect of the movement of a simulation element is wrong. For example, an object that is

supposed to move with a constant velocity develops an acceleration. In this way, a student

can judge if his or her answer has some mistake. The method is particularly useful for

modeling equilibrium scenarios where a system is released from rest. A simple visual test or

a graph-based view can be used to identify anomalies. These behaviors can be applied to all

categories of physics problems (open-ended, time- and space-bounded).

2. Defining Time Limits: Each simulation starts at time t = 0 and can be stopped either on

explicit command or by hitting a user defined time limit. Allowing a user to specify time

limits is useful for modeling two different types of scenarios: a) student is asked to compute

some initial value that affects some aspect of motion in a defined way at a particular time or

b) student is asked to compute the value of some quantity that should result from the initial

conditions specified in the problem statement. Again, in both of these cases, visual testing

and graphing can be used to identify anomalous animation behavior.

3. Defining Distance Limits: Similar to previous point. Here, the start and stop points of motion

are identified using vertical or horizontal intervals (denoted by parallel dotted lines).

4. Reasoning about Events: An interesting event is supposed to happen at a particular time.

This behavior is applicable when predicting the time of the event beforehand is a non-trivial

107

operation. In particular, this method is useful for collision problems, where it is usually

mentioned that a collision happens (without time and location information4).

4It should be noted that although, the time and location can be computed, this is an extraneous operation that would
not add too much value to the problem statement.

108

CHAPTER 9
ANALYSIS OF STUDENT SOLUTIONS

The previous chapter described how real-world physics problems could be modeled and animated

using our prototype system. We also discussed its limitations. During the analysis, it became

apparent that the animations for physics problems could be categorized in three distinct ways (See

Section 8.3). We believe that these three categories of animation are sufficient to model a wide

variety of physics solutions1. The three animation categories identified earlier were:

• Open-Ended: No time limits defined, Student answer effects scenario for undefined time

frame. Reasoning-about-motion type problems are a subset of this category.

• Time-of-Interest: One or more moments in time are interesting. At each such moment, the

student must either compute a quantity or reason about some physical aspect of specified

scenario. If only one time value t = t1 is of interest, then this category is reducible to

running a simulation from time t = 0 → t1. Otherwise, it can be generalized as a series of

simulations (t = t0 → t1 → t2 · · · → tn).

• Point-of-Interest In this category, one or more points in the trajectory of a simulation object

are deemed interesting. Some condition is held to be true or false, or a question about the

value of some physical quantity is asked at each point of interest.

1There is a caveat to this claim. The answer to a physics problem can either be a decision (e.g., given this scenario
and some initial conditions, does something happen?) or a computation (e.g. what is the value of ”x” at t = t1 seconds
or after traveling ”k” meters). For computation problems involving some form of motion, the categories identified
above are obviously adequate. Decision problems are trickier. Yet, they also conform to the same three categories,
because the student must do some computation to support the decision. The answers computed for decision problems
can therefore be used for animation in the same way as for computation problems: by defining initial conditions, and
observing the resulting animation to see if it conforms to the decision.

109

Our current prototype provides limited support for these types of animations. The key

challenges include 1) lack of interaction metaphors to allow users to fully specify required param-

eters of animation and 2) insufficient understanding of what feedback mechanisms are contextu-

ally appropriate for each animation category. For specifying the parameters of the animation in

a natural way, our prototype uses implicit associations and the ‘Lasso’ + ‘Tap’ gesture command

(itself leveraged from Mathematical Sketching [119] and our earlier prototypes [40, 41, 42]). This

method appears suitable for specifying small sets of animation parameters but may be cumbersome

for defining all required parameters (which can be quite large in complex scenarios). In fact, we

currently do not know of a good interaction metaphor to allow a user to define a large number of

parameters for a simulation.

The question of contextually-appropriate feedback is similarly hard to address. Our proto-

type provides feedback in three ways. First, the values for interesting quantities are shown during

animation (as arrows and floating text). Second, there is visual confirmation. This enables users to

judge the correctness of the animation (and thus the answer) by intuition about physically correct

behavior. Third, we provide users with the ability to generate runtime graphs of various quantities,

allowing them to customize feedback as they see fit. These methods of providing feedback seem

appropriate for the problems discussed in Chapter 8, but we do not know how well they generalize

or if they are adequate.

9.1 A Database of Physics Problems and Student Solutions

We conducted a user study2 to construct a database of solutions to physics problems that would help

us identify usage scenarios and discover animation mechanisms for pen-based intelligent tutors. A

set of 50 physics problems was chosen from Young’s University Physics 13th Edition [226] for this

2IRB documentation for the user study is listed in Appendix B.

110

purpose. The chosen problems are listed in Table 9.1. We initially aimed to collect 3-5 solutions

for each problem. However, due to unavailability of participants, our database currently contains

56 solutions, collected from 8 students.

9.1.1 Subjects and Apparatus

We recruited 8 students (7 male and 1 female) from the University of Central Florida for partici-

pation in the study. The ages of participants were between 19 and 25 years. Each participant was

asked to write solutions to 7 randomly selected problems from Table 9.1. Each participant took

90-120 minutes to complete the experiment and was paid $10 for their time. Participants were

provided with a Physics textbook to look up concepts and a scientific calculator to aid in compu-

tations. They were instructed to write numeric quantities correct to four decimal places (where

appropriate). Additionally, they were informed that they could voluntarily end the experiment at

any time.

The experiment was conducted on an HP EliteBook 2760p multi-touch tablet computer

equipped with an Intel Core-i5-2410M processor and four gigabytes of memory. The screen res-

olution was set at 1200x800 pixels. We disabled multi-touch interaction on the tablet which was

placed on a table for the experiment. A separate computer was used to display problem state-

ments to the participants. We recorded all ink strokes written by the participant for each problem,

including position (x,y), pressure and timing data. The dataset of student solutions thus con-

structed can be downloaded from the ISUElab website (http://eecs.ucf.edu/isuelab/

downloads.php).

111

http://eecs.ucf.edu/isuelab/downloads.php
http://eecs.ucf.edu/isuelab/downloads.php

9.2 Animation Requirements for Chosen Physics Problems

The 50 problems chosen for the experiment are listed in Table 9.1. The third column of the table

describes the category of animation that can be used to model each problem. The categories are:

Open-Ended, Point-of-Interest and Time-of-Interest. Some problems are multi-category, i.e., they

can be animated using mechanisms from more than one categories.

Table 9.1: List of 50 problems selected from Young’s Uni-

versity Physics 13th Edition [226].

ID & Page No Physics Problem Animation

Requirement

K-01 (129) Open-Ended

K-02 (129) Time-of-

Interest

K-03 (129) Open-Ended

Continued on next page

112

ID (Page No) Physics Problem Animation

Requirement

K-04 (129) Time-of-

Interest, Point-

of-Interest

K-05 (130) Time-of-

Interest, Point-

of-Interest

K-06 (130) Open-Ended

Continued on next page

113

ID (Page No) Physics Problem Animation

Requirement

K-07 (165) Point-of-

Interest

K-08 (165) Time-of-

Interest

K-09 (166) Open-Ended

Continued on next page

114

ID (Page No) Physics Problem Animation

Requirement

K-10 (166) Open-Ended

K-11 (96) Time-of-

Interest

K-12 (96) Point-of-

Interest

Continued on next page

115

ID (Page No) Physics Problem Animation

Requirement

K-13 (97) Point-of-

Interest

K-14 (101) Point-of-

Interest

Continued on next page

116

ID (Page No) Physics Problem Animation

Requirement

E-01 (163) Open-Ended

E-02 (164) Open-Ended

E-03 (164) Open-Ended

Continued on next page

117

ID (Page No) Physics Problem Animation

Requirement

E-04 (164) Open-Ended

E-05 (168) Open-Ended

Continued on next page

118

ID (Page No) Physics Problem Animation

Requirement

E-06 (168) Open-Ended

E-07 (168) Open-Ended

Continued on next page

119

ID (Page No) Physics Problem Animation

Requirement

E-08 (169) Open-Ended

W-01 (198) Point-of-

Interest

W-02 (199) Point-of-

Interest

Continued on next page

120

ID (Page No) Physics Problem Animation

Requirement

W-03 (199) Point-of-

Interest

W-04 (199) Time-of-

Interest, Point-

of-Interest

W-05 (200) Point-of-

Interest

W-06 (200) Point-of-

Interest

Continued on next page

121

ID (Page No) Physics Problem Animation

Requirement

W-07 (200) Point-of-

Interest

W-08 (200) Point-of-

Interest

W-09 (200) Point-of-

Interest

W-10 (201) Open-Ended

W-11 (232) Point-of-

Interest

Continued on next page

122

ID (Page No) Physics Problem Animation

Requirement

W-12 (202) Time-of-

Interest, Point-

of-Interest

W-13 (232) Point-of-

Interest

M-01 (269) Open-Ended

M-02 (269) Time-of-

Interest

Continued on next page

123

ID (Page No) Physics Problem Animation

Requirement

M-03 (269) Open-Ended

M-04 (270) Open-Ended

M-05 (270) Open-Ended

M-06 (270) Open-Ended

Continued on next page

124

ID (Page No) Physics Problem Animation

Requirement

M-07 (271) Open-Ended

M-08 (273) Open-Ended

Continued on next page

125

ID (Page No) Physics Problem Animation

Requirement

P-01 (163) Open-Ended

P-02 (165) Open-Ended

Continued on next page

126

ID (Page No) Physics Problem Animation

Requirement

P-03 (165) Time-of-

Interest, Point-

of-Interest

P-04 (166) Open-Ended

P-05 (169) Time-of-

Interest, Point-

of-Interest

Continued on next page

127

ID (Page No) Physics Problem Animation

Requirement

P-06 (169) Time-of-

Interest, Point-

of-Interest

P-07 (172) Open-Ended

128

9.3 Analysis of Student Solutions

As mentioned earlier in Section 9.1, we have collected 56 student solutions to a subset of the

physics problems listed in Table 9.1:

• 4 solutions were collected for problems: E-01

• 3 solutions were collected for problems: K-03, K-04, W-07

• 2 solutions were collected for problems: K-02, K-05, K-06, K-07, K-08, K-11, K-12, M-03,

M-05, W-06, W-09

• 1 solution was collected for problems: E-02, E-04, E-05, E-06, K-01, K-09, K-13, K-14,

M-02, P-02, P-04, P-05, P-06, P-07, W-01, W-02, W-03, W-05, W-08, W-11, W-13

• no solutions were collected for remaining problems due to insufficient participation in the

experiment. These are: E-03, E-07, E-08, K-10, M-01, M-04, M-06, M-07, M-08, P-01,P-

03, W-04, W-10, W-12.

The challenges in sketch recognition for handwritten solutions have already been discussed

in Sections 1.1 and 2.1. In this section, we will examine how the three categories of animation we

identified earlier can be applied to the 56 solutions that we have acquired.

129

(a) E-02 Statement (b) E-02 Solution

Figure 9.1: Equilibrium Problem (E-02) and a corresponding student solution, showing an instance

of Open-Ended Animation.

9.3.1 Analysis of Equilibrium Solutions

Figure 9.1(a) shows a multipart equilibrium problem, whose solution is depicted in Figure 9.1(b).

The problem statement in this instance does not place any constraints on time or trajectory. The

system is released from rest and is expected to remain in equilibrium, which is the central assump-

tion for deriving one of the initial conditions. Thus, Figure 9.1(b) is an example of Open-Ended

animation. Furthermore, in this instance, visual feedback can be provided in the form of inferred

motion. If the computed answer is incorrect, then the equilibrium assumption will be nullified, and

the box would move.

The solution for E-04, shown in Figure 9.2(b), is interesting because it does not contain a

diagram. Such instances, by definition, cannot be animated. The solutions for both E-05 and E-06,

shown in Figures 9.3 and 9.4, again depict systems released from rest, under the assumption of

equilibrium. As with Figure 9.1, Open-Ended animation is the suitable approach here.

130

(a) E-04 Statement (b) E-04 Solution

Figure 9.2: Equilibrium Problem (E-04) and a corresponding student solution, showing a scenario

where no animation is possible.

(a) E-05 Statement (b) E-05 Solution

Figure 9.3: Equilibrium Problem (E-05) and a corresponding student solution, showing an instance

of Open-Ended Animation.

131

(a) E-06 Statement (b) E-06 Solution

Figure 9.4: Equilibrium Problem (E-06) and a corresponding student solution, showing an instance

of Open-Ended Animation.

Figure 9.5: Equilibrium Problem (E-01).

132

(a) E-01 Solution 1 (b) E-01 Solution 2

(c) E-01 Solution 3 (d) E-01 Solution 4

Figure 9.6: Four student solutions for E-01, shown in Figure 9.5.

We were able to correct four solutions for the equilibrium problem E-01 (Shown in Fig-

ure 9.5). The solutions are shown in Figure 9.6. All four of these solutions follow the same pattern

as the other equilibrium solutions we have presented in this section. The student is required to

work out some quantity, such that the system remains in equilibrium when it is released from rest.

This scenario lends itself very well to open-ended animations. Figure 9.6(c) is an interesting case,

because it contains two diagrams, both of which seem to be physically implausible. In such cases,

it is not clear what animation should be used.

133

(a) M-03 Statement (b) M-05 Statement

Figure 9.7: Problem statements for M-03 and M-05.

9.3.2 Analysis of Momentum Solutions

We were able to collect two solutions each for two momentum problems (M-03 and M-05). The

statements for these problems are shown in Figure 9.7. M-03 is a multipart problem. In terms of

animation requirements, the first solution, shown in Figure 9.8(a), can be modeled using Open-

Ended animation. The student can compute the initial velocity from the given information, which

can be used to set up the simulation. After the collision happens, the resulting velocities can be

visually confirmed. The second solution, shown in Figure 9.8(b) can be animated in a similar

manner. The student solutions for M-05 are shown in Figure 9.9, and can also be categorized

as Open-Ended animation. However, these two solutions serve to reinforce an interesting point.

In general, collision animations can be split into two parts: before-collision and after-collision.

Sometimes, students draw the states of both these parts separately, as in Figure 9.8(a), 9.8(b)

and 9.9(a). However, the before- and after- collision states can also be combined together into a

single diagram, as shown in Figure 9.9(b), and in examples from Chapter 8. This variance directly

impacts the challenge of understanding momentum diagrams. Recognition systems need to be able

to make sense of both types of diagrams. However, as collision problems are usually simplified to

focus on the aspects of the collision itself, and do not model complex effects like friction, they can

still generally be categorized as falling the Open-Ended animation.

134

(a) M-03 Solution 1 (b) M-03 Solution 2

Figure 9.8: Two solutions for M-03, each depicting instances that can be modeled using

Open-Ended Animation.

(a) M-05 Solution 1 (b) M-05 Solution 2

Figure 9.9: Two solutions for M-05, each depicting instances that can be modeled using

Open-Ended Animation.

135

(a) M-02 Statement (b) M-02 Solution

Figure 9.10: Momentum Problem (M-02) and a corresponding student solution, showing an in-

stance of Time-of-Interest Animation.

The final example of a momentum solution is shown in Figure 9.10(b). This problem is

different from the momentum problems examined in this work so far, because it does not involve

collisions. Instead, this is an impulse problem and requires the student to calculate the value of

impulse applied by a force over a period of time. As a time parameter is defined, this instance can

be modeled using Time-of-Interest animation.

136

(a) P-02 Statement (b) P-02 Solution

Figure 9.11: Pulley Problem (P-02) and a corresponding student solution, showing an instance of

Open-Ended Animation.

9.3.3 Analysis of Pulley Solutions

Pulley problems are interesting because they can be span more than one categories of animation,

depending on how the question is framed. For example, pulley systems can be released from rest,

which can be modeled as an Open-Ended animation. Alternatively, pulley problems may be framed

in a piecemeal way. Figure 9.11(a) depicts a pulley problem that is explicitly framed in a piecemeal

manner. The student is asked to draw separate free-body diagrams for both sides of the pulley. The

computation for each side is also framed separately. with the final part asking for a decision-type

statement. For the student solution in this case (See Figure 9.11(b)), Open-Ended animation is the

only possible way to do animation. Yet, both diagrams will need to be considered, even if only

one is to be animated. This is required because the two freebody diagrams in Figure 9.11(b) form

a coherent whole, even if they are being considered in isolation. We cannot use Time-of-Interest

or Point-of-Interest animation here because we have no hints about either of those parameters.

137

(a) P-04 Statement (b) P-04 Solution

Figure 9.12: Pulley Problem (P-04) and a corresponding student solution, showing an instance of

Open-Ended Animation.

Figure 9.12 is another instance where the pulley system is released from rest, and no hints

are given for time or distance constraints. This problem has already been discussed in Section 8.4,

and is a case where Open-Ended animation is a suitable strategy.

P-05 is an interesting multipart problem, that requires the student to compute both time

and distance values in different parts (See Figure 9.13) The student solution can therefore be cat-

egorized as both Time-of-Interest or Point-of-Interest animation, depending on which part of the

question is being considered.

P-06 (Shown in Figure 9.14) is similar to P-05 (Figure 9.13), because it can be considered

an example of either Point-of-Interest or Time-of-Interest animation, as both constraints are pro-

vided in the statement (See Figure 9.14(a)). However, unlike P-05, both animation categories are

not required for this solution.

The solution for P-07 (Shown in Figure 9.15(b)) consists mostly of text statements, making

this a difficult case for animation. There is a partial figure drawn but it is not very clear.

138

(a) P-05 Statement (b) P-05 Solution

Figure 9.13: Pulley Problem (P-05) and a corresponding student solution, showing an instance

where both Time-of-Interest and Point-of-Interest animations are required.

(a) P-06 Statement (b) P-06 Solution

Figure 9.14: Pulley Problem (P-06) and a corresponding student solution, which can be categorized

as either Time-of-Interest or Point-of-Interest Animation.

139

(a) P-07 Statement (b) P-07 Solution

Figure 9.15: Pulley Problem (P-07) and a corresponding student solution, showing an instance of

Open-Ended Animation.

9.3.4 Analysis of Work and Energy Solutions

For W-7 (Shown in Figure 9.16(a), the problem statement defines a distance limit, which enables

us to categorize this particular problem as Point-of-Interest animation. However, an examination

of three corresponding student solutions shown in Figure 9.17 presents some difficulties. Solution

1 (Figure 9.16(b)) is incomplete. The first two solutions (Figures 9.16(b) and 9.17(a)) both do not

contain any diagrams. Solution 3 (Shown in Figure 9.17(b)) contains a sketched diagram, yet the

student has not marked any distance limits for the diagram. This is an interesting case, because

even though the parameters defined by the problem statement suggest a Point-of-Interest animation

scenario, the student’s diagram can only be modeled using Open-Ended animation, as it does not

contain any annotations depicting a point of interest in the trajectory.

140

(a) W-07 Statement (b) W-07 Solution 1

Figure 9.16: Work and Energy Problem (W-07) and an incomplete student solution.

(a) W-07 Solution 2 (b) W-07 Solution 3

Figure 9.17: Two additional student solutions for the problem in Figure 9.16.

Figure 9.18: Work and Energy Problem (W-06).

141

(a) W-06 Solution 1 (b) W-06 Solution 2

Figure 9.19: Two student solutions for the problem in Figure 9.18.

W-06 (Shown in Figure 9.18) represents a momentum problem (scenario describes an im-

pulse calculation), that is to be solved using work and energy concepts. As a distance parameter is

clearly specified, this problem can be categorized as Point-of-Interest animation. However, when

we examine the student solutions in Figure 9.19, we again encounter a non-existent diagram in

Figure 9.19(a), for which we can’t generate an animation. The second solution (Figure 9.19(b))

contains a diagram but again, the student has not clearly marked the distance range, instead repre-

senting the scenario as a before- and after- collision diagram. This sort of diagram is difficult to

model using Point-of-Interest diagram, therefore Open-Ended animation must be employed for the

diagram in Figure 9.19(b).

Like W-06, W-09 (Figure 9.20) is another case where a distance parameter is specified

by the problem statement, leading us to conclude that the problem may belong to the category of

Point-of-Interest animation. However, when we look at the student solutions in Figure 9.21, we see

that for one solution (Figure 9.21(a), the diagram is very poorly specified for animation purposes3.

However, for the second solution 9.21(b), the diagram is much clearer, and can be animated using

Point-of-Interest animation techniques.

3This does not mean that the student’s version has flaws. ”Poor Specification” in this respect merely implies that it
is difficult to construct an animation for this diagram.

142

Figure 9.20: Work and Energy Problem (W-09).

(a) W-09 Solution 1 (b) W-09 Solution 2

Figure 9.21: Two student solutions for the problem in Figure 9.20.

143

(a) W-01 Statement (b) W-01 Solution

Figure 9.22: Work and Energy Problem (W-01) and a corresponding student solution, showing an

instance of Point-of-Interest Animation.

Animation categories for the remaining examples in this section are fairly self-evident.

For problems that explicitly define a distance or time parameter, the animation category can be

deduced as Point-of-Interest or Time-of-Interest animation. If no such parameters (or equivalent)

are defined in the problem statement, then the animation category may be deduced as Open-Ended

animation. However, analysis of earlier examples allows us to surmise that sometimes, the deduced

categories may not be used directly. If the student solution does not contain a diagram, animation

is not possible. For Point-of-Interest or Time-of-Interest animation categories, the diagram must

contain a distance or time variable (indicated by an appropriate diagram element or annotation).

If no such parameter can be inferred from the student’s solution, then the only recourse is to use

Open-Ended animation.

144

(a) W-02 Statement (b) W-02 Solution

Figure 9.23: Work and Energy Problem (W-02) and a corresponding student solution, showing an

instance of Point-of-Interest Animation.

(a) W-03 Statement (b) W-03 Solution

Figure 9.24: Work and Energy Problem (W-03) and a corresponding student solution, showing an

instance of Point-of-Interest Animation.

145

(a) W-05 Statement (b) W-05 Solution

Figure 9.25: Work and Energy Problem (W-05) and a corresponding student solution. In this

instance, the problem statement indicates a Point-of-Interest animation category but the solution

does not contain a diagram. Such instances cannot be animated.

(a) W-08 Statement (b) W-08 Solution

Figure 9.26: Work and Energy Problem (W-08). As with Figure 9.25, the statement indicates a

Point-of-Interest animation but the student solution does not contain a diagram.

146

(a) W-11 Statement (b) W-11 Solution

Figure 9.27: Work and Energy Problem (W-11) and a corresponding student solution, showing an

instance of Point-of-Interest Animation.

(a) W-13 Statement (b) W-13 Solution

Figure 9.28: Work and Energy Problem (W-13) and a corresponding student solution, showing an

instance of Point-of-Interest Animation.

147

(a) K-03 Statement (b) K-03 Solution 1

Figure 9.29: Kinematics Problem (K-03), and a student solution. This example belongs to the

Open-Ended animation category.

9.3.5 Analysis of Kinematics Solutions

K-03 and its solutions (Figures 9.29 and 9.30) have already been discussed in Section 1.1.1. As

the statement does not define a time or distance parameter, this problem can be categorized as

Open-Ended animation. This categorization can be applied to solutions 1 and 3 (Figures 9.29(b)

and 9.30(b)), but not to solution 2 (Figure 9.30(a)) which does not contain a diagram.

K-04 (Figure 9.31(a)) is an interesting problem because it defines both a distance and a

time parameter. Consequently, this problem can be modeled as either a Point-of-Interest or a

Time-of-Interest animation. However, if we look at the three student solutions, only one contains

a diagram (See Figure 9.31(b)). The other two (Figures 9.32(a) and 9.32(b)) cannot be animated

as no diagram is available.

148

(a) K-03 Solution 2 (b) K-03 Solution 3

Figure 9.30: Two additional student solutions for the problem in Figure 9.29, one of which does

not contain a diagram.

(a) K-04 Statement (b) K-04 Solution 1

Figure 9.31: Kinematics Problem (K-04), and a student solution. This example belongs to the

Open-Ended animation category.

149

(a) K-04 Solution 2 (b) K-04 Solution 3

Figure 9.32: Two additional student solutions for the problem in Figure 9.29, one of which is

incomplete.

150

Figure 9.33: Kinematics Problem (K-02), representing an instance of Open-Ended Animation.

(a) K-02 Solution 1 (b) K-02 Solution 2

Figure 9.34: Two student solutions for the problem in Figure 9.33, one of which does not contain

a diagram.

Animation categories for the remaining student solutions for kinematics problems are self-

evident, and we have adopted an approach similar to the one used for reporting animation cate-

gories for work and energy problems. Problems that explicitly define a distance or time parameter

have been marked as Point-of-Interest or Time-of-Interest category. If no such parameters (or

equivalent) are defined in the problem statement, then the animation category is reported as Open-

Ended animation.

151

Figure 9.35: Kinematics Problem (K-05), representing an instance where either Point-of-Interest

or Time-of-Interest animation may be used.

(a) K-05 Solution 1 (b) K-05 Solution 2

Figure 9.36: Two student solutions for the problem in Figure 9.35

152

Figure 9.37: Kinematics Problem (K-06), representing an instance of Open-Ended Animation.

K-11 (Figure 9.43 is an interesting case. This is the only problem in our dataset where

the answer is not a number or a function, but is instead a sketched diagram. So far, we have only

considered graphing as a feedback mechanism. Figures 9.44(a) and 9.44(b) suggest the need to

support sketched diagrams as animation inputs rather than animation specifications. However, this

complexity can be considered in another way. The last part of the question (See Figure 9.43 that

asks for the graph flows from the previous part. Thus, animating this particular class of student

solutions is equivalent to finding out the link between the graph quantity and some part of the

scenario, which can be modeled using one of the three animation categories (Open-Ended, Time-

of-Interest, and Point-of-Interest).

153

(a) K-06 Solution 1 (b) K-06 Solution 2

Figure 9.38: Two student solutions for the problem in Figure 9.37

Figure 9.39: Kinematics Problem (K-07), representing an instance of Point-of-Interest Animation.

154

(a) K-07 Solution 1 (b) K-07 Solution 2

Figure 9.40: Two student solutions for the problem in Figure 9.39

Figure 9.41: Kinematics Problem (K-08), representing an instance of Time-of-Interest Animation.

155

(a) K-08 Solution 1 (b) K-08 Solution 2

Figure 9.42: Two student solutions for the problem in Figure 9.41, neither of which contains a

diagram.

156

Figure 9.43: Kinematics Problem (K-11), representing an instance of Time-of-Interest Animation.

9.4 Summary

We have conducted a user study to collect real-world samples of physics solutions to better un-

derstand the animation requirements for diagrams sketched by students. The previous chapter

examined some real world physics problems and described how they could be modeled using our

prototype system. In doing so, it became apparent that by and large, the animation could be cate-

gorized in three distinct ways: Open-Ended, Time-of-Interest and Point-of-Interest.

In this chapter, we first described a set of 50 physics problems selected from Young’s Uni-

versity Physics 13th Edition [226], and listed the animation category, based on the scenario and

parameters described in the problem statement. These results are presented in Table 9.1. We

then described our experimental procedure for collecting student solutions for the chosen physics

problems. We were not able to collect the number of solutions that we had initially hoped for.

However, the collected dataset is varied enough to provide insight into the requirements for anima-

tion of sketched physics diagrams. We have listed all 56 solutions collected during our experiment,

and provided a discussion of which animation category each diagram belongs to. For some solu-

tions, we were unable to identify the animation category because the student had not sketched a

diagram. However, whenever a diagram was sketched, it could almost always be described using

the three categories suggested by our earlier modeling of physics problems.

157

(a) K-11 Solution 1 (b) K-11 Solution 2

Figure 9.44: Two student solutions for the problem in Figure 9.43, one of which does not contain

a diagram.

158

Figure 9.45: Kinematics Problem (K-12), representing an instance of Point-of-Interest Animation.

(a) K-12 Solution 1 (b) K-12 Solution 2

Figure 9.46: Two student solutions for the problem in Figure 9.45

159

(a) K-01 Statement (b) K-01 Solution

Figure 9.47: Kinematics Problem (K-01), and a student solution. This example belongs to the

Open-Ended animation category.

(a) K-09 Statement (b) K-09 Solution

Figure 9.48: Kinematics Problem (K-09), and a student solution. This example belongs to the

Open-Ended animation category. However, the student solution does not contain a diagram, and

hence cannot be animated.

160

(a) K-13 Statement (b) K-13 Solution

Figure 9.49: Kinematics Problem (K-13), and a student solution. This example belongs to the

Point-of-Interest animation category.

161

(a) K-14 Statement (b) K-14 Solution

Figure 9.50: Kinematics Problem (K-14), and a student solution. This example belongs to the

Point-of-Interest animation category.

162

CHAPTER 10
CONCLUSION

10.1 Contributions

Section 1 states that our overarching research goal was to:

Investigate methods and techniques to enhance the state-of-the-art for pen-based intelligent

tutoring systems in the domain of physics, with an emphasis on supporting natural workflow and

providing animation support for sketched diagrams.

We have made the following important contributions toward this research goal:

1. Students can work on physics problems using our prototype ITS in a natural manner. We

place three constraints on student input a) Only one diagram is permitted per solution b)

the allowed diagram elements are limited to set described in Section 4.3.4 and c) chained

mathematical steps are not permitted. All of these are soft limits. If the student sketches

more than one diagram, unsupported elements, or writes chained expressions, our prototype

would either not recognize them or would behave in an unpredictable manner. However, in

order to support natural interaction, we still allow students to write them down.

2. Another goal was to adapt pen-based methods for intelligent tutoring purposes. We have

made significant contributions toward this goal. Our system supports the use of two basic

shapes (circles and polygons) to represent objects, two different types of surfaces (poly-

lines and line segments) to model constrained motion, 3 different types of connectors to link

shapes (wires, pulleys, and springs), and four different kinds of annotations (dotted lines,

163

arrows, intervals, and mathematical expressions) to construct simulations from diagram el-

ements. Low-level recognition heuristics for some of these elements are well known (for

example, PaleoSketch [161] describes heuristics for recognizing circles, polygons, helixes,

lines, polylines). For others, we have designed new recognition methods (dotted lines, inter-

vals, pulleys). These three primitives are not very common in sketch recognition literature.

Further experimentation is required to investigate the accuracy of our recognition heuristics

for these diagram elements. Similarly, we have devised high-level recognition and beautifi-

cation methods tailored to deal with the sub-domains of physics that can be modeled using

our prototype ITS. Of these, the QuickDraw [39] system is quite powerful and can be used

to beautify certain aspects of physics diagrams with a high degree of accuracy.

3. Animation of student diagrams is an key research goal for us. We had initially used a single

monolithic physics engine in our earlier prototypes (See Appendix A). This approach was

useful, allowing us to support quick animation, without the user having to provide a full

mathematical description for how objects should move in a particular scenario. Additionally,

a physics engine encapsulates a subset of domain knowledge necessary for its operation.

We demonstrated that realtime data transformations can be used to extend the animation

support provided by a single physics engine. However, this approach was difficult to extend

to new problem domains. In this work, we have described an animation framework that

uses multiple simulators, each tailored to a particular class of physics problems. This is an

extensible and modular design that will enable us to easily extend the capabilities of our

system in the future.

4. We have analyzed of 50 real world physics problems and 56 student solutions, in order to

identify the animation requirements for real-world physics solutions. Our findings indicate

that, within the domain of kinematics, animations can be categorized broadly in three ways:

Open-Ended, Time-of-Interest, and Point-of-Interest. Interestingly, we found that even if the

164

text of a problem indicates a particular category of animation, it may not be possible to use

the said category with a student’s sketched diagram. The chief hurdle is the definition of time

and distance/point parameters for animation. If the student has not marked these clearly, then

Open-Ended animation remains the only viable option. Additionally, if the student elects not

to sketch a diagram, we cannot do animation.

5. We have also described a solution checking method based on deductive reasoning principles.

Our method verifies a solution by finding a path through a graph structure. At this stage, we

do not have a full implementation of the solution checker. In particular, we plan to integrate

a mathematics package (such as Mathematica or Matlab) to be able to check the soundness

of algebraic manipulations. We have described the limitations and strengths of our solution

checker, which is still in its first iteration and can possibly yield significant improvements

with more sophisticated methods.

6. A discussion of the range of physics problems that can be modeled using our prototype is

presented in Chapter 8. Similarly, Chapter 8.4 presents an analysis of the limitations of our

overall method and architecture, and also highlights some missing behaviors which need to

be supported to extend the capabilities of our system.

10.2 Future Work

10.2.1 Improvement in Diagram Recognition

Until now, our goal has primarily been to model various types of physics problems and to try

to devise methods for animating them. This has resulted in less focus on improving recognition

accuracy and system stability and more focus on getting animations correct, even if several tries

165

are required to write the symbols properly. An important benefit of this approach is that we now

have a stable sketch recognition pipeline in place. Currently, the recognizers plugged into the

pipeline are based on heuristic methods and are somewhat brittle. However, as our architecture is

now stable, it is a simple matter to plug in more sophisticated recognition systems. Recognition

heuristics allow for rapid development and testing but may not be as reliable as machine learning

methods. Using machine learning methods poses additional challenges. Large amounts of labeled

physics diagram and solution data are required to train machine learning algorithms, in order to

yield good recognition accuracy.

In this vein, we have constructed a dataset of physics problems and their solutions, com-

prising 50 problems and 56 student solutions to a subset of chosen problems, acquired from 8

students. Chapter 9 describes our experiment for collecting solutions. In this work, we have used

this dataset to identify common animation categories for a range of physics problems. In the fu-

ture, we plan to use this dataset to test the effectiveness of existing state-of-the-art algorithms for

ink stroke segmentation, text/non-text division, and sketch recognition. In summary, the sketch

recognition pipeline and overall architecture for our prototype ITS is firmly in place. We have

identified weak points in our pipeline and have begun work on improve it. Additionally, focusing

on the animation and feedback mechanisms, rather than improving recognition, has also allowed

us to identify common patterns which can be supported and expanded by future iterations of our

pen-based ITS.

10.2.2 Improvement in Mathematics Recognition

Accurate recognition of handwritten mathematics is a key aspect of any pen-based tutoring sys-

tem for STEM disciplines. The math recognizer in our prototype system uses the StarPad [191]

framework. However, StarPad does not report actual accuracy numbers, instead reporting user sat-

166

isfaction metrics. In practice, we have found that StarPad’s recognition performance is good but

errors occur often enough to be problematic.1

Mathematics recognition performance needs to improve drastically to be viable in tutoring

systems. We plan to immediately start work on a new cross-platform, mathematics and handwriting

recognition engine to address this concern. Mathematics and handwriting recognition is a key

element in a wide variety of pen-based systems, and should to be more tractable than general

physics diagram recognition. This notion allows us to hope that the development of a new math

and handwriting recognition system should not be very difficult.

10.2.3 Support for New Types of Diagram Elements and Annotations

Our prototype uses only two basic shapes (circles and polygons) to model elements in a sketched

diagram. Support for arbitrary shapes might be needed for some domains of physics. Additionally,

it may be useful to allow users to define their own shapes as groupings of stroke objects (e.g., a

stick figure described using multiple strokes2)

10.2.4 Multimodal Interaction Methods

For this work, pen-based input and the text of a physics problem were used as inputs. Given the

recent developments in sensing technologies, we foresee that eventually, other sources of input

1The following symbols are often problematic to write:

{A, , , ., 5, S,R,N}

.
2This functionality is supported in earlier systems such as MathPad2. However, in MathPad2, excessive lassoing is

required to group such ink strokes together.

167

may also become necessary. These may include facial expression recognition, sound input, gaze

detection and touch input. With these types of inputs available for an intelligent tutor, the in-

teraction metaphor is not limited sketch understanding, but becomes closer to a perceptual user

interface [203, 158] which must then deal with issues of multimodal input fusion [202, 157, 113].

10.2.5 Improvements in Animation Capabilities

Section 8.4 provides a detailed discussion of the limitations of our animation methodology. One

important area of future work is to expand the animation capabilities for existing domains, and

to construct new simulation engines, in order to support the animation of new types of physics

problems.

Another area of future work is to provide more comprehensive support for the three cate-

gories of animation identified in Chapter 9. Specifically, this task can be broken down into iden-

tifying easy-to-use interaction metaphors that enable a user to easily indicate a large number of

animation parameters.

168

10.2.6 Usability Testing

Intelligent tutoring systems require extensive testing to ascertain their impact upon student learn-

ing. Our prototype ITS is not ready for user testing at this stage, primarily due to the variation in

recognition performance. Several things need to happen before our ITS is ready for a full fledged

usability evaluation. The following list is a condensed version of other points already discussed in

this chapter:

• Mathematics recognition performance must improve significantly.

• Our sketch recognition pipeline can benefit from more sophisticated classification methods,

yielding improvements in stability and recognition performance.

• Deeper analysis of hand-written solutions from physics students to help identify the usability

issues for our prototype system.

169

APPENDIX A
EARLIER PROTOTYPES

170

We have constructed three prototype systems prior to the system described in this work.

This section briefly outlines the progress from each prototype to the next and describes the differ-

ences between them and our current system.

A.1 Prototype 1: Proof of Concept

The primary goal of our initial prototype was to investigate how the answer to a physics problem

could be used to animate a sketched diagram. To this end, we constructed a proof-of-concept sys-

tem that fused mathematical sketching [119] with an underlying physics engine to allow creation

of dynamic illustrations for selected physics concepts. This fusion provided us with a mecha-

nism to infer how to make a proper animation given different levels of granularity of user input,

from diagram only to complete behavioral specification. Through the use of a customized physics

engine [140], we were able to encode the relationship between acceleration, velocity, and posi-

tion/orientation into the system. Figure A.1 shows a spring system that showcases how the encoded

relationship enables a user to specify the minimum information needed to animate the diagram.

A.2 Prototype 2: Sketch Beautification

While the first prototype proved useful in constructing animations, it had several shortcomings.

First, there was no mechanism for correcting sketched drawings. Our initial prototype was also

very simple in its design. Second, it didn’t support the use of equations with dependencies on

other mathematical steps in the solution. For example, in Figure A.2, the net force on the box can

be computed as
∑

F = mg sinα, which depends on the values of α and m defined by the user.

171

Figure A.1: A spring system sketched in our proof-of-concept system. The user writes down only

the masses of the ball and the board. All the remaining mathematical description necessary for

animation is provided transparently by our system.

Our initial system also didn’t include any feedback mechanisms e.g., graphing, or viewing how a

particular quantity associated with a shape changed during the course of animation.

The most major contribution of our second prototype was its sketch-correction mechanism.

Figure A.2 shows an inclined plane problem that highlights the approximate nature of hand-drawn

sketches. The triangle drawn by the user is approximately right-angled. Likewise, the inscribed

angle α is not exactly π/4. Such approximations are acceptable with pen and paper diagrams

because the user relies on his imagination to see concepts in action. However, these inaccuracies

caused problems for the physics engine in our first prototype due to ambiguity between the precise

mathematical specifications and the imprecise drawings. We, therefore developed techniques to

mitigate these inaccuracies.

172

Figure A.2: A typical inclined plane diagram drawn by a student.

A.3 Prototype 3: PhysicsBook

Our third prototype was called PhysicsBook [40]. PhysicsBook shared the use of a customized

physics engine for encoding domain knowledge with previous iterations. This enabled it to de-

velop an understanding of physics problems that require a student to work out either force(s),

acceleration, velocity, displacement, position, or mass. As before, users can associate their own

equations with the diagram by using a simple gesture set. With PhysicsBook, users could also use

annotations such as arrows, dotted lines and angles to provide more information for the animation

subsystem. PhysicsBook included optimizations to cut down on extraneous associations. Lastly, It

extended the capabilities of previous iterations to branches of physics related to f = ma. This was

achieved by designing a framework that could perform the necessary data transformations required

to convert given variables in an equation to one of the acceptable inputs.

173

APPENDIX B
IRB DOCUMENTATION

174

175

176

LIST OF REFERENCES

[1] Gregory D. Abowd. Software engineering issues for ubiquitous computing. In Proceedings
of the 21st International Conference on Software Engineering, ICSE ’99, pages 75–84, New
York, NY, USA, 1999. ACM.

[2] M. Agrawal, A Zotov, Ming Ye, and S. Raghupathy. Context aware on-line diagramming
recognition. In Frontiers in Handwriting Recognition (ICFHR), 2010 International Confer-
ence on, pages 682–687, Nov 2010.

[3] Shaaron Ainsworth, Vaughan Prain, and Russell Tytler. Drawing to Learn in Science. Sci-
ence, 333(6046):1096–1097, August 2011.

[4] Algodoo, 2011. http://www.algodoo.com/wiki/Home.

[5] Christine Alvarado. A natural sketching environmant: Bringing the computer into early
stages of mechanical design. Master’s thesis, MIT, 2000.

[6] Christine Alvarado and Randall Davis. Sketchread: A multi-domain sketch recognition
engine. In Proceedings of the 17th Annual ACM Symposium on User Interface Software
and Technology, UIST ’04, pages 23–32, New York, NY, USA, 2004. ACM.

[7] Christine Alvarado and Michael Lazzareschi. Properties of real-world digital logic dia-
grams. In Pen-Based Learning Technologies, 2007. PLT 2007. First International Workshop
on, pages 1–6. IEEE, 2007.

[8] Derek Anderson, Craig Bailey, and Marjorie Skubic. Hidden markov model symbol recog-
nition for sketch-based interfaces. In AAAI Fall Symposium, pages 15–21, 2004.

[9] John R. Anderson, Albert T. Corbett, Kenneth R. Koedinger, and Ray. Pelletier. Cognitive
tutors: Lessons learned. Journal of the Learning Sciences, 4(2):167–207, 1995.

[10] Lisa Anthony and Jacob O. Wobbrock. A lightweight multistroke recognizer for user in-
terface prototypes. In Proceedings of Graphics Interface 2010, GI ’10, pages 245–252,
Toronto, Ont., Canada, Canada, 2010. Canadian Information Processing Society.

[11] Lisa Anthony and Jacob O. Wobbrock. $n-protractor: A fast and accurate multistroke rec-
ognizer. In Proceedings of Graphics Interface 2012, GI ’12, pages 117–120, Toronto, Ont.,
Canada, Canada, 2012. Canadian Information Processing Society.

[12] Lisa Anthony, Jie Yang, and Kenneth R. Koedinger. Evaluation of multimodal input for
entering mathematical equations on the computer. In CHI ’05 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’05, pages 1184–1187, New York, NY, USA, 2005.
ACM.

177

http://www.algodoo.com/wiki/Home

[13] Lisa Anthony, Jie Yang, and Kenneth R. Koedinger. Benefits of handwritten input for stu-
dents learning algebra equation solving. In Proceedings of the 2007 Conference on Artificial
Intelligence in Education: Building Technology Rich Learning Contexts That Work, pages
521–523, Amsterdam, The Netherlands, The Netherlands, 2007. IOS Press.

[14] Lisa Anthony, Jie Yang, and Kenneth R. Koedinger. A paradigm for handwriting-based
intelligent tutors. Int. J. Hum.-Comput. Stud., 70(11):866–887, November 2012.

[15] Relja Arandjelovic and Tevfik Metin Sezgin. Sketch recognition by fusion of temporal and
image-based features. Pattern Recognition, 44(6):1225 – 1234, 2011.

[16] T. Artieres, S. Marukatat, and P. Gallinari. Online handwritten shape recognition using
segmental hidden markov models. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 29(2):205–217, Feb 2007.

[17] Olufunmilola Atilola, Stephanie Valentine, Hong-Hoe Kim, David Turner, Erin McTigue,
Tracy Hammond, and Julie Linsey. Mechanix: A natural sketch interface tool for teach-
ing truss analysis and free-body diagrams. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 28:169–192, 5 2014.

[18] Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. Ilovesketch: As-natural-as-
possible sketching system for creating 3d curve models. In Proceedings of the 21st Annual
ACM Symposium on User Interface Software and Technology, UIST ’08, pages 151–160,
New York, NY, USA, 2008. ACM.

[19] Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. Everybodylovessketch: 3d sketch-
ing for a broader audience. In Proceedings of the 22Nd Annual ACM Symposium on User
Interface Software and Technology, UIST ’09, pages 59–68, New York, NY, USA, 2009.
ACM.

[20] Henry S. Baird. Background structure in document images. International Journal of Pattern
Recognition and Artificial Intelligence, 08(05):1013–1030, 1994.

[21] David Baraff. An introduction to physically based modeling: rigid body simulation i-
unconstrained rigid body dynamics. SIGGRAPH Course Notes, 1997.

[22] David Baraff. An introduction to physically based modeling: Rigid body simulation ii-
nonpenetration constraints. SIGGRAPH course notes, pages D31–D68, 1997.

[23] Adrien Bernhardt, Adeline Pihuit, Marie-Paule Cani, and Loic Barthe. Matisse: Painting 2d
regions for modeling free-form shapes. In SBIM ’08, pages 57–64, 2008.

[24] Akshay Bhat and Tracy Hammond. Using entropy to distinguish shape versus text in hand-
drawn diagrams. In IJCAI, volume 9, pages 1395–1400, 2009.

[25] Christopher M Bishop, Markus Svensen, and Goeffrey E Hinton. Distinguishing text from
graphics in on-line handwritten ink. In IWFHR, volume 4, pages 142–147, 2004.

[26] Rachel Blagojevic, Samuel Hsiao-Heng Chang, and Beryl Plimmer. The power of automatic
feature selection: Rubine on steroids. In Proceedings of the Seventh Sketch-Based Interfaces
and Modeling Symposium, SBIM ’10, pages 79–86, Aire-la-Ville, Switzerland, Switzerland,
2010. Eurographics Association.

178

[27] Rachel Blagojevic, Beryl Plimmer, John Grundy, and Yong Wang. Using data mining
for digital ink recognition: Dividing text and shapes in sketched diagrams. Computers
& Graphics, 35(5):976–991, 2011.

[28] Julien Blanchard and Thierry Artieres. On-line handwritten documents segmentation. In
Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth International Workshop
on, pages 148–153. IEEE, 2004.

[29] Lars Bollen and Wouter R van Joolingen. Simsketch: Multi-agent simulations based on
learner-created sketches for early science education. IEEE transactions on learning tech-
nologies, page 1, 2013.

[30] Jared N. Bott, Daniel Gabriele, and Joseph J. LaViola, Jr. Now or later: An initial ex-
ploration into user perception of mathematical expression recognition feedback. In Pro-
ceedings of the Eighth Eurographics Symposium on Sketch-Based Interfaces and Modeling,
SBIM ’11, pages 125–132, New York, NY, USA, 2011. ACM.

[31] Jared N. Bott and Joseph J. LaViola, Jr. A pen-based tool for visualizing vector mathe-
matics. In Proceedings of the Seventh Sketch-Based Interfaces and Modeling Symposium,
SBIM ’10, pages 103–110, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics As-
sociation.

[32] Martin Bresler, Daniel Pruša, and Václav Hlavác. Simultaneous segmentation and recogni-
tion of graphical symbols using a composite descriptor. CVWW, 13:16–23, 2013.

[33] Sarah Buchanan and Joseph J. Laviola, Jr. Cstutor: A sketch-based tool for visualizing data
structures. Trans. Comput. Educ., 14(1):3:1–3:28, March 2014.

[34] Chris Calhoun, Thomas F Stahovich, Tolga Kurtoglu, and Levent Burak Kara. Recognizing
multi-stroke symbols. In AAAI Spring Symposium on Sketch Understanding, pages 15–23,
2002.

[35] Giovanni Casella, Vincenzo Deufemia, Viviana Mascardi, Gennaro Costagliola, and Mau-
rizio Martelli. An agent-based framework for sketched symbol interpretation. Journal of
Visual Languages & Computing, 19(2):225–257, 2008.

[36] Sonya Cates. Combining Representations for Improved Sketch Recognition. PhD thesis,
Massachusetts Institute of Technology, September 2009.

[37] R Cattoni, T Coianiz, S Messelodi, and CM Modena. Geometric layout analysis techniques
for document image understanding: a review. ITC-irst Technical Report, 9703(09), 1998.

[38] Salman Cheema, Sarah Buchanan, Sumit Gulwani, and Joseph J. LaViola, Jr. A practical
framework for constructing structured drawings. In Proceedings of the 19th International
Conference on Intelligent User Interfaces, IUI ’14, pages 311–316, New York, NY, USA,
2014. ACM.

[39] Salman Cheema, Sumit Gulwani, and Joseph LaViola. Quickdraw: Improving drawing
experience for geometric diagrams. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, pages 1037–1046, New York, NY, USA, 2012.
ACM.

179

[40] Salman Cheema and Joseph LaViola. Physicsbook: A sketch-based interface for animating
physics diagrams. In Proceedings of the 2012 ACM International Conference on Intelligent
User Interfaces, IUI ’12, pages 51–60, New York, NY, USA, 2012. ACM.

[41] Salman Cheema and Joseph J. LaViola, Jr. Applying mathematical sketching to sketch-
based physics tutoring software. In Proceedings of the 10th international conference on
Smart graphics, SG’10, pages 13–24, Berlin, Heidelberg, 2010. Springer-Verlag.

[42] Salman Cheema and Joseph J. LaViola, Jr. Towards intelligent motion inferencing in math-
ematical sketching. In Proceedings of the 15th international conference on Intelligent user
interfaces, IUI ’10, pages 289–292, New York, NY, USA, 2010. ACM.

[43] C.E. Cheong, Ho-Yon Kim, Jang-Won Suh, and J.-H. Kim. Handwritten numeral string
recognition with stroke grouping. In Document Analysis and Recognition, 1999. ICDAR
’99. Proceedings of the Fifth International Conference on, pages 745–748, Sept 1999.

[44] John Clement. Imagistic simulation and physical intuition in expert problem solving. In
Proceedings of the 16th annual conference of the Cognitive Science Society, pages 201–
206, 1994.

[45] Jonathan M. Cohen, John F. Hughes, and Robert C. Zeleznik. Harold: A world made of
drawings. In Proceedings of the 1st International Symposium on Non-photorealistic Ani-
mation and Rendering, NPAR ’00, pages 83–90, New York, NY, USA, 2000. ACM.

[46] Philip R. Cohen, Michael Johnston, David McGee, Sharon Oviatt, Jay Pittman, Ira Smith,
Liang Chen, and Josh Clow. Quickset: Multimodal interaction for distributed applications.
In Proceedings of the Fifth ACM International Conference on Multimedia, MULTIMEDIA
’97, pages 31–40, New York, NY, USA, 1997. ACM.

[47] Cristina Conati, Abigail Gertner, and Kurt VanLehn. Using bayesian networks to manage
uncertainty in student modeling. User Modeling and User-Adapted Interaction, 12(4):371–
417, 2002.

[48] Travis J. Cossairt and Joseph J. LaViola, Jr. Setpad: A sketch-based tool for exploring
discrete math set problems. In Proceedings of the International Symposium on Sketch-Based
Interfaces and Modeling, SBIM ’12, pages 47–56, Aire-la-Ville, Switzerland, Switzerland,
2012. Eurographics Association.

[49] Gennaro Costagliola, Mattia De Rosa, and Vittorio Fuccella. Recognition and autocomple-
tion of partially drawn symbols by using polar histograms as spatial relation descriptors.
Computers & Graphics, 39(0):101 – 116, 2014.

[50] Crayon physics, 2014. http://www.crayonphysics.com/.

[51] Richard C. Davis, Brien Colwell, and James A. Landay. K-sketch: a ’kinetic’ sketch pad
for novice animators. In CHI ’08, pages 413–422, 2008.

[52] Mattia De Rosa. New Methods, techniques and applications for sketch recognition. PhD
thesis, Universita degli studi di Salerno, 2014.

[53] Ruwanee de Silva, David Tyler Bischel, WeeSan Lee, Eric J. Peterson, Robert C. Calfee, and
Thomas F. Stahovich. Kirchhoff’s pen: A pen-based circuit analysis tutor. In Proceedings
of the 4th Eurographics Workshop on Sketch-based Interfaces and Modeling, SBIM ’07,
pages 75–82, New York, NY, USA, 2007. ACM.

180

http://www.crayonphysics.com/

[54] Adrien Delaye and Eric Anquetil. {HBF49} feature set: A first unified baseline for online
symbol recognition. Pattern Recognition, 46(1):117 – 130, 2013.

[55] Adrien Delaye and Cheng-Lin Liu. Contextual text/non-text stroke classification in online
handwritten notes with conditional random fields. Pattern Recognition, 47(3):959 – 968,
2014. Handwriting Recognition and other {PR} Applications.

[56] Adrien Delaye and Cheng-Lin Liu. Multi-class segmentation of free-form online docu-
ments with tree conditional random fields. International Journal on Document Analysis
and Recognition (IJDAR), pages 1–17, 2014.

[57] Michel C. Desmarais and Xiaoming Pu. A bayesian student model without hidden nodes
and its comparison with item response theory. Int. J. Artif. Intell. Ed., 15(4):291–323, De-
cember 2005.

[58] Daniel Dixon, Manoj Prasad, and Tracy Hammond. icandraw: Using sketch recognition and
corrective feedback to assist a user in drawing human faces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’10, pages 897–906, New York,
NY, USA, 2010. ACM.

[59] N. Donmez and K. Singh. Concepture: A regular language based framework for recogniz-
ing gestures with varying and repetitive patterns. In Proceedings of the International Sym-
posium on Sketch-Based Interfaces and Modeling, SBIM ’12, pages 29–37, Aire-la-Ville,
Switzerland, Switzerland, 2012. Eurographics Association.

[60] M.-P. Dubuisson and AK. Jain. A modified hausdorff distance for object matching. In
Pattern Recognition, 1994. Vol. 1 - Conference A: Computer Vision amp; Image Processing.,
Proceedings of the 12th IAPR International Conference on, volume 1, pages 566–568 vol.1,
Oct 1994.

[61] David H Eberly. Game physics. Elsevier, 2003.

[62] Christiane Fellbaum. WordNet. Wiley Online Library, 1998.

[63] D.G. Fernndez-Pacheco, F. Albert, N. Aleixos, and J. Conesa. A new paradigm based
on agents applied to free-hand sketch recognition. Expert Systems with Applications,
39(8):7181 – 7195, 2012.

[64] Martin Field, Stephanie Valentine, Julie Linsey, and Tracy Hammond. Sketch recognition
algorithms for comparing complex and unpredictable shapes. In Proceedings of the Twenty-
Second international joint conference on Artificial Intelligence-Volume Volume Three, pages
2436–2441. AAAI Press, 2011.

[65] Michael Fligner, Joseph Verducci, Jeff Bjoraker, and Paul Blower. A new association coef-
ficient for molecular dissimilarity. In The Second Joint Sheffield Conference on Chemoin-
formatics, 2001.

[66] Manuel J Fonseca, César Pimentel, and Joaquim A Jorge. Cali: An online scribble recog-
nizer for calligraphic interfaces. In AAAI spring symposium on sketch understanding, pages
51–58, 2002.

[67] Kenneth Forbus, Jeffrey Usher, Andrew Lovett, Kate Lockwood, and Jon Wetzel. Cogs-
ketch: Sketch understanding for cognitive science research and for education. Topics in
Cognitive Science, 2011.

181

[68] Andrew Forsberg, Mark Dieterich, and Robert Zeleznik. The music notepad. In Proceed-
ings of the 11th annual ACM symposium on User interface software and technology, UIST
’98, pages 203–210, New York, NY, USA, 1998. ACM.

[69] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors). The Annals of
Statistics, 28(2):337–407, 04 2000.

[70] Luoting Fu and Levent Burak Kara. From engineering diagrams to engineering models:
Visual recognition and applications. Computer-Aided Design, 43(3):278 – 292, 2011.

[71] Luoting Fu and Levent Burak Kara. Neural network-based symbol recognition using a few
labeled samples. Computers & Graphics, 35(5):955 – 966, 2011.

[72] Leslie Gennari, Levent Burak Kara, Thomas F Stahovich, and Kenji Shimada. Combining
geometry and domain knowledge to interpret hand-drawn diagrams. Computers & Graph-
ics, 29(4):547–562, 2005.

[73] Abigail S Gertner, Cristina Conati, and Kurt VanLehn. Procedural help in andes: Generating
hints using a bayesian network student model. AAAI/IAAI, 1998:106–11, 1998.

[74] AC. Graesser, P. Chipman, B.C. Haynes, and A Olney. Autotutor: an intelligent tutoring
system with mixed-initiative dialogue. Education, IEEE Transactions on, 48(4):612–618,
Nov 2005.

[75] Arthur C Graesser, Katja Wiemer-Hastings, Peter Wiemer-Hastings, and Roger Kreuz. Au-
totutor: A simulation of a human tutor. Cognitive Systems Research, 1(1):35 – 51, 1999.

[76] ArthurC. Graesser, Shulan Lu, GeorgeTanner Jackson, HeatherHite Mitchell, Mathew Ven-
tura, Andrew Olney, and MaxM. Louwerse. Autotutor: A tutor with dialogue in natural
language. Behavior Research Methods, Instruments, & Computers, 36(2):180–192, 2004.

[77] Mark D. Gross. The electronic cocktail napkina computational environment for working
with design diagrams. Design Studies, 17(1):53 – 69, 1996.

[78] Mark D. Gross and Ellen Yi-Luen Do. Ambiguous intentions: A paper-like interface for
creative design. In Proceedings of the 9th Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’96, pages 183–192, New York, NY, USA, 1996. ACM.

[79] John Grundy and J. Hosking. Supporting generic sketching-based input of diagrams in a
domain-specific visual language meta-tool. In Software Engineering, 2007. ICSE 2007.
29th International Conference on, pages 282–291, May 2007.

[80] A. Hall, C. Pomm, and P. Widmayer. A combinatorial approach to multi-domain sketch
recognition. In Proceedings of the 4th Eurographics Workshop on Sketch-based Interfaces
and Modeling, SBIM ’07, pages 7–14, New York, NY, USA, 2007. ACM.

[81] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The weka data mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, November 2009.

[82] Tracy Hammond and Randall Davis. Tahuti: A geometrical sketch recognition system for
uml class diagrams. In AAAI Spring Symposium on Sketch Understanding, pages 59–68,
Stanford, California, March 25-27 2002. AAAI Press.

182

[83] Tracy Hammond and Randall Davis. Ladder, a sketching language for user interface devel-
opers. Computers & Graphics, 29(4):518 – 532, 2005.

[84] Tracy Hammond and Brandon Paulson. Recognizing sketched multistroke primitives. ACM
Trans. Interact. Intell. Syst., 1(1):4:1–4:34, October 2011.

[85] Tracy A. Hammond and Randall Davis. Recognizing interspersed sketches quickly. In
Proceedings of Graphics Interface 2009, GI ’09, pages 157–166, Toronto, Ont., Canada,
Canada, 2009. Canadian Information Processing Society.

[86] R.M. Haralick, Stanley R. Sternberg, and Xinhua Zhuang. Image analysis using mathe-
matical morphology. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
PAMI-9(4):532–550, July 1987.

[87] Mary Hegarty. Mechanical reasoning by mental simulation. Trends in Cognitive Sciences,
8(6):280 – 285, 2004.

[88] J. Herold and T. F. Stahovich. Classyseg: A machine learning approach to automatic stroke
segmentation. In Proceedings of the Eighth Eurographics Symposium on Sketch-Based In-
terfaces and Modeling, SBIM ’11, pages 109–116, New York, NY, USA, 2011. ACM.

[89] James Herold and Thomas F. Stahovich. Speedseg: A technique for segmenting pen strokes
using pen speed. Computers and Graphics, 35(2):250 – 264, 2011.

[90] Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Eibe Frank, and Mark Hall. Mul-
ticlass alternating decision trees. In Tapio Elomaa, Heikki Mannila, and Hannu Toivonen,
editors, Machine Learning: ECML 2002, volume 2430 of Lecture Notes in Computer Sci-
ence, pages 161–172. Springer Berlin Heidelberg, 2002.

[91] Jason I. Hong and James A. Landay. Satin: A toolkit for informal ink-based applications.
In Proceedings of the 13th Annual ACM Symposium on User Interface Software and Tech-
nology, UIST ’00, pages 63–72, New York, NY, USA, 2000. ACM.

[92] Heloise Hwawen Hse and A. Richard Newton. Recognition and beautification of multi-
stroke symbols in digital ink. Computers & Graphics, 29(4):533 – 546, 2005.

[93] Takeo Igarashi, Satoshi Matsuoka, Sachiko Kawachiya, and Hidehiko Tanaka. Interactive
beautification: a technique for rapid geometric design. In UIST ’97, pages 105–114, 1997.

[94] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: a sketching interface for
3d freeform design. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’99, pages 409–416, New York, NY, USA, 1999.
ACM Press/Addison-Wesley Publishing Co.

[95] Emanuel Indermühle, Horst Bunke, Faisal Shafait, and Thomas Breuel. Text versus non-text
distinction in online handwritten documents. In Proceedings of the 2010 ACM Symposium
on Applied Computing, SAC ’10, pages 3–7, New York, NY, USA, 2010. ACM.

[96] Emanuel Indermühle, Volkmar Frinken, and Horst Bunke. Mode detection in online hand-
written documents using blstm neural networks. ICFHR, 12:302–307, 2012.

[97] Anil K Jain, Anoop M Namboodiri, and Jayashree Subrahmonia. Structure in on-line doc-
uments. In Document Analysis and Recognition, 2001. Proceedings. Sixth International
Conference on, pages 844–848. IEEE, 2001.

183

[98] Yingying Jiang, Feng Tian, Hongan Wang, Xiaolong Zhang, Xugang Wang, and Guozhong
Dai. Intelligent understanding of handwritten geometry theorem proving. In Proceedings
of the 15th international conference on Intelligent user interfaces, IUI ’10, pages 119–128,
New York, NY, USA, 2010. ACM.

[99] Gabe Johnson, Mark Gross, Ellen Yi-Luen Do, and Jason Hong. Sketch it, make it: Sketch-
ing precise drawings for laser cutting. In CHI ’12 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’12, pages 1079–1082, New York, NY, USA, 2012. ACM.

[100] W Lewis Johnson, Jeff Rickel, Randy Stiles, and Allen Munro. Integrating pedagogi-
cal agents into virtual environments. Presence: Teleoperators and Virtual Environments,
7(6):523–546, 1998.

[101] PN Johnson-Laird. Imagery, visualization, and thinking. Perception and cognition at cen-
turys end, pages 441–467, 1998.

[102] David Johnston and Christine Alvarado. Sketch Recognition of Digital Logical Circuits.
PhD thesis, MS Thesis, Dept. Comput. Sci. Eng., Univ. California, San Diego, CA, 2013.

[103] Bo Kang and Joseph LaViola. Logicpad: A pen-based application for visualization and
verification of boolean algebra. In Proceedings of the 2012 ACM International Conference
on Intelligent User Interfaces, IUI ’12, pages 265–268, New York, NY, USA, 2012. ACM.

[104] Levent Burak Kara, Leslie Gennari, and Thomas F. Stahovich. A sketch-based tool for
analyzing vibratory mechanical systems. Journal of Mechanical Design, 130(10):101101,
2008.

[105] Levent Burak Kara and Thomas F. Stahovich. An image-based, trainable symbol recognizer
for hand-drawn sketches. Computers & Graphics, 29(4):501 – 517, 2005.

[106] Manolya Kavakli and John S Gero. Sketching as mental imagery processing. Design Stud-
ies, 22(4):347 – 364, 2001.

[107] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, Shengdong Zhao, and George Fitz-
maurice. Draco: Bringing life to illustrations. In CHI ’14 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’14, pages 579–582, New York, NY, USA, 2014.
ACM.

[108] Rubaiat Habib Kazi, Takeo Igarashi, Shengdong Zhao, and Richard Davis. Vignette: inter-
active texture design and manipulation with freeform gestures for pen-and-ink illustration.
In CHI ’12, pages 1727–1736, 2012.

[109] Koichi Kise, Akinori Sato, and Motoi Iwata. Segmentation of page images using the area
voronoi diagram. Computer Vision and Image Understanding, 70(3):370 – 382, 1998.

[110] J. Kittler, M. Hatef, R. P W Duin, and J. Matas. On combining classifiers. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 20(3):226–239, Mar 1998.

[111] Kenneth R Koedinger, Albert Corbett, et al. Cognitive tutors: Technology bringing learning
sciences to the classroom. na, 2006.

[112] Tolga Kurtoglu and Thomas F Stahovich. Interpreting schematic sketches using physical
reasoning. In AAAI Spring Symposium on Sketch Understanding, pages 78–85. AAAI Press
Menlo Park, CA, 2002.

184

[113] Denis Lalanne, Laurence Nigay, philippe Palanque, Peter Robinson, Jean Vanderdonckt,
and Jean-François Ladry. Fusion engines for multimodal input: A survey. In Proceedings
of the 2009 International Conference on Multimodal Interfaces, ICMI-MLMI ’09, pages
153–160, New York, NY, USA, 2009. ACM.

[114] Mary LaLomia. User acceptance of handwritten recognition accuracy. In Conference Com-
panion on Human Factors in Computing Systems, CHI ’94, pages 107–108, New York, NY,
USA, 1994. ACM.

[115] Thomas K Landauer, Peter W. Foltz, and Darrell Laham. An introduction to latent semantic
analysis. Discourse Processes, 25(2-3):259–284, 1998.

[116] James A. Landay and Brad A. Myers. Interactive sketching for the early stages of user in-
terface design. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’95, pages 43–50, New York, NY, USA, 1995. ACM Press/Addison-Wesley
Publishing Co.

[117] Jill H. Larkin and Herbert A. Simon. Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science, 11(1):65–100, 1987.

[118] J.J. LaViola and R.C. Zeleznik. A practical approach for writer-dependent symbol recogni-
tion using a writer-independent symbol recognizer. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 29(11):1917–1926, Nov 2007.

[119] Joseph J. Laviola, Jr. Mathematical sketching: a new approach to creating and explor-
ing dynamic illustrations. PhD thesis, Brown University, Providence, RI, USA, 2005.
AAI3174634.

[120] Joseph J. LaViola, Jr. and Robert C. Zeleznik. Mathpad2: a system for the creation and
exploration of mathematical sketches. ACM Trans. Graph., 23:432–440, August 2004.

[121] C. Lee, J. Jordan, T. F. Stahovich, and J. Herold. Newtons pen ii: An intelligent, sketch-
based tutoring system and its sketch processing techniques. In Proceedings of the Inter-
national Symposium on Sketch-Based Interfaces and Modeling, SBIM ’12, pages 57–65,
Aire-la-Ville, Switzerland, Switzerland, 2012. Eurographics Association.

[122] Seong-Whan Lee and Dae-Seok Ryu. Parameter-free geometric document layout analy-
sis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(11):1240–1256,
2001.

[123] WeeSan Lee, Ruwanee de Silva, Eric J. Peterson, Robert C. Calfee, and Thomas F. Sta-
hovich. Newton’s pen: a pen-based tutoring system for statics. In Proceedings of the 4th
Eurographics workshop on Sketch-based interfaces and modeling, SBIM ’07, pages 59–66,
New York, NY, USA, 2007. ACM.

[124] WeeSan Lee, Levent Burak Kara, and Thomas F. Stahovich. An efficient graph-based rec-
ognizer for hand-drawn symbols. Computers & Graphics, 31(4):554 – 567, 2007.

[125] Chuanjun Li, Timothy S Miller, Robert C Zeleznik, and Joseph J LaViola Jr. Algosketch:
Algorithm sketching and interactive computation. In SBM, pages 175–182. Citeseer, 2008.

[126] Yang Li. Protractor: A fast and accurate gesture recognizer. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’10, pages 2169–2172, New
York, NY, USA, 2010. ACM.

185

[127] Yang Li, James A. Landay, Zhiwei Guan, Xiangshi Ren, and Guozhong Dai. Sketching
informal presentations. In ICMI ’03, pages 234–241, 2003.

[128] Shizhong Liao and Menghua Duan. Sketch recognition via string kernel. In Natural Com-
putation (ICNC), 2012 Eighth International Conference on, pages 101–105, May 2012.

[129] Ellen Yi luen Do and Mark D. Gross. Drawing as a means to design reasoning. AI and
Design, 1996.

[130] Graham Mackenzie and Natasha Alechina. Classifying sketches of animals using an agent-
based system. In Nicolai Petkov and MichelA. Westenberg, editors, Computer Analysis of
Images and Patterns, volume 2756 of Lecture Notes in Computer Science, pages 521–529.
Springer Berlin Heidelberg, 2003.

[131] James V Mahoney and Markus PJ Fromherz. Three main concerns in sketch recognition
and an approach to addressing them. In AAAI Spring Symposium on Sketch Understanding,
pages 105–112, 2002.

[132] JamesV. Mahoney and MarkusP.J. Fromherz. Interpreting sloppy stick figures by graph
rectification and constraint-based matching. In Dorothea Blostein and Young-Bin Kwon,
editors, Graphics Recognition Algorithms and Applications, volume 2390 of Lecture Notes
in Computer Science, pages 222–235. Springer Berlin Heidelberg, 2002.

[133] Nicolas Mangano and Noi Sukaviriya. Inkus: A freehand method of creating business pro-
cess models. In Proceedings of the Seventh Sketch-Based Interfaces and Modeling Sympo-
sium, SBIM ’10, pages 143–150, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurograph-
ics Association.

[134] Song Mao, Azriel Rosenfeld, and Tapas Kanungo. Document structure analysis algorithms:
a literature survey. In Electronic Imaging 2003, pages 197–207. International Society for
Optics and Photonics, 2003.

[135] J. Mas, G. Sanchez, J. Llados, and B. Lamiroy. An incremental on-line parsing algorithm
for recognizing sketching diagrams. In Document Analysis and Recognition, 2007. ICDAR
2007. Ninth International Conference on, volume 1, pages 452–456, Sept 2007.

[136] Noboru Matsuda and Kurt VanLehn. Gramy: A geometry theorem prover capable of con-
struction. Journal of Automated Reasoning, 32(1):3–33, 2004.

[137] T. Matsushita, Cheng Cheng, Y. Murata, Bilan Zhu, and M. Nakagawa. Effect of text/non-
text classification for ink search employing string recognition. In Document Analysis Sys-
tems (DAS), 2012 10th IAPR International Workshop on, pages 230–234, March 2012.

[138] Michael Mayo and Antonija Mitrovic. Optimising its behaviour with bayesian networks and
decision theory. International Journal of Artificial Intelligence in Education, 12:124–153,
2001.

[139] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–41,
November 1995.

[140] Ian Millington. Game Physics Engine Development (The Morgan Kaufmann Series in In-
teractive 3D Technology). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2007.

186

[141] Antonija Mitrovic. An intelligent sql tutor on the web. International Journal of Artificial
Intelligence in Education, 13(2):173–197, 2003.

[142] Antonija Mitrovic and Stellan Ohlsson. Evaluation of a constraint-based tutor for a database
language. International Journal on Artificial Intelligence in Education, 10(3–4):238–56,
1999.

[143] Keisuke Mochida and Masaki Nakagawa. Separating figures, mathematical formulas and
japanese text from free handwriting in mixed online documents. International Journal of
Pattern Recognition and Artificial Intelligence, 18(07):1173–1187, 2004.

[144] Yuki Mori and Takeo Igarashi. Plushie: an interactive design system for plush toys. In
SIGGRAPH ’07, 2007.

[145] G. Nagy, S. Seth, and M. Viswanathan. A prototype document image analysis system for
technical journals. Computer, 25(7):10–22, July 1992.

[146] Anoop M Namboodiri and Anil K Jain. Robust segmentation of unconstrained online hand-
written documents. In ICVGIP, pages 165–170, 2004.

[147] Gabriele Nataneli and Petros Faloutsos. Robust classification of strokes with svm and
grouping. In George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Nikos Paragios,
Syeda-Mahmood Tanveer, Tao Ju, Zicheng Liu, Sabine Coquillart, Carolina Cruz-Neira,
Torsten Mller, and Tom Malzbender, editors, Advances in Visual Computing, volume 4841
of Lecture Notes in Computer Science, pages 76–87. Springer Berlin Heidelberg, 2007.

[148] Ulric Neisser and Paul Weene. A note on human recognition of hand-printed characters.
Information and Control, 3(2):191 – 196, 1960.

[149] Mark W. Newman, James Lin, Jason I. Hong, and James A. Landay. Denim: an informal
web site design tool inspired by observations of practice. Hum.-Comput. Interact., 18:259–
324, September 2003.

[150] Newton’s playground, 2014. http://www.educade.org/teaching_tools/
newtons-playground.

[151] L. O’Gorman. The document spectrum for page layout analysis. IEEE Trans. Pattern Anal.
Mach. Intell., 15(11):1162–1173, November 1993.

[152] Makoto Okabe, Shigeru Owada, and Takeo Igarash. Interactive design of botanical trees
using freehand sketches and example-based editing. Computer Graphics Forum, 24(3):487–
496, 2005.

[153] Michael Oltmans and Randall Davis. Naturally conveyed explanations of device behavior.
In Proceedings of the 2001 workshop on Perceptive user interfaces, PUI ’01, pages 1–8,
New York, NY, USA, 2001. ACM.

[154] Tom Y. Ouyang and Randall Davis. Recognition of hand drawn chemical diagrams. In Pro-
ceedings of the 22Nd National Conference on Artificial Intelligence - Volume 1, AAAI’07,
pages 846–851. AAAI Press, 2007.

[155] Tom Y Ouyang and Randall Davis. A visual approach to sketched symbol recognition. In
IJCAI, volume 9, pages 1463–1468, 2009.

187

http://www.educade.org/teaching_tools/newtons-playground
http://www.educade.org/teaching_tools/newtons-playground

[156] Tom Y. Ouyang and Randall Davis. Chemink: a natural real-time recognition system for
chemical drawings. In Proceedings of the 16th international conference on Intelligent user
interfaces, IUI ’11, pages 267–276, New York, NY, USA, 2011. ACM.

[157] Sharon Oviatt. Multimodal interfaces. The human-computer interaction handbook: Fun-
damentals, evolving technologies and emerging applications, pages 286–304, 2003.

[158] Sharon Oviatt and Philip Cohen. Perceptual user interfaces: Multimodal interfaces that
process what comes naturally. Commun. ACM, 43(3):45–53, March 2000.

[159] Roy P. Pargas and Samuel Bryfczynski. Using ink to expose students’ thought processes in
cs2/cs7. SIGCSE Bull., 41(1):168–172, March 2009.

[160] Rachel Patel, Beryl Plimmer, John Grundy, and Ross Ihaka. Ink features for diagram recog-
nition. In Proceedings of the 4th Eurographics workshop on Sketch-based interfaces and
modeling, SBIM ’07, pages 131–138, New York, NY, USA, 2007. ACM.

[161] Brandon Paulson and Tracy Hammond. Paleosketch: accurate primitive sketch recognition
and beautification. In Proceedings of the 13th international conference on Intelligent user
interfaces, IUI ’08, pages 1–10, New York, NY, USA, 2008. ACM.

[162] Brandon Chase Paulson. Rethinking Pen Input Interaction: Enabling Freehand Sketching
Through Improved Primitive Recognition. PhD thesis, Texas A & M University, College
Station, TX, USA, 2010. AAI3416265.

[163] João P. Pereira, Joaquim A. Jorge, Vasco A. Branco, Nelson F. Silva, Tiago D. Cardoso,
and F. Nunes Ferreira. Cascading recognizers for ambiguous calligraphic interaction. In
Proceedings of the First Eurographics Conference on Sketch-Based Interfaces and Mod-
eling, SBM’04, pages 63–72, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics
Association.

[164] Adeline Pihuit, Marie-Paule Cani, and Olivier Palombi. Sketch-based modeling of vas-
cular systems: A first step towards interactive teaching of anatomy. In Proceedings of
the Seventh Sketch-Based Interfaces and Modeling Symposium, SBIM ’10, pages 151–158,
Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Association.

[165] Y. Qi, M. Szummer, and T.P. Minka. Diagram structure recognition by bayesian conditional
random fields. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, volume 2, pages 191–196 vol. 2, June 2005.

[166] Lin Qiu. Sketchuml: The design of a sketch-based tool for uml class diagrams. In World
Conference on Educational Multimedia, Hypermedia and Telecommunications, pages 986–
994, 2007.

[167] Janet C. Read, Stuart MacFarlane, and Chris Casey. ’good enough for what?’: Acceptance
of handwriting recognition errors by child users. In Proceedings of the 2003 Conference
on Interaction Design and Children, IDC ’03, pages 155–155, New York, NY, USA, 2003.
ACM.

[168] Jeff Rickel and W. Lewis Johnson. Animated agents for procedural training in virtual real-
ity: Perception, cognition, and motor control. Applied Artificial Intelligence, 13(4-5):343–
382, 1999.

188

[169] Dean Rubine. Specifying gestures by example. SIGGRAPH Comput. Graph., 25(4):329–
337, July 1991.

[170] William Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[171] Eric Saund, David Fleet, Daniel Larner, and James Mahoney. Perceptually-supported image
editing of text and graphics. In Proceedings of the 16th Annual ACM Symposium on User
Interface Software and Technology, UIST ’03, pages 183–192, New York, NY, USA, 2003.
ACM.

[172] Eric Saund and Thomas P. Moran. A perceptually-supported sketch editor. In Proceedings
of the 7th Annual ACM Symposium on User Interface Software and Technology, UIST ’94,
pages 175–184, New York, NY, USA, 1994. ACM.

[173] Richard Scheines and Wilfried Sieg. Computer environments for proof construction. Inter-
active Learning Environments, 4(2):159–169, 1994.

[174] Jeremy Scott and Randall Davis. Physink: Sketching physical behavior. In Proceedings
of the Adjunct Publication of the 26th Annual ACM Symposium on User Interface Software
and Technology, UIST ’13 Adjunct, pages 9–10, New York, NY, USA, 2013. ACM.

[175] Tevfik Metin Sezgin and Randall Davis. Hmm-based efficient sketch recognition. In Pro-
ceedings of the 10th International Conference on Intelligent User Interfaces, IUI ’05, pages
281–283, New York, NY, USA, 2005. ACM.

[176] Tevfik Metin Sezgin, Thomas Stahovich, and Randall Davis. Sketch based interfaces: Early
processing for sketch understanding. In ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06,
New York, NY, USA, 2006. ACM.

[177] T.M. Sezgin and R. Davis. Sketch interpretation using multiscale models of temporal pat-
terns. Computer Graphics and Applications, IEEE, 27(1):28–37, Jan 2007.

[178] Faisal Shafait, Daniel Keysers, and Thomas M Breuel. Performance evaluation and bench-
marking of six-page segmentation algorithms. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 30(6):941–954, 2008.

[179] D. Sharon and M. Van De Panne. Constellation models for sketch recognition. In Pro-
ceedings of the Third Eurographics Conference on Sketch-Based Interfaces and Modeling,
SBM’06, pages 19–26, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics Asso-
ciation.

[180] Sharpnlp project, 2014. http://sharpnlp.codeplex.com/.

[181] Roger N Shepard. Externalization of mental images and the act of creation. Visual learning,
thinking, and communication, pages 133–189, 1978.

[182] Roger N Shepard. The mental image. American psychologist, 33(2):125–137, 1978.

[183] M. Shilman, P. Viola, and K. Chellapilla. Recognition and grouping of handwritten text in
diagrams and equations. In Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004.
Ninth International Workshop on, pages 569–574, Oct 2004.

189

http://sharpnlp.codeplex.com/

[184] M. Shilman, Zile Wei, S. Raghupathy, P. Simard, and D. Jones. Discerning structure from
freeform handwritten notes. In Document Analysis and Recognition, 2003. Proceedings.
Seventh International Conference on, pages 60–65 vol.1, Aug 2003.

[185] Michael Shilman, Hanna Pasula, Stuart Russell, and Richard Newton. Statistical visual
language models for ink parsing. In AAAI Spring Symposium on Sketch Understanding,
pages 126–132, 2002.

[186] Saul Simhon and Gregory Dudek. Sketch interpretation and refinement using statistical
models. In Proceedings of the Fifteenth Eurographics Conference on Rendering Techniques,
EGSR’04, pages 23–32, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Asso-
ciation.

[187] A Simon, J.-C. Pret, and AP. Johnson. A fast algorithm for bottom-up document layout
analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(3):273–
277, Mar 1997.

[188] Mark K. Singley. The reification of goal structures in a calculus tutor: Effects on problem-
solving performance. Interactive Learning Environments, 1(2):102–123, 1990.

[189] Steve Smithies, Kevin Novins, and James Arvo. Equation entry and editing via handwriting
and gesture recognition. Behaviour & Information Technology, 20(1):53–67, 2001.

[190] Thomas F. Stahovich, Eric J. Peterson, and Hanlung Lin. An efficient, classification-based
approach for grouping pen strokes into objects. Computers & Graphics, 42(0):14 – 30,
2014.

[191] Starpad, 2014. http://pen.cs.brown.edu/starpad.html.

[192] Anselm Strauss and Juliet M Corbin. Basics of qualitative research: Grounded theory
procedures and techniques. Sage Publications, Inc, 1990.

[193] Ivan E. Sutherland. Sketch pad a man-machine graphical communication system. In Pro-
ceedings of the SHARE Design Automation Workshop, DAC ’64, pages 6.329–6.346, New
York, NY, USA, 1964. ACM.

[194] John Sweller. Cognitive load during problem solving: Effects on learning. Cognitive Sci-
ence, 12(2):257–285, 1988.

[195] John Sweller. Cognitive load theory, learning difficulty, and instructional design. Learning
and Instruction, 4(4):295 – 312, 1994.

[196] Paul Taele and Tracy Hammond. Lamps: A sketch recognition-based teaching tool for
mandarin phonetic symbols i. Journal of Visual Languages & Computing, 21(2):109 – 120,
2010. Special Issue on Sketch Computation Special Issue on Sketch Computation.

[197] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146–160, 1972.

[198] Dana Tenneson and Sascha Becker. Chempad: Generating 3d molecules from 2d sketches.
In ACM SIGGRAPH 2005 Posters, SIGGRAPH ’05, New York, NY, USA, 2005. ACM.

[199] Matthew Thorne, David Burke, and Michiel van de Panne. Motion doodles: an interface for
sketching character motion. In SIGGRAPH 2006, 2006.

190

http://pen.cs.brown.edu/starpad.html

[200] J.D. Tubbs. A note on binary template matching. Pattern Recognition, 22(4):359 – 365,
1989.

[201] R. Sinan Tumen, M. Emre Acer, and T. Metin Sezgin. Feature extraction and classifier com-
bination for image-based sketch recognition. In Proceedings of the Seventh Sketch-Based
Interfaces and Modeling Symposium, SBIM ’10, pages 63–70, Aire-la-Ville, Switzerland,
Switzerland, 2010. Eurographics Association.

[202] Matthew Turk. Multimodal interaction: A review. Pattern Recognition Letters, 36:189–
195, 2014.

[203] Matthew Turk and George Robertson. Perceptual user interfaces (introduction). Commun.
ACM, 43(3):32–34, March 2000.

[204] Barbara Tversky. What does drawing reveal about thinking? In IN, pages 93–101, 1999.

[205] David G. Ullman, Stephen Wood, and David Craig. The importance of drawing in the
mechanical design process. Computers & Graphics, 14(2):263 – 274, 1990.

[206] Kurt Vanlehn. The behavior of tutoring systems. International journal of artificial intelli-
gence in education, 16(3):227–265, 2006.

[207] Kurt Vanlehn, Collin Lynch, Kay Schulze, Joel A. Shapiro, Robert Shelby, Linwood Taylor,
Don Treacy, Anders Weinstein, and Mary Wintersgill. The andes physics tutoring system:
Lessons learned. Int. J. Artif. Intell. Ed., 15:147–204, August 2005.

[208] Jonathan Wai, David Lubinski, and Camilla P Benbow. Spatial ability for stem domains:
Aligning over 50 years of cumulative psychological knowledge solidifies its importance.
Journal of Educational Psychology, 101(4):817, 2009.

[209] Paul Wais, Aaron Wolin, and Christine Alvarado. Designing a sketch recognition front-end:
user perception of interface elements. In Proceedings of the 4th Eurographics workshop
on Sketch-based interfaces and modeling, SBIM ’07, pages 99–106, New York, NY, USA,
2007. ACM.

[210] Benjamin Walther-Franks, Marc Herrlich, Thorsten Karrer, Moritz Wittenhagen, Roland
Schröder-Kroll, Rainer Malaka, and Jan Borchers. Dragimation: Direct manipulation
keyframe timing for performance-based animation. In Proceedings of Graphics Interface
2012, GI ’12, pages 101–108, Toronto, Ont., Canada, Canada, 2012. Canadian Information
Processing Society.

[211] Yalin Wang, Ihsin T Phillips, and Robert M Haralick. Document zone content classification
and its performance evaluation. Pattern Recognition, 39(1):57–73, 2006.

[212] Rattapoom Waranusast, Peter Haddawy, and Matthew Dailey. Segmentation of text and
non-text in on-line handwritten patient record based on spatio-temporal analysis. In Carlo
Combi, Yuval Shahar, and Ameen Abu-Hanna, editors, Artificial Intelligence in Medicine,
volume 5651 of Lecture Notes in Computer Science, pages 345–354. Springer Berlin Hei-
delberg, 2009.

[213] Andrew Witkin. An introduction to physically based modeling: Constrained dynamics.
Robotics Institute, 1997.

191

[214] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures without libraries, toolkits or
training: A $1 recognizer for user interface prototypes. In Proceedings of the 20th Annual
ACM Symposium on User Interface Software and Technology, UIST ’07, pages 159–168,
New York, NY, USA, 2007. ACM.

[215] A. Wolin, B. Eoff, and T. Hammond. Shortstraw: A simple and effective corner finder
for polylines. In Proceedings of the Fifth Eurographics Conference on Sketch-Based Inter-
faces and Modeling, SBM’08, pages 33–40, Aire-la-Ville, Switzerland, Switzerland, 2008.
Eurographics Association.

[216] A. Wolin, B. Paulson, and T. Hammond. Sort, merge, repeat: An algorithm for effectively
finding corners in hand-sketched strokes. In Proceedings of the 6th Eurographics Sympo-
sium on Sketch-Based Interfaces and Modeling, SBIM ’09, pages 93–99, New York, NY,
USA, 2009. ACM.

[217] Beverly Park Woolf. Building Intelligent Interactive Tutors. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2009.

[218] Working model 2d, 2011. http://www.design-simulation.com/wm2d/
index.php.

[219] Yiyan Xiong and Joseph J. LaViola Jr. Technical section: A shortstraw-based algorithm for
corner finding in sketch-based interfaces. Computers and Graphics, 34:513–527, October
2010.

[220] L. Xu, A Krzyzak, and C.Y. Suen. Methods of combining multiple classifiers and their
applications to handwriting recognition. Systems, Man and Cybernetics, IEEE Transactions
on, 22(3):418–435, May 1992.

[221] Chen Yang, Dana Sharon, and Michiel van de Panne. Sketch-based modeling of parameter-
ized objects. In SIGGRAPH 2005, 2005.

[222] Kun Yang, Zhijun Li, and Jingwei Ye. Freely-drawn sketches interpretation using svms-
chain modeling. Engineering Applications of Artificial Intelligence, 25(2):392 – 403, 2012.
Special Section: Local Search Algorithms for Real-World Scheduling and Planning.

[223] Ming Ye and P. Viola. Learning to parse hierarchical lists and outlines using conditional
random fields. In Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth Inter-
national Workshop on, pages 154–159, Oct 2004.

[224] Ming Ye, Paul Viola, Sashi Raghupathy, Herry Sutanto, and Chengyang Li. Learning to
group text lines and regions in freeform handwritten notes. In Document Analysis and
Recognition, 2007. ICDAR 2007. Ninth International Conference on, volume 1, pages 28–
32. IEEE, 2007.

[225] Jianfeng Yin and Zhengxing Sun. An online multi-stroke sketch recognition method in-
tegrated with stroke segmentation. In Jianhua Tao, Tieniu Tan, and RosalindW. Picard,
editors, Affective Computing and Intelligent Interaction, volume 3784 of Lecture Notes in
Computer Science, pages 803–810. Springer Berlin Heidelberg, 2005.

[226] Hugh D. Young, Roger A. Freedman, A.L. Ford, F.W. Sears, and M.W. Zemansky. Univer-
sity Physics with Modern Physics. Pearson Education, Limited, 2011.

192

http://www.design-simulation.com/wm2d/index.php
http://www.design-simulation.com/wm2d/index.php

[227] Bo Yu and Shijie Cai. A domain-independent system for sketch recognition. In Proceedings
of the 1st International Conference on Computer Graphics and Interactive Techniques in
Australasia and South East Asia, GRAPHITE ’03, pages 141–146, New York, NY, USA,
2003. ACM.

[228] Zhenming Yuan, Hong Pan, and Liang Zhang. A novel pen-based flowchart recognition sys-
tem for programming teaching. In Advances in Blended Learning, pages 55–64. Springer,
2008.

[229] Shane W Zamora and Eyrún A Eyjólfsdóttir. Circuitboard: Sketch-based circuit design
and analysis. In Proceedings of the International Conference on Intelligent User Interfaces
(IUI) Workshop on Sketch Recognition, 2009.

[230] Robert Zeleznik, Timothy Miller, Chuanjun Li, and Joseph J. Laviola, Jr. Mathpaper: Math-
ematical sketching with fluid support for interactive computation. In Proceedings of the
9th international symposium on Smart Graphics, SG ’08, pages 20–32, Berlin, Heidelberg,
2008. Springer-Verlag.

[231] Robert C. Zeleznik, Andrew Bragdon, Chu-Chi Liu, and Andrew Forsberg. Lineogrammer:
creating diagrams by drawing. In UIST ’08, pages 161–170, 2008.

[232] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. Sketch: An interface for
sketching 3d scenes. In SIGGRAPH ’96, pages 163–170, 1996.

[233] Xiang-Dong Zhou and Cheng-Lin Liu. Text/non-text ink stroke classification in japanese
handwriting based on markov random fields. In Document Analysis and Recognition, 2007.
ICDAR 2007. Ninth International Conference on, volume 1, pages 377–381, Sept 2007.

[234] Xiang-Dong Zhou, Da-Han Wang, and Cheng-Lin Liu. A robust approach to text line group-
ing in online handwritten japanese documents. Pattern Recognition, 42(9):2077 – 2088,
2009.

193

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1 Motivating Examples
	1.1.1 Example 1: Acceleration of a Moving Box
	1.1.2 Example 2: Deduce Mass Using Force Equation
	1.1.3 Example 3: Motion Under Constant Acceleration

	1.2 Proposed Features for Pen-based Intelligent Tutors
	1.3 Research Challenges
	1.4 Reader's Guide

	CHAPTER 2 LITERATURE REVIEW
	2.1 Sketch Recognition and Understanding
	2.1.1 The Ideal Sketch Recognition Pipeline
	2.1.2 Ink Preprocessing
	2.1.3 Region Segmentation and Page Layout Analysis
	2.1.3.1 A Note on Text/Non-Text Division Strategies

	2.1.4 Symbol Recognition
	2.1.4.1 Heuristic or Rule-based Methods
	2.1.4.2 Graph-based Methods
	2.1.4.3 Statistical, Template-based and Machine Learning Methods
	2.1.4.4 Hybrid Methods
	2.1.4.5 Miscellaneous Methods

	2.2 Pen-based Systems
	2.2.1 Pen-based Systems for Physics
	2.2.2 Pen-based tools for other Domains

	2.3 Traditional Tutoring Systems
	2.4 Commercial Tools and Teaching Aids

	CHAPTER 3 PROTOTYPE PEN-BASED PHYSICS TUTORING SYSTEM
	3.1 User Interface
	3.2 Ink Stroke Preprocessing

	CHAPTER 4 UNDERSTANDING HANDWRITTEN PHYSICS SOLUTIONS
	4.1 Natural Language Processing
	4.2 Mathematics Recognition Engine
	4.3 Diagram Recognition
	4.3.1 Text/Non-Text Division Strategy
	4.3.2 Bottom-up Recognition Phase
	4.3.3 Top-Down Recognition Phase
	4.3.4 Unistroke and Multistroke Recognition Heuristics

	4.4 Clustering and Implicit Associations
	4.5 High Level Reasoning Engine

	CHAPTER 5 BEAUTIFICATION OF RECOGNIZED DIAGRAMS
	5.1 The QuickDraw Framework
	5.1.1 Recognition and Constraint Inference in QuickDraw
	5.1.2 Constraint-based Beautification Framework
	5.1.3 Example: A Sketched Square

	5.2 Beautification in our Prototype ITS
	5.2.1 Initial Beautification: Individual Elements
	5.2.2 Secondary Beautification: Annotations and Groups of Elements

	CHAPTER 6 ANIMATION RUNTIME
	6.1 Free Fall Kinematics Simulator
	6.2 Friction Simulator
	6.3 Equilibrium Simulator
	6.4 Momentum Simulator

	CHAPTER 7 SOLUTION CHECKER
	7.1 A Graph Model for Solution Steps
	7.2 Rules for Checking a Solution Graph
	7.3 A Worked Example
	7.4 Discussion

	CHAPTER 8 ANIMATION CAPABILITIES
	8.1 Animations for Toy Examples
	8.1.1 Doodling: 3-Spring System
	8.1.2 Change in Gravitational Potential Energy During Free-Fall
	8.1.3 A Contrived Equilibrium Problem

	8.2 Animations for Real Physics Problems
	8.2.1 A Simple Force and Acceleration Problem
	8.2.2 A Projectile Constrained in 1-dimension
	8.2.3 A Projectile Constrained in 2-dimensions
	8.2.4 A Box Held in Equilibrium
	8.2.5 A Box Sliding on a Rough Surface
	8.2.6 Computing the Coefficient of Kinetic Friction
	8.2.7 Elastic Collisions
	8.2.8 Using the Work-Energy Theorem to Calculate Initial Velocity

	8.3 Observed Animation Patterns in Modeled Solutions
	8.4 Known Cases That Cannot Be Modeled Using our Approach
	8.4.1 Kinematics Problems
	8.4.2 Friction and Sliding Contact Problems
	8.4.3 Momentum Problems
	8.4.4 Equilibrium Problems

	8.5 Summary of Supported Animations

	CHAPTER 9 ANALYSIS OF STUDENT SOLUTIONS
	9.1 A Database of Physics Problems and Student Solutions
	9.1.1 Subjects and Apparatus

	9.2 Animation Requirements for Chosen Physics Problems
	9.3 Analysis of Student Solutions
	9.3.1 Analysis of Equilibrium Solutions
	9.3.2 Analysis of Momentum Solutions
	9.3.3 Analysis of Pulley Solutions
	9.3.4 Analysis of Work and Energy Solutions
	9.3.5 Analysis of Kinematics Solutions

	9.4 Summary

	CHAPTER 10 CONCLUSION
	10.1 Contributions
	10.2 Future Work
	10.2.1 Improvement in Diagram Recognition
	10.2.2 Improvement in Mathematics Recognition
	10.2.3 Support for New Types of Diagram Elements and Annotations
	10.2.4 Multimodal Interaction Methods
	10.2.5 Improvements in Animation Capabilities
	10.2.6 Usability Testing

	APPENDIX A EARLIER PROTOTYPES
	A.1 Prototype 1: Proof of Concept
	A.2 Prototype 2: Sketch Beautification
	A.3 Prototype 3: PhysicsBook

	APPENDIX B IRB DOCUMENTATION
	LIST OF REFERENCES

