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ABSTRACT

It is hard to overstate the importance of gesture-based interfaces in many applications nowadays.

The adoption of such interfaces stems from the opportunities they create for incorporating natural

and fluid user interactions. This highlights the importance of having gesture recognizers that are

not only accurate but also easy to adopt. The ever-growing popularity of machine learning has

prompted many application developers to integrate automatic methods of recognition into their

products. On the one hand, deep learning often tops the list of the most powerful and robust rec-

ognizers. These methods have been consistently shown to outperform all other machine learning

methods in a variety of tasks. On the other hand, deep networks can be overwhelming to use for

a majority of developers, requiring a lot of tuning and tweaking to work as expected. Addition-

ally, these networks are infamous for their requirement for large amounts of training data, further

hampering their adoption in scenarios where labeled data is limited.

In this dissertation, we aim to bridge the gap between the power of deep learning methods and their

adoption into gesture recognition workflows. To this end, we introduce two deep network mod-

els for recognition. These models are similar in spirit, but target different application domains:

one is designed for segmented gesture recognition, while the other is suitable for continuous data,

tackling segmentation and recognition problems simultaneously. The distinguishing characteristic

of these networks is their simplicity, small number of free parameters, and their use of common

building blocks that come standard with any modern deep learning framework, making them easy

to implement, train and adopt. Through evaluations, we show that our proposed models achieve

state-of-the-art results in various recognition tasks and application domains spanning different in-

put devices and interaction modalities. We demonstrate that the infamy of deep networks due to

their demand for powerful hardware as well as large amounts of data is an unfair assessment. On

the contrary, we show that in the absence of such data, our proposed models can be quickly trained
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while achieving competitive recognition accuracy.

Next, we explore the problem of synthetic gesture generation: a measure often taken to address

the shortage of labeled data. We extend our proposed recognition models and demonstrate that the

same models can be used in a Generative Adversarial Network (GAN) architecture for synthetic

gesture generation. Specifically, we show that our original recognizer can be used as the discrimi-

nator in such frameworks, while its slightly modified version can act as the gesture generator. We

then formulate a novel loss function for our gesture generator, which entirely replaces the need for

a discriminator network in our generative model, thereby significantly reducing the complexity of

our framework. Through evaluations, we show that our model is able to improve the recognition

accuracy of multiple recognizers across a variety of datasets. Through user studies, we additionally

show that human evaluators mistake our synthetic samples with the real ones frequently indicating

that our synthetic samples are visually realistic.

Additional resources for this dissertation (such as demo videos and public source codes) are avail-

able at https://www.maghoumi.com/dissertation .
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CHAPTER 1: INTRODUCTION

In recent years, gesture-based interfaces have become more relevant than ever. Due to their sim-

plicity and intuitiveness, we observe a trend of integrating gestures into almost every consumer

product that supports interaction. From entertainment devices and home appliances to vehicles,

we see an ever increasing number of devices that support at least one form of a gestural interface

such as touch inputs and mid-air swipes to name but a few.

The commoditization of gesture-based interaction is due in large part to the advent of various input

devices. As input devices get more capable and precise, the complexity of the interactions that

they can capture also increases. This, in turn, ignites the need for gesture recognition methods that

can leverage these capabilities [5].

From a practitioner’s point of view, any particular gesture recognizer would need to possess a set

of traits in order to gain adoption. On the one hand, it is expected of any recognition method to

capture the fine differences among gestures and distinguish one gesture from another with a high

degree of confidence. This expectation stems from the fact that the usability of any input device

is bounded by the software that works with the data generated by the underlying hardware. On

the other hand, a desirable property of gesture recognition methods is their ability to work with a

vast number of input devices and modalities (2D pen and touch, 3D hand or full-body gestures,

etc.). Finally, a recognition method should be accessible: a system designer should ideally be able

to integrate the method into their workflow with the least amount of effort. This suggests that the

recognizer should be suitable for various development stages: from prototyping to production.

Perhaps a few years ago, one would assert that the flexibility and the power of recognizers are prop-

erties which are often at odds. Yet, the advent of deep neural networks has completely transformed

the landscape of solving recognition problems. Using nothing but data, we can solve challeng-
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ing recognition problems without hand-engineering a single feature, or even understanding what

a deep network is computing under the hood! Yet, the magnificent ability of deep networks in

solving recognition problem comes at a cost: the need for a huge amount of data. Thus if one puts

the need for powerful recognizers on the one side of the scale, the other side would undoubtedly

contain the need for the data that the recognizer requires.

While the size of publicly available datasets grows each and every day, obtaining task-specific data

is not always easy, requiring a lot of time and care. To take the extreme into consideration, col-

lecting more data is sometimes very costly (such as labeling datasets that require domain experts,

as is usually the case with medical data) or even impossible (think of applications which support

gesture customization: there is a limit to how many examples a single user can provide).

The difficulty in collecting large sets of training data has fueled the need for synthetic generation

methods that can take an existing dataset, and generate new samples from it. Consequently, data

augmentation has become an indispensable part of modern deep learning research and develop-

ment. One paradigm for data generation that has recently enjoyed great success and has been

established as the de facto in various generation tasks is a group of neural networks dubbed Gener-

ative Adversarial Networks (GAN). These networks, which typically consist of a generator and a

discriminator, work by estimating the distribution of the samples of a given dataset. This estimate

is improved repeatedly through the adversarial training process formulated as a zero-sum game.

The generator generates fake samples, and the discriminator seeks to determine whether a given

sample is real or fake. During training, the generator aims to fool the ever-improving discriminator

into thinking a fake sample is real. When training concludes, new examples can be sampled from

this estimated distribution, yielding realistic samples of the underlying data.
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1.1 Statement of Research

Thus far, we have outlined a few seemingly contradicting problems: the need for gestural interfaces

has prompted the need for powerful gesture recognizers. These recognizers should work across var-

ious devices and modalities, yet they should be accessible, i.e. easily understood and implemented

to be suitable for various development stages: from prototyping to production. These goals are of-

ten at odds: the recognition power of a recognizer usually comes at the cost of increased complexity

and decreased flexibility of working across different input devices and modalities. Considering the

success of deep networks, and their ability to learn from data, a logical choice of the recognizer

seems to be one which is based on deep networks. Yet, deep networks are notorious for their com-

plexity and their need for a lot of data. While generative models are viable choices for generating

synthetic data, their development, training and tuning may be complex and time consuming.

In this work, we aim to reconcile these contradicting goals. Specifically, we explore the applica-

tion of deep network models for two distinct, yet related tasks: gesture recognition and gesture

generation. While gesture recognition has received a lot of attention in the literature, we devise a

simplified recurrent network that can be used for recognition across a variety of input devices and

gesture modalities. Secondary to this, we discuss the development of an accessible model: a model

with a low number of free parameters, that does not require much tuning and is quick to train even

without powerful hardware.

Additionally, we discuss deep recurrent networks for synthetic gesture generation. Although var-

ious generative modeling techniques exist, we specifically focus on GANs as to our knowledge

their utilization for generating synthetic gesture sequences remains a largely unexplored problem.

We then turn our focus to simplifying GANs and propose a non-adversarial gesture generator: a

model which is inspired by GANs yet does not require a separate discriminator. We show that our

proposed model is significantly faster to train and outperforms the GAN-based gesture generator.
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We additionally discuss gesture generation using variational autoencoders (VAE) as well as the use

of our proposed gesture generator for domain adaptation tasks.

1.1.1 Thesis Statement

It is possible to devise a single family of deep recurrent neural networks, comprised of only gated

recurrent units and fully connected layers, which can be used for segmented gesture recognition,

unsegmented gesture recognition as well as synthetic gesture generation, while achieving compet-

itive performance in each problem domain.

1.2 Contributions

With regards to segmented gesture recognition, our main contributions are devising a novel net-

work model that works with raw vector data and is: (1) intuitive to understand and easy to imple-

ment, (2) easy to use, works out-of-the-box on noisy data, and is easy to train, without requiring

powerful hardware (3) achieves state-of-the-art results in various use-cases, even with a limited

amount of training data. We believe (1) and (2) would make our gesture recognizer enticing for

application developers while (3) appeals to seasoned practitioners. To our knowledge, no prior

work specifically focuses on model simplicity, accessibility for the masses, small training sets or

CPU-only training which we think makes our model unique among similar models in the literature.

Afterwards, we show that this model can be easily extended to continuous gesture recognition with

competitive performance across various datasets.

With regards to synthetic gesture generation with recurrent networks, our main contributions are

(1) a novel recurrent GAN model for gesture generation that works across a variety of datasets and

modalities, (2) a novel and intuitive loss function that completely replaces the discriminator of our
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GAN model, which not only simplifies and significantly speeds up the training process, but also

yields a generator that produces high quality examples, (3) an evaluation of the improvements in

gesture recognition accuracy when our generator is used for data augmentation. Our evaluations

consist of measuring the improvements in gesture recognition accuracy with the use of synthetic

data, as well as the perceived realism of the produced samples by human evaluators via a user study.

We additionally discuss the use of our proposed model for domain adaptation tasks and show that

our GAN-based model can in fact be used in such application domains. Lastly, we provide the first

look into generating synthetic gestures in a variational autoencoder (VAE) setting. We propose a

novel formulation of a VAE loss function that can be used to train our gesture generator in a VAE

setting. To our knowledge, we are the first to discuss this in the context of gesture recognition.

1.3 Organization

This dissertation is organized as follows. Chapter 2 discusses the preliminaries and presents the

relevant background information upon which our research is based on, along with the mathematical

notation used throughout this dissertation. Chapter 3 examines the existing work in the literature

that are the most relevant to our research. Chapters 4 and 5 examine our proposed network models

for segmented and unsegmented gesture recognition tasks. Chapter 6 outlines our proposed method

for generating synthetic gestures using recurrent networks. Chapter 7 summarizes our work and

concludes this dissertation by providing guidance on future research directions.
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CHAPTER 2: BACKGROUND AND NOTATIONS

In this chapter, we focus on the background information that is relevant to the topics of gesture

recognition and generation and provide some necessary information pertinent to our work. The

goal is to provide readers with an overview of the topics most relevant to our research. We also

introduce the mathematical notation that is used throughout this dissertation.

2.1 Definitions and Notations

We define gestures as temporal sequences of actions or movements, produced by a user in order

to convey an intent to perform some action through a user interface (UI). These sequences can

be collected from a variety of sources, and can be represented in different forms: 2D coordinates

of pen, mice or touch devices, 3D skeletal features collected by Kinect or Leap Motion devices,

sonar or Doppler soundwaves, audio or video etc. For the purposes of this research the source of a

gesture or its low-level representation in terms of features is unimportant. Thus, our definition of

gestures is general and not specific to one modality or representation.

The representation of a gesture datum can be done in a variety of ways. In this dissertation we

choose to represent them as a temporal sequence of the underlying feature data (e.g. 3D joint posi-

tions, accelerometer or velocity measurements, 2D Cartesian coordinates of pen/touch interactions,

etc.). At time step t, the gesture data is the column vector xt ∈ RN , where N is the dimensionality

of the feature vector. Thus, the entire temporal sequence of a single gesture sample is the matrix

x ∈ RN×L, where L is the length of the sequence in time steps. We denote the vector trajec-

tory path of a gesture x with ~x = {
−−−−−−−→
(xi − xi−1) , ∀xi>0 ∈ x}. Lastly, we use |A| to denote the

cardinality of a point set A, thus in this work |x| = L and |~x| = L− 1.
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The dimensionality N depends on the device that generated the data and also how one chooses

to represent the data. In this sense, we design our gesture recognition or generation methods to

be agnostic to the input representation. For instance, consider a gesture sample collected from a

Kinect device. This gesture sample might have the 3D position of 21 joints of a human actor’s

skeleton performing an action in L time steps. One can take N to be 3×21=63 dimensional and

represent this sample as x ∈ R63×L. Now consider a variation of this gesture sample that involves

two human actors. In this case, one can take N to be 2×3×21=126 dimensional (the sample as

x ∈ R126×L). Alternatively, one may choose to interleave the human skeletons temporally1. In

this case, the dimensionality of N would still be 63, however, the gesture sample itself would have

double the number of time steps, making the sample x ∈ R63×2L.

Note that various input sequences could have different numbers of time steps. We treat sequences

of different lengths in two different manners, depending on the application or the method. For

recognition tasks, which mostly work on batches of data due to training phase requirements, we

represent the ith batch of the gesture data as the tensor Xi ∈ RB×N×L̃, where B is the size of the

batch and L̃ is the length of the longest sequence in the ith batch. Sequences that are shorter than L̃

are zero-padded. As such, for the task of recognition we use all available data from every gesture.

For gesture generation tasks, however, we define L̃ to be the target length of all gestures, and we

uniformly resample equidistant points along each gesture path, making all available data to be of

the same length L̃.

2.1.1 Gesture Recognition

Given a dataset of gestures, we intend to define the goal for the task of gesture recognition. For-

mally, let us assume a dataset of application-specific gestures D is given, and it consists of n

1We choose to use this representation when working with multi-actor gestures in Chapter 4.
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gesture samples x, where D = {x0,x1, ...,xn} and x = {x0, x1, ..., xLx−1}. Also each sample

x is assigned a label, and there are m different label classes comprising the label set Y where

Y = {y0, y1, ..., ym}. The goal of gesture recognition is determine the correct class for a given

gesture, i.e. map an unlabeled xi to a label yj . While this definition is very general, in this dis-

sertation we are mostly interested in two types of recognition: segmented gesture recognition and

unsegmented gesture recognition. Note that in this dissertation, we use the terms unsegmented ges-

ture recognition, continuous gesture recognition and online gesture recognition interchangeably.

In segmented gesture recognition, each sample x has predefined boundaries and some information

about the beginning and the end of the gesture is present. In such cases, gesture recognition

involves assigning a class label to x. More formally, given an arbitrary sample x from class y, the

goal of segmented gesture recognition is to predict the class label ŷ ∈ Y , such that ŷ = y.

In unsegmented gesture recognition, the boundaries of x are not demarcated. In fact, in such sce-

narios we are interested in analyzing a sequence of data x̃ and determining (1) whether zero or

more gestures are present (gesture spotting), (2) what the class of each gesture is (gesture recogni-

tion), and (3) where the start/end boundaries of the said gestures are (gesture segmentation). Thus,

the recognition task differs depending on which of these questions are to be answered. In this dis-

sertation, we refer to the collective set of these three tasks as unsegmented (or continuous) gesture

recognition, which is more challenging than each individual task [6]. Formally, given an arbitrary

sequence of data x̃ we are interested in extracting or demarcating subsequences xi, where each

xi specifies a defined gesture of class yi. Additionally, we seek to determine the boundaries of xi

within x̃.
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2.1.2 Gesture Generation

Gesture generation can simply be defined as producing synthetic samples over a dataset of gestures

D such that the synthetic samples mirror data-specific properties of the samples in D, as if these

samples were seemingly sampled from D. Formally, let us assume that D has the distribution pD,

meaning x ∈ D =⇒ x ∼ pD. The goal of gesture generation is to produce samples x′ where

x′ /∈ D but x′ ∼ pD. This is equivalent to saying we want pG ' pD, where pG denotes the

distribution of the generated samples.

Note that the definition of generation in this dissertation deliberately excludes common data aug-

mentation methods. For instance, one could define a generator functionGwhereG(x) = reverse(x).

Although the temporal reverse of x could be a seemingly valid sequence, G is not considered a

valid generator in our discussion because depending on D it is possible that G(x) � pD.

2.2 Neural Networks and Deep Learning

In recent years, neural networks and deep learning have received a staggering amount of attention

due to their power and unreasonable efficacy in solving various computational problems. In short,

neural networks which are inspired by our brains, are a set of connected nodes organized in a

typically acyclic graph structure such as the one shown in Figure 2.2. These networks compute a

non-linear function ŷ = F (x; θ), where x is the input to the network (red nodes), θ are the trainable

weights, and ŷ is the output (green nodes). Each node computes a non-linear combination of its

inputs (the arrows), and passes the results to all the nodes that are connected to it. The term

deep neural networks refers to networks that have more than a few layers of hidden units (blue

nodes). Note that the hidden units can consist of arbitrary non-linear functions. These functions

are domain specific. Traditionally, logistic regression units were used in neural networks. More
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Figure 2.1: A graphical representation of a neural network

recently, convolutional units are extensively used for image perception tasks, whereas recurrent

units are used for sequence processing. These units have given rise to two of the most popular types

of neural networks, namely convolutional neural networks (CNN) and recurrent neural networks

(RNNs – discussed shortly).

The non-linear computation carried out by each node in a neural network is governed by the train-

able parameters θ. Consider a logistic regression unit: given the input x, these units compute

ŷ = σ(wᵀx + b), where σ is the sigmoid function and w and b are the weight and bias values that

comprise the trainable parameters θ of a logistic regression unit. These parameters are established

during the training process. The training process involves determining the parameters θ such that

given the input x, the desired output y is produced. This process is often guided by an objec-

tive function (the loss measure L) which typically defines the relationship between the network’s

current output ŷ and the desired output y, given an input x. Based on this, we can formulate the
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following optimization problem to establish suitable values for the parameters θ:

argmin
θ

L
(
ŷ, y
)

= argmin
θ

L
(
F
(
x; θ
)
, y
)

(2.1)

If F is differentiable, i.e. the derivative ∇xF (x; θ) is defined for all valid inputs x, one could

solve Equation 2.1 using analytical or numerical methods. Due to the highly non-linear nature of

neural networks, as well as the complexity of the cost landscape defined by most loss functions L,

numerical methods such as Stochastic Gradient Descent (SGD) or similar (such as Adam [7]) are

popular choices of optimizers.

2.3 Recurrent Neural Networks

Neural networks as defined above, are typically used for tasks that do not include temporal infor-

mation, as they are stateless. In contrast, recurrent neural networks (RNN) are designed to work

with temporal data. In addition to raw feature values, these networks take as input their own output

from the past, enabling them to preserve some representation of a state. Such networks are typically

used for tasks such as natural language understanding, time series analysis and prediction as well

as video analysis. In this dissertation, we use these networks for gesture recognition and synthesis.

2.3.1 Recurrent Units

The building blocks of RNNs are the recurrent units. At each timestep t, a recurrent unit R takes

as input the feature vector xt and a hidden state vector h(t−1), and produces an output vector which
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Figure 2.2: A graphical representation of a recurrent neural network. RU denotes a recurrent unit.

is a new hidden state ht. This transition can be shown as:

ht = R(xt, h(t−1); θ) (2.2)

where θ are the trainable parameters ofR. The hidden state ht is subsequently used for performing

the computations on x(t+1), transferring the state along the timesteps. The initial hidden state vector

h0 is often set to a vector of zeros. A RNN is typically built by stacking recurrent units in layers

such that the output of one unit becomes the input to another unit in the next layer as shown in

Figure 2.3.1. Note that the general representation presented above assumes a unidirectional RNN:

a network that processes a given sequence x from t = 0 all the way to t = L− 1. In the literature,

the bidirectional RNNs, which process a sequence both forwards and in reverse also exist, but they

are beyond the scope of this dissertation.
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Although different types of recurrent units exist in the literature, in this dissertation we focus on two

of the most common ones, namely Long Short-Term Memory (LSTM) [8] and Gated Recurrent

Units (GRU) [9]. Both of these units are gated, meaning these units internally contain decision

logic as to when an internal state update should occur. This decision is guided by a transformation

of the input feature vector xt (via the learned parameters), as well as the values in the hidden state

vector h(t−1).

Originally proposed for neural machine translation [9], GRUs are one of the most popular recurrent

units suitable for various other tasks such as music generation and speech signal modeling [10].

In fact, as Chung et al. note, the power of GRUs is comparable to that of LSTMs. While less

computationally intensive, these units can achieve better performance than LSTMs on some small

datasets. In this dissertation we use the notation Γ to denote a GRU.

Various implementations and state transitions exist in the literature. In this dissertation we use the

following transition equations, which are also what the PyTorch framework [11] uses.

ht = Γ
(
xt, h(t−1)

)
(2.3)

rt = σ
((
W r
x xt + brx

)
+
(
W r
h h(t−1) + brh

))
ut = σ

((
W u
x xt + bux

)
+
(
W u
h h(t−1) + buh

))
ct = tanh

((
W c
x xt + bcx

)
+ rt

(
W c
h h(t−1) + bch

))
ht = ut ◦ h(t−1) +

(
1− ut

)
◦ ct

In the equation above, σ is the sigmoid function, ◦ denotes the Hadamard product, rt, ut and ct are

reset, update and candidate gates respectively and W q
p and bqp are the trainable weights and biases.
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What these equations intuitively represent is that a candidate output value ct is computed from

the current input xt and the previous output h(t−1). This candidate value is computed based on

one non-linear computation from the reset gate rt and one linear computation from the candidate’s

trainable weights W c, bc. Note that the reset gate rt itself depends on two other sets of trainable

weights, namely W c
x , b

c
x and W c

h, b
c
h. Lastly, the output value ht is gated (governed) by the update

gate ut. Namely, ht is set to be equal to the last output h(t−1) with a probability of ut, and is

set to be the candidate value ct, which is a newly computed transformation of the inputs, with

a probability (1 − ut). As we show later in Chapter 4, the decision mechanism of a GRU and

the candidate value ct can be used to govern whether a particular feature vector should undergo

additional transformation and feature extraction.

Similar to GRUs, the LSTM units have been shown to demonstrate great performance in a variety

of tasks [10]. The power of these units comes at the cost of extra processing power requirements,

and they are more prone to overfitting. The gating mechanism of the LSTMs, which is similar

to GRUs but contains additional trainable weights and decision logic, is out of the scope of our

discussion. Consequently, in this dissertation we prefer GRUs over LSTMs due to their power,

simplicity, and the fact that they do not overfit as much as LSTMs.

2.3.2 Attention Model

When working with sequential data, the sub-parts of a temporal sequence may not all be equally

important: some subsequences may be more pertinent to the task at hand than others. Thus, it

is often beneficial to learn a representation that can identify these important subsequences and

leverage them to tackle the subject matter. This is the key intuition behind the attention model [12,

13]. Even though the attention model was originally proposed for sequence to sequence models

and neural machine translation, it has been adapted to various tasks involving the processing of
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sequential data [14]. Unsurprisingly, it has also been adapted to the task of gesture and action

recognition [15–20].

The attention model intuitively works as follows. During the process of feeding a sequence into

the RNN, when the vector xt at timestep t is being processed, the attention model examines the

generated outputs in the vicinity of t, and determines which hi ∈ [ht−δ, ht+δ]
2 would aid in the

processing of xt when producing the output ht. Note that these models typically affect the output

ht of a RNN.

The attention model learns how to determine the importance of each sub-sequence during training.

A formal definition follows. Let t denote the timestep that the RNN is currently processing, and t′

denote what has already been processed so far.

At timestep t, the model computes a set of attention weights αtt′ , using which it can generate a

dynamic representation of the relevance of the computations at timestep t′ when processing the

current timestep t. In simple terms, αtt′ is the amount of attention that the output at t should pay

to the output at t′.

The weights αtt′ are used to compute a context vector ct, the output of the attention model for

timestep t. Given at′ the extracted features at a timestep t′ and ht−1 the latest hidden state the RNN

(the latest output that is generated so far), the following equations detail how the attention model

computes the context vector ct:

2Note that t+ δ is applicable to bidirectional RNNs, which we do not use in this dissertation.
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ett′ = Fattn

(
at′ , h(t−1); θ

)
(2.4)

αtt′ = softmax
(
ett′
)

=
exp
(
ett′
)

L−1∑
k=0

exp
(
etk
) (2.5)

ct =
∑
t′

αtt′ · at′ (2.6)

where Fattn is a small neural network with trainable parameters θ. Training the attention model

involves optimizing for the parameters θ such that the model can better determine the most relevant

parts of a sequence.

2.4 Generative Modeling with Deep Networks

In this section we turn our focus to the application of deep networks for generative modeling.

Such models, which typically fall under the category of unsupervised learning, aim to learn and

model a representation of the data so that new data points could be sampled from this learned

representation. In this work, we focus on two of the most relevant generative models, namely

generative adversarial networks and variational autoencoders.

2.4.1 Generative Adversarial Networks

It is difficult to overstate the machine learning community’s interest in generative adversarial net-

works (GAN). Introduced by Goodfellow et al. [21] these generative class of deep networks are

proficient in generating fake data by learning what the real data look like. As such, these networks

are unsupervised learning models. GANs have been extensively used for image generation tasks
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(such as fake human faces, etc.) [22].

GANs typically consist of two deep networks: a generator and a discriminator. The goal of the

discriminator is to determine whether a given sample is real or fake, and the goal of the generator

is to fool the discriminator into thinking that the fake samples are actually real. Both networks

are trained at the same time during adversarial training: the goal of each network contradicts the

other’s. When training ends, the generator model is kept and used, while the discriminator network

is often discarded.

Note that typically the generator takes as input a vector of random noise (referred to as the latent

vector) and produces a synthetic sample as the output. As such, the generators can be thought of

as functions that take as input a probability distribution and map it to the underlying distribution

of the dataset. Moreover, different variations of GANs exist in the literature. The most relevant

to our research are conditional GANs [23]. These models parameterize the generator network

on various conditions, most commonly on class labels. In other words, in addition to the latent

vector, they take a condition and generate a sample that satisfies the condition (e.g. conditioning

a face generation network can be done by mandating that the generated face should be of a male

who is wearing sunglasses). Conditions are often incorporated in the latent vector by appending a

representation of the condition to the vector.

Let us now formalize GANs as pertinent to the task of gesture generation. Given a dataset D of

gesture samples, our goal is to learn the distribution of the samples through training a recurrent

neural network which we refer to as the generator (G) hereto. Once trained, G can generate new

samples, and the newly sampled instance should be a good representative of the samples in D.

More formally, G can generate synthetic temporal sequences of length L, and is a function that

maps a vector of random noise z = {z0, z1, ..., zL−1} (the latent variable) to a synthetic sample

x′ = {x0, x1, ..., xL−1}. We show this mapping via x′ = G(z; θG) where θG are the trainable
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parameters that can represent an estimate of the distribution of D. For simplicity, we refer to

G(z; θG) as Gθ(z) henceforth. Since D can contain samples of different classes, the latent variable

z is assumed to be conditioned on the class that we intend to generate the synthetic samples for.

We follow the convention in [24] for conditioning: the intended condition c is appended to the

latent vector z at each timestep such that z′ = {
[
zi ; c

]
∀zi ∈ z}. Henceforth, when referring to

the latent vector z, we are actually referring to the conditioned vector z′ (if applicable). Also, if the

condition is a class label, we use the “one-hot” representation of the class label as the condition c

in this dissertation.

The typical practice in GAN research is to learn θG through adversarial training, where θG is

estimated based on how well a discriminator network D can distinguish between real and fake

samples. Given the output G, the discriminator D computes:

ỹ = D
(
Gθ(z); θD

)
(2.7)

where ỹ ∈
{

real, fake
}

and θD are the trainable parameters. For simplicity, we refer to D(x; θD)

as Dθ(x) henceforth. The goodness of fit measure here is the adversarial loss that one tries to

minimize. Because our underlying data are time series, the natural choice for G are RNNs.

2.4.1.1 Training

The original GAN model formulates the training process as described previously: G should be

optimized such that it fools D, whereas D is optimized to better distinguish between real and

fake samples. Unfortunately, this formulation of GANs is susceptible to a few pitfalls. Most

importantly, the training of GANs with this formulation is often unstable: one network could

easily overpower the other, resulting in non-convergence. Also, care must be taken when selecting
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the neural architecture for each network. Also, one of the most common problems is mode collapse

which refers to the lack of variety in the generated samples. This often happens when the generator

constantly tries to fool the discriminator with a few limited samples.

Many approaches have been proposed in the literature [25] to overcome these difficulties, includ-

ing numerous loss function formulations. Although a recent paper has experimentally showed that

there may not be significant differences among different GAN training losses [26], we have experi-

enced great success in our work with two particular losses: Wasserstein loss [27] and its improved

version with gradient penalties [28].

2.4.1.2 Wasserstein GANs

Rather than formulating GAN training as a zero-sum game, Arjovsky et al. [27] formulate the

problem as the direct estimation of the distribution of dataset D with the generator G. They do this

by defining a loss measure, namely the Wasserstein loss that gauges the similarity of the distribu-

tion of the generated samples x′ with the real ones x by means of a critic network D. Arjovsky et

al. experimentally verified that Wasserstein GANs were less prone to issues such as mode col-

lapse, and were generally easier to train across a variety of tasks. Formally, the Wasserstein GAN

minimizes the loss values LD and LG, respectively for D and G as follows:

LD = Dθ

(
x′
)
−Dθ

(
x
)

(2.8)

LG = −Dθ

(
Gθ

(
z
))

Arjovsky et al. [27] show that for networks D that are 1-Lipschitz functions, minimizing LD
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is equivalent to minimizing the Wasserstein distance between pD and pG. Enforcing Lipschitz

constraints in D is achieved by clipping the weights θ of D, which in Arjovsky’s et al. words is a

“terrible way to enforce a Lipschitz constraint”!

Later, Gulrajani et al. [28] introduced the improved Wasserstein GANs to better address the re-

quirement for Lipschitz continuity in D. Namely, they introduced the gradient penalty measure as

a means of enforcing these constraints in D, and reformulated the losses above as follows:

x̂ = εx + (1− ε)x′ (2.9)

LD = Dθ

(
x′
)
−Dθ

(
x
)

+ λ

(∥∥∥∇x̂Dθ(x̂)
∥∥∥
2
− 1

)2

LG = −Dθ

(
Gθ

(
z
))

where ε ∈ U(0, 1). As detailed in [28], LD measures how far the distribution of the synthetic

samples is from the real ones, regularized by a gradient penalty term, the goal of which is to ensure

a gradient norm of 1 on D, which in turn enforces the Lipschitz constraints. The gradient penalty

term is controlled by the coefficient λ, which is a hyperparameter for the optimization problem.

2.4.1.3 Application in Domain Adaptation

An interesting application of GANs is towards domain adaptation. In machine learning, the need

for domain adaptation arises when there is a distribution mismatch between the data on which a

model is trained on (source domain), and the data on which the model is applied to (target domain).

In such cases, the effect of domain shift causes a model which performs well in the source domain

to perform poorly in the target domain.
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Recently, GANs have been used towards domain adaptation [29–31]. This is done through training

a generative model which maps the samples of the source domain to the target domain, thereby

reducing the effect of domain shift. Among these methods, CycleGAN [31] has shown great

performance in various domain adaptation tasks [30, 32, 33].

In essence, CycleGAN performs an unpaired mapping operation from a source domain X to a

target domain Y via two mapping functionsG : X → Y and F : Y → X . Internally, bothG and F

are the generators of two GAN models which are trained using their associated discriminators DY

and DX respectively. These discriminators encourage the indistinguishable translation of samples

into their respective domains. Therefore, training CycleGAN involves training two GAN models at

the same time. Additionally, CycleGAN introduces cycle consistency losses. These losses enforce

the intuition that for a sample x ∈ X the mapping F (G(x)) should yield a sample which closely

resembles x. Cycle consistency is enforced for both mappings X → Y → X and Y → X → Y .

Assuming that GANY : X → Y and GANX : Y → X , the following describes the loss function

for training a CycleGAN model:

LCycleGAN = LGANY + LGANX + λLcyc
(
G,F

)
(2.10)

where λ is the regularizer for the cycle consistency loss. Note that the type and the training process

of GANX and GANY is unimportant. In other words, one could select any GAN model (WGAN,

WGAN-GP etc.) as the mapping function for training a CycleGAN model. Once a CycleGAN

model is trained, one could use the trained generators (mappers) G and F to map arbitrary samples

from X to Y or vice-versa.

Although minimizing Equation 2.10 typically yields well-performing mappers, Zhu et al. [31]

found that the use of an additional loss term that enforces identity mapping is often beneficial for
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some problem domains. In simple terms, the identity loss term regularizes the generator to be

almost an identity mapping when samples x ∈ Y are mapped to the same domain Y .

2.4.2 Variational Autoencoders

We briefly discuss autoencoders [34, 35] upon which variational autoencoders [36] are built. Au-

toencoders, which consist of encoder and decoder networks, are unsupervised learning models that

are typically used for dimensionality reduction or noise removal from data. The encoder network

in these models takes the input data and transforms them into a vector in a lower dimensional space

(encoding). The decoder network takes the encoded data and aims to reconstruct the original data.

The training process involves optimizing the parameters of the encoder and decoder networks to

minimize the information lost after the input data is reconstructed. Once training concludes, the

encoder network can be used to perform dimensionality reduction or de-noising of the input.

Variational autoencoders (VAE) [36] are a class of autoencoders designed for generative modeling.

Similar to autoencoders, VAEs consist of encoder and decoder networks. However, the goal of

VAEs is to model the complex distribution of the input data by learning a latent representation

thereof. As such, the encoder network maps the input data x to a probability distribution (latent

space) while the decoder network aims to reconstruct the original data from a vector z in that

latent space. The loss function for VAEs consists of reconstruction as well as regularization terms.

The reconstruction term ensures that the reconstructed data closely resembles the input data. The

regularization term ensures that the learned distribution of the latent space is as close to the standard

normal distribution N (0, 1) as possible.

Assuming that φ and θ denote the trainable parameters of the encoder and decoder respectively,
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the following is the loss function that is minimized to train VAEs [37]:

L(θ, φ; x, z) = −Eqφ(z|x)
[
log pθ(x|z)

]
︸ ︷︷ ︸

reconstruction

+ DKL

(
qφ(z|x)

∣∣∣∣ p(z)
)

︸ ︷︷ ︸
regularization

(2.11)

where DKL(
∣∣∣∣ ) is the Kullback-Leibler (KL) divergence between two probability distributions (a

measure of the difference between the two). To put Equation 2.11 simply, the reconstruction term

aims to maximize the log-likelihood of observing the input sample x if the decoder is fed with the

latent vector z. As for the regularization term, recall that it aims to ensure the latent space follows

the standard normal distribution (p(z) = N (0, 1)). Thus, the regularization term ensures that when

the encoder encodes x into z, the obtained latent space follows the standard normal distribution.

Note that by minimizing L, we essentially minimize a negative log-likelihood term, and minimize

the KL-divergence between the distribution of the latent space and the standard normal distribution.

Notice that with Equation 2.11, encoder and decoder networks do not distinguish between different

inputs x. This implies that we cannot target specific samples x. For instance, if the VAE model

is trained on face images, one cannot specifically ask for the generation of specific types of faces

(male faces, female faces, etc.). To overcome this limitation, Sohn et al. [38] proposed conditional

VAEs in which a conditioning criterion is applied to the input data x as well as the latent vector z

similar to conditional GANs as described in Section 2.4.1.

2.4.3 Evaluation of Generative Models

Since generative models are capable of synthesizing fake data, an important step in evaluating them

is to determine the quality of the generated data. At the time of this writing, there is no consensus

on measures for the evaluation of generative models. As such, researchers rely on a combination of
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different measures to determine the quality of the generated outputs. Popular automatic measures

include Inception Score (IS) [25] or Frechét Inception Distance (FID) [39].

IS describes the quality of the generated samples by how well the Inception v3 network [40] clas-

sifies each one. This measure, however, does not compare the generated samples against the real

ones, which is what FID attempts to address. Similar to IS, FID also uses the Inception v3 model.

However, instead of a measure based on the classification confidence, it relies on the feature val-

ues computed at the last pooling layer of the Inception model. Specifically, FID computes these

activation values for a collection of real and fake samples. It then computes two multivariate Gaus-

sians, one for real feature values and one for the fake ones. Lastly, it compares the two Gaussian

models using the Frechét distance, producing a measure describing how the fake samples compare

against the real ones. Note that both IS and FID were introduced for image data which limits their

application for generative models that produce other types of data such as gestures. Thus, neither

of these measures is usable for the current work.

One popular approach of gauging the quality of generative models is conducting large-scale user-

studies with human participants. Such evaluations can cover a broader range of generated data

types, making them more appropriate for the current work. Although there are various ways to

design and run such studies, Zhou et al. recently introduced the HYPE∞ benchmark [41] which

defines a gold standard benchmark for evaluating generative realism on crowd-sourcing platforms

such as Amazon Mechanical Turk. This measure defines the quality of generative models’ outputs

as the percentage of samples that were judged incorrectly by human participants. For instance,

a HYPE∞ value of 20% means that the understudied generator can fool human participants 20%

of the time. HYPE∞ values of above 50% indicate hyper-realism: generated samples look more

realistic to humans than real samples.

To compare different generative models, HYPE∞ defines a between-subject design with 30 par-
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ticipants: each participant only sees the results from one of the models. For a given generative

model, every participant is shown a total of 100 samples comprised of 50 fake and 50 real sam-

ples. Given each sample, participants are asked to indicate whether they think that sample is real

or computer-generated, given an infinite amount of time to make this binary choice. Afterwards,

the HYPE∞ value is computed for each participant and is averaged across 30 participants. Zhou et

al. [41] showed that this protocol ensures repeatability and maintains the separability between dif-

ferent generative models and can be used as a reliable measure of the generative model’s quality.

2.5 Dynamic Time Warping

Dynamic time warping (DTW) is a dynamic programming algorithm that was originally proposed

for speech recognition [42], yet has found application in many fields involving data time series

analysis [43]. It is a dissimilarity measure of two time series that can be used to find the best

alignment of the two. As such, DTW was recently shown to be an effective nearest-neighbor

matching measure for gesture recognition [44].

DTW works as follows. Given two time series X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym}, a

cost matrix ∆ of size n×m is built3. Each element ∆ij is the matching cost of xi to yj , computed

via the following equation, which can be implemented via dynamic programming:

∆ij = d
(
xi, yj

)
+ min

{
∆i−1,j︸ ︷︷ ︸
insertion

, ∆i,j−1︸ ︷︷ ︸
deletion

, ∆i−1,j−1︸ ︷︷ ︸
matching

}
(2.12)

where d
(
xi, yj

)
is a cost (distance) function that is problem-specific. Although Euclidean distance

3For simplicity, in this work we always assume that X and Y are of the same length.

25



(ED) between xi and yj is widely used, Taranta et al. [44, 45] demonstrated the superiority of

using the cosine similarity measure (COS) for gesture recognition problems. The notations in

Equation 2.12 denote what each term of the cost matrix ∆ intuitively means. Once ∆ is fully

computed, the value ∆nm is the dissimilarity measure of X and Y, and the path through the matrix

that yields ∆nm is the optimal alignment between the two time series.

2.5.1 Differentiable (Soft) Dynamic Time Warping

A closer look at Equation 2.12 reveals that DTW is not differentiable, primarily because of the lack

of smoothness in the recurrence, caused by the computation of a minimum value. As such, at the

first glance one might assume that DTW cannot be used in gradient-based optimization algorithms.

To address this shortcoming, recently Cuturi and Blondel [46] proposed a differentiable formula-

tion of DTW called soft dynamic time warping (sDTW). The soft formulation of DTW replaces

the minimum computation with a differentiable soft minimum computation that is controlled by a

smoothing parameter γ:

minγ
{
a1, a2, ..., an

}
=


min(ai), γ = 0

−γ log
n∑
i=1

e−ai/γ, γ > 0

(2.13)

From Equation 2.13, it is clear that using γ = 0 would result in the original minimum value com-

putation, yielding the DTW formulation as presented in Equation 2.12. Note that larger values for

γ cause more smoothness in the shape of the resulting function. For values γ > 0, Cuturi and Blon-

del show that the value ∆nm would actually be the expected value of the dissimilarity between X

and Y, over every possible alignment between them weighted by their probability under the Gibbs

distribution [46].
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CHAPTER 3: RELATED WORK

In this chapter, we provide an overview of the related work in the literature. We examine the prior

research in gesture recognition and review the state of research in gesture generation. We also

highlight how this research differs from all other prior work.

3.1 Gesture Recognition

Gesture recognition has been a long-standing problem. The related field of sketch recognition dates

all the way back to the work of Sutherland on Sketchpad [47]. Arguably, the work of Rubine [48]

was the first rigorous attempt at recognizing gestures specified via examples. Rubine showed that

by extracting discriminant features from gesture samples, a simple linear recognizer could achieve

respectable recognition accuracies. Geometric features such as initial angle, length of the gesture,

size of the bounding box diagonal, among others, helped Rubine’s recognizer in distinguishing

between different 2D gestures.

Today, as with most other problems involving recognition by example, the problem of gesture

recognition is approached with solutions that come from two general categories: recognition with

hand-crafted features, or recognition through automatic extraction of features by learning good

features from the data itself. We refer to the latter

3.1.1 Recognition with hand-crafted features

Methods that attempt recognition via hand-crafted features have demonstrated great success over

the years [49–54] and thus fall into the classical categories of recognition. Methods in this category
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often design domain-specific discriminant features that are extracted from a set of training samples.

These features are then fed to a model that can find a decision boundary between target and non-

target classes, and thus recognize gesture samples that belong to a particular class.

As Cheema et al. [55] showed, these methods can achieve excellent recognition results. They

compared the performance of five algorithms (AdaBoost, SVM, Bayes, decision trees, and the

linear classifier) on Wii controller gestures and concluded that, in some cases, the seemingly simple

linear classifier can recognize a set of 25 gestures with 99% accuracy.

An overview of successful methods in this category follows. Weng et al. [56] leveraged the spatio-

temporal relations in action sequences with naı̈ve-Bayes nearest-neighbor classifiers [57] to rec-

ognize actions. Xia et al. [3] used hidden Markov models (HMM) and the histogram of 3D joint

locations to recognize gestures. Vemulapalli et al. [58] represented skeletal gestures as curves in a

Lie group and used a combination of classifiers to recognize the gestures. Wang et al. [59] modeled

the spatio-temporal motion properties of joints with a graph of motionlets. These graphs were then

classified using SVMs to recognize actions. Similarly, De Smedt et al. [60] used SVMs to recog-

nize hand gesture trajectories represented as data lying on Riemannian manifolds. Evangelidis et

al. [61] proposed skeletal quads, a skeleton descriptor which encodes the relative position of joint

quadruples which were then used for classifying actions.

3.1.2 The $-Recognizer Family

Although the recognizers described above can demonstrate great recognition performance, one

prohibiting factor in their adoption is the complexity of their implementation. Imagine a mobile

application developer who likes to integrate gesture-based interactions in their app, but finds the

task daunting due to the requirement for hand-engineering features, or implementing a machine

learning algorithm. Although off-the-shelf implementations of various machine learning algo-

28



rithms are easily accessible nowadays, the odds are good that a lot of effort from the developer is

needed to train, evaluate and integrate the algorithm in their app.

The $-family of recognizers [62–68] and their extended family [44, 45, 69–73] were introduced

to address these challenges. These recognizers attempt to provide an accessible means of incor-

porating gesture-based interactions in applications and prototypes. Simplicity and ease of imple-

mentation and use are the cornerstones of the design philosophy of these recognizers. Most of

these recognizers can be easily understood, without the need for a lot of domain knowledge, and

can be implemented in a few lines of code in a variety of programming languages. Additionally,

these recognizers are suitable for gesture customization: the ability to allow users to define their

own gestures by providing a few examples of the gestures they intend to use. This implies that the

$-family of recognizers can be trained with just a few training samples.

The design philosophy of these recognizers implies that they typically do not rely on hand-engineered

features. In fact, most of these recognizers are template-based: internally they maintain a set of

gesture templates, and given a gesture sample they attempt to match it to one of those internal tem-

plates. These recognizers mostly differ in input data representation and matching criteria. The $1

recognizer [62] uses Euclidean distance to match gestures to a template, while Protractor [63] uses

angular information for the matching process. Alternative dissimilarity measures such as the co-

sine or DTW dissimilarity have also been explored in Penny Pincher [45] and Jackknife [44]. The

$N recognizer [64] and $N-Protractor [65] are extensions of $1 and Protractor, respectively, which

add support for multi-stroke gestures. Similarly, the $3 recognizer [70] and Protractor 3D [71] are

extensions of $1 and Protractor, respectively, which add support for 3D input data.

Although most of the recognizers in the original $-family represent their inputs as ordered sets

of points, alternative representations have also been explored. The $P [66] and $P+ [67] rec-

ognizers represent their inputs as point clouds which enables better recognition performance for
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both unistroke and multistroke gestures. Their extension, $Q [68], was introduced to speed up the

recognition performance in the point cloud data domain. The use of direction vectors as the input

data representation has also been explored. Specifically, Penny Pincher [45] and Jackknife [44]

showed the effectiveness of such representation in various gesture recognition problems.

3.1.3 Deep Networks

Although most deep learning methods rely on automatic feature extraction from the input, the use

of hand-crafted features to train such networks has been previously explored. Chen et al. [60]

proposed the use of hand-crafted features along with raw skeleton data to recognize hand gestures.

Similarly, Avola et al. [74] used a LSTM architecture in conjunction with hand-crafted angular

features of hand joints to recognize hand gestures. Ke et al. [75] proposed the use of translation,

rotation and scale-invariant features extracted from the body parts in each frame to learn a more

robust representation of each gesture. This information was then transformed into image data

and fed to a convolutional neural network (CNN) to perform gesture recognition. The use of

convolutional operations for gesture recognition has also been explored in the work of Devineau et

al. [76], which proposed the use of parallel convolutions to extract features from hand joints. These

extracted features were then fed to a multi-layer perceptron to perform recognition.

In contrast, we aim to solely use automatically extracted features to perform gesture recognition

using RNNs. We explicitly avoid using hand-crafted features because such features are inherently

domain-specific which contradicts our design philosophy.

More recently, RNN-based models have been widely used for gesture recognition. Shahroudy et

al. [77] showed the power of recurrent architectures and long-short term memory (LSTM) units [8]

for large-scale gesture recognition. Zhang et al. [78] proposed a view-adaptive scheme to achieve

view-invariant action recognition. Their model consisted of LSTM units that would learn the most

30



suitable transformation of samples to achieve consistent viewpoints. Liu et al. [79] incorporated

the spatio-temporal and contextual dependencies to recognize actions from 3D skeletons. The

contextual updating mechanism of their LSTM units was further controlled by a gating mechanism

which improved robustness. The use of ensemble methods has also been explored in the literature.

Lee et al. [80] used an ensemble of LSTMs to capture the short-term, medium-term and long-term

dependencies between input features to recognize actions from skeletal data. Núñez et al. [81]

used a combination of CNNs and LSTMs with a two-stage training process to classify skeleton

and hand gestures. Weng et al. [82] proposed the use of one-dimensional convolutions to extract

features from skeleton joints. These features were then fed to a LSTM model to recognize gestures

and actions.

Most such prior work relies on LSTMs internally. In contrast, we only use gated recurrent units

(GRU) [9] as the building block of our recurrent network. It has been shown [10] (and we also

show later), that GRUs are faster to train and sometimes obtain better results. Also, our method

is designed to be general and not specific to a particular device, gesture modality or feature repre-

sentation. Lastly, we leverage the attention mechanism to capture the most important parts of each

input sequence.

The attention model has also been used towards gesture and action recognition. Liu et al. [19]

proposed a global context-aware attention LSTM network for 3D action recognition. Using a

global context, their method selectively focuses on the most informative joints when performing

recognition. Song et al. [20] used the attention mechanism with LSTM units to selectively focus

on discriminative skeleton joints at each gesture frame. Fan et al. [18] introduced a multi-view re-

observation LSTM network which augments any observed action with multiple views of the same

action in order to achieve view-invariant recognition. Baradel et al. [16] proposed a two-stream

convolutional and LSTM network which used pose as well as image information to perform action

recognition. They demonstrated the importance of focusing on the hand motion of the actors in the
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sequence to improve recognition accuracy. Later, Baradel et al. [17] leveraged the visual attention

model to recognize human activities purely using image data. They used GRUs as the building

block of their recurrent architecture.

Contrary to some of this work, DeepGRU only requires pose and vector-based data. Our novel

attention model differs from prior work in how the context vector is computed and consumed.

For instance, GCA-LSTM [19] has a multi-pass attention sub-network which requires multiple

initialize/refine iterations to compute attention vectors. Ours is single-pass and not iterative. Our

attention model also differs from STA-LSTM [20] which has two separate temporal and spatial

components, whereas ours has only one component for both domains. VA-LSTM [78] has a view-

adaptation sub-network that learns transformations to consistent view-points. This imposes the

assumption that input data are spatial or view-point dependent, which may prohibit applications

on non-spatial data (e.g. acoustic gestures [83]). Our model does not make any such assumptions.

As we show later, our single-pass, non-iterative, spatio-temporal combined attention, and device-

agnostic architecture result in less complexity, fewer parameters, and shorter training time, while

achieving state-of-the-art results, which we believe sets us apart from prior work.

3.2 Continuous Gesture Recognition and Segmentation

Recognition in a continuous stream of data is challenging [6] and we believe continuous (dynamic)

gesture recognition is even more challenging because wrong recognition could lead to wrong ac-

tions being performed in a gesture-based UI, causing user frustration. Additionally, continuous

streams of data often contain non-gestural interactions which make the recognition problem more

challenging, as a recognizer needs to correctly determine and ignore these non-important sub-parts.

Pavlovic et al. [84] identify three phases that comprise a dynamic gesture: pre-stroke (the move-
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ment in preparation for gesticulation ), nucleus (the actual movement of the gesture) and post-

stroke (the movement to a resting pose). Determining the correct boundaries of each phase is the

main task in gesture segmentation.

In broad strokes, Escalera et al. [85] categorize dynamic gesture recognition into two categories:

direct and indirect methods. Direct methods include heuristic-based segmentation wherein low-

level features (e.g. trajectory, velocity, etc.) are computed and a decision as to whether a gesture

has occurred is made based on changes in these low level features. The popular approach of using

a temporally sliding window along with a segmented gesture recognizer is another example of the

direct methods. Conversely, indirect methods often perform recognition and segmentation jointly

by analyzing the stream of data and determining the boundaries where a possible gesture may have

been performed. In this work we concentrate on the indirect methods, as they typically do not rely

on hand-engineered features and are often more practical in many application domains.

3.2.1 Traditional Methods

Traditionally, hidden Markov models (HMM) and conditional random fields (CRF) [86] have been

used for such tasks, primarily because these probabilistic models inherently work well with se-

quential data. As Escalera et al. [85] point out, the use of a threshold model is common across

probabilistic models used for gesture spotting or segmentation. In simple terms, the output of

probabilistic models is often compared to a threshold and the result is used to determined to accept

or reject detections.

Inspired by natural language processing, Wang et al. [87] proposed a segmentation method based

on HMMs for analyzing videos containing human gestures. Similarly, Yin and Davis [88] used

salient features along with HMMs for hand gesture spotting and recognition. Sign language spot-

ting has also been studied by Yang et al. [89]. In their method, they use CRFs along with a novel
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threshold model to not only recognize the components of the sign language, but also to distinguish

between sign and non-sign gestures.

The use of DTW or continuous dynamic programming (CDP) [90] has also been explored for con-

tinuous gesture recognition. Alon et al. [91] proposed a unified framework that can be used for

such recognition tasks. They demonstrated the merits of their framework via a DTW-based spatio-

temporal matching algorithm capable of matching gestures to their exemplar templates in a contin-

uous stream of data. More recently, Tang et al. [92] proposed a method of recognizing continuous

hand gestures by combining a template- and velocity-based segmentation method with DTW.

All this prior work differs from ours in that we use deep networks which alleviate the need for

hand-engineering features. Also, in our experience, deep networks are more flexible to use across

various modalities and data representations.

3.2.2 Deep Networks

Given the ability of RNNs to work with sequence data, and their effectiveness in tasks such as

speech recognition, it is unsurprising that these networks have been used for continuous recognition

and segmentation.

One popular application of analyzing continuous sequences is sign language recognition, which

has received a lot of attention in the literature. Koller et al. introduced Deep Sign [93], a hybrid

model consisting of a CNN and a HMM for continuous sign language recognition. Their CNN

was used for feature extraction whereas the HMM was used for sequence modeling. Yang et

al. proposed SF-Net [94] which aimed to translate signing into a sequence, simultaneously solving

recognition and sequence generation. Cui et al. developed a vision-based continuous sign language

recognizer [95]. They used a model consisting of recurrent and convolutional units for feature
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extraction in both spatial as well as temporal dimensions to learn sequences.

Most of the existing work in the literature of continuous gesture recognition focus on analyzing

visual data, such as videos. Molchanov et al. introduced a multi-sensor continuous recognizer for

gestures with a focus on applications in automotive interfaces [96]. Using a CNN, they fused the

data from a short-range radar, a color and a time-of-flight depth sensor and recognized driver’s

hand gestures. Note that their method was not explicitly designed for online gesture recognition.

Rather, they leveraged the existence of the radar data along with heuristics to determine when a

gesture has begun or ended. Later Molchanov et al. [97] showed the merits of using a 3D CNN

operating on spatial and temporal domains to recognize the driver’s hand gestures from RGB-D

video. Molchanov et al. extended the idea of using 3D CNNs along with RNNs to perform fully

online gesture recognition [98]. Notably, their model used the connectionist temporal classification

(CTC) [99] cost function as a means of identifying the nucleus of the gesture.

Other examples of continuous gesture recognition using visual data include the work of Zhu et

al. [100]. They employed a multi-network architecture consisting of four models. One network

performs the segmentation of the input, while three other networks work jointly to recognize the

segmented gesture in isolation. The use of an attention model to improve continuous recognition

has also been explored in the literature. Dhingra and Kunz introduced Res3ATN [101] an end-to-

end attention network for hand gesture recognition. They studied the effect of varying the number

of attention blocks on the recognition accuracy of the network.

Since most of such related work focuses on gesture recognition in visual data, they emphasize the

use of CNNs as a means of extracting features from video sequences. Consequently, the application

of these methods is limited to video data. In contrast, we put emphasis on the task of recognition

or segmentation itself. Our goal is to present a general-purpose continuous recognizer that can be

trained end-to-end and can work across various data and modalities.
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3.3 Gesture Generation

Synthetic generation of data as pertinent to gesture recognition has been explored in the literature

for a variety of reasons, such as lack of sufficient amounts of labeled data. Perhaps the most notable

usage of such synthetic data was in Kinect [102], where large amounts of training data were needed

for its pose recognition algorithm. Other examples include handwriting recognition of ancient

texts [103], handwriting generation [104, 105] as well as digital forensics applications [106, 107].

As Taranta et al. [108] point out, an example of usage of synthetic gestures is for training recog-

nizers with very little amounts of data, or to add the ability to customize gestures in an application.

In broad strokes, the synthetic generation methods often take two approaches. They either apply

perturbations to existing samples and generate new sequences, or they build a generative model

that can generate new samples without the need for inputting an existing one. Methods that gen-

erate new samples by means of geometrical transformations (e.g. scaling, rotating, etc.) fall into

the former category. The latter category of methods often requires more data, but the generated

instances are often of higher quality since these methods attempt to mimic the distribution of the

original dataset of samples.

Notable examples of generation through perturbation of samples follow. Plamondon proposed the

kinematic theory of rapid human movements [109] which describes human movements. Based

on this, the Sigma-Lognormal model [110] was proposed as a means of generating handwrit-

ing strokes. Leiva et al. demonstrated the effectiveness of this model for gesture generation

tasks [111, 112]. In their work, every gesture is modeled via the Sigma-Lognormal model which

has six control parameters. New samples are generated by applying random perturbations on these

parameters. Davila et al. [113] used Perlin noise [114] as the perturbation model for creating syn-

thetic samples. Perlin noise is a computer graphics technique for generating textures. Taranta et

al. introduced GPSR [108] which produces synthetic samples by stochastically resampling and
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lengthening or shortening the gesture paths.

Examples of generative models often involve the use of neural networks. Prior to the advent

of GANs [21], most sequence generation methods relied on language modeling, a probabilistic

technique often used natural language processing and sequence prediction. Language modeling

involves estimating the probability of a given sequence, considering a corpus of valid sequences.

For instance, the English sentence “The weather is good” is much more probable than the sen-

tence “The wither is good”. Thus, a language model trained on a corpus of English sentences is

expected to assign a higher probability to the former. The extensive work of Graves [115] demon-

strated the surprising effectiveness of such models in various sequence generation tasks, including

handwriting generation.

More recently GAN-based methods have been used for various action and motion sequence gen-

eration tasks. Tang et al. [116] introduced GestureGAN, a generative model for hand gesture-to-

gesture translation. GestureGAN takes two inputs: a single image of a person holding a static

hand gesture, as well as a skeleton pose. It then produces as the output the image of that same

person, but holding the gesture of the skeleton with the correct pose, thereby performing gesture

translation. Yang et al. [117] presented a pose-guided human video generation method. The input

to their framework consisted of an image of a person, along with an action label. Their goal was

to generate a video of that person performing the specified action. Notably, their framework con-

sisted of two separate GAN models, one for pose sequence generation and the other one for video

generation based on the generated poses.

To our knowledge, prior work specifically focused on gesture sequence generation across differ-

ent modalities is scarce, which makes our work novel. Most related to our work is the work of

Zhang’s et al. [118]. They used RNNs for Chinese character recognition and generation. Their

generation was done through a GAN framework. Notably, they reused their proposed recognizer
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as the discriminator in the GAN model, which is what we also do in Chapter 6. Also, they generate

their characters in a temporal pen stroke format which is much more challenging than generating

the image of characters. What sets us apart from the work of Zhang’s et al. [118] is our explicit

focus on gestures, which can include 2D pen strokes as well as 3D hand or full-body gestures.

Moreover, as we show in Chapter 6 we formulate a novel loss function that allows us to generate

gesture sequences with a single network, obviating the need for GAN models.

Training generative models without a discriminator has also been explored in the literature. Yu et

al. [119] proposed generating text sequences using reinforcement learning techniques. Their work

was later extended by Guo et al. [120] in which techniques from hierarchical reinforcement learn-

ing [121] was also incorporated. Lin et al. [122] presented the use of a ranking mechanism that

replaced the discriminator of a GAN-like generator. Li et al. [123] introduced an adversarial op-

timization procedure to train a text generator. These prior work focus on generating sequences of

discrete tokens which typically involve generating sequences comprised of tokens of a predeter-

mined cardinality such as producing English text. Conversely, our goal is to generate real-valued

and continuous multi-dimensional gesture sequences, which is highly challenging as data can take

arbitrary values. Additionally, our loss formulation is different from [123] in that our formulation

is non-adversarial in nature.
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CHAPTER 4: SEGMENTED GESTURE RECOGNITION WITH

RECURRENT NETWORKS USING DEEPGRU1

4.1 Introduction

In this chapter we introduce DeepGRU: our proposed end-to-end deep network-based gesture

recognition utility (see Figure 4.1) designed for recognizing segmented gestures. DeepGRU works

directly with the raw 3D skeleton, pose or other vector features (e.g. acceleration, angular velocity,

etc.) produced by noisy commodity hardware, thus requiring minimal domain-specific knowledge

to use. With roughly 4 million trainable parameters, DeepGRU is a rather small network by mod-

ern standards and is budget-aware when computational power is constrained. Through evaluations

on different datasets and gesture modalities, we demonstrate that our proposed method achieves

state-of-the-art recognition accuracy on small and large training data alike. We demonstrate the

relevance of our deep network model for small-scale problems with a limited amount of train-

ing data. Specifically, we show that with as little as four training samples per class, our method

can produce state-of-the-art results in such setting, and that it is possible to train our model in a

reasonable amount of time using only the CPU.

4.2 DeepGRU

In this section we provide an in-depth discussion of DeepGRU’s architecture. In our architecture,

we take inspiration from VGG-16 [124], and the attention [12, 13] and sequence to sequence mod-

1Some portions of this chapter previously appeared in the following publication:
Maghoumi M., LaViola J.J. (2019) DeepGRU: Deep Gesture Recognition Utility. In: Bebis G. et al. (eds) Advances
in Visual Computing. ISVC 2019. Lecture Notes in Computer Science, vol 11844. Springer, Cham
The final authenticated version is available online at https://doi.org/10.1007/978-3-030-33720-9 2
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Figure 4.1: DeepGRU – the proposed recurrent model for gesture recognition which consists of an
encoder network of stacked gated recurrent units (GRU), the attention module and the classification
layers. The input x = (x0, x1, ..., x(L−1)) is a sequence of vector data of arbitrary length and the
output is the predicted class label ŷ. The number of the hidden units for each layer is displayed
next to every component (see Section 4.2 for a thorough description).

els [125]. Our model, depicted in Figure 4.1, is comprised of three main components: an encoder

network, the attention module, and two fully-connected (FC) layers fed to softmax producing the

probability distribution of the class labels. We provide an ablation study to give insight into our

design choices in Section 4.4.

4.2.1 Input Data

The input to DeepGRU is raw input device samples represented as a temporal sequence of the un-

derlying gesture data (e.g. 3D joint positions, accelerometer or velocity measurements, 2D Carte-
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sian coordinates of pen/touch interactions, etc.). At time step t, the input data is the column vector

xt ∈ RN , where N is the dimensionality of the feature vector. Thus, the input data of the entire

temporal sequence of a single gesture sample is the matrix x ∈ RN×L, where L is the length of the

sequence in time steps. Note that the dimensionality N depends on the device that generated the

data and also how one chooses to represent the data. In this sense, DeepGRU is agnostic to the input

representation. Also, we use the entire temporal sequence as-is without sub-sampling or clipping.

4.2.2 Encoder Network

The encoder network in DeepGRU is fed with data from training samples and serves as the feature

extractor. Our encoder network consists of a total of five stacked unidirectional GRUs. Although

LSTM units [8] are more prevalent in the literature, we utilize GRUs because due to the smaller

number of parameters, these units are simpler to use and are generally faster to train and are

less prone to overfitting. At time step t, given an input vector xt and the hidden state vector

of the previous time step h(t−1), a GRU computes ht, the hidden output at time step t, as ht =

Γ
(
xt, h(t−1)

)
using the transition equations detailed in Equation 2.3.

Given a gesture sample x ∈ RN×L, the encoder network uses Equation 2.3 to output h̄ ∈ R128×L,

where h̄ is the result of the concatenation h̄ =
[
h0; h1; ... ; h(L−1)

]
. This output, which is a

compact encoding of the input matrix x, is then fed to the attention module.

4.2.3 Attention Module

The output of the encoder network, which is a compressed representation of the input gesture

sample, can provide a reasonable set of features for performing classification. We further refine

this set of features by extracting the most informative parts of the sequence using the attention
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model. We propose a novel adaptation of the global attention model [13] which is suitable for

our recognition task. Given all the hidden states h̄ of the encoder network, our attention module

computes the attentional context vector c ∈ R128 using the trainable parameters Wc as:

c = softmax
(
hᵀ(L−1)Wch̄

)
h̄ =

 exp
(
hᵀ(L−1)Wch̄

)
∑L−1

t=0 exp
(
hᵀ(L−1)Wcht

)
 h̄ (4.1)

As evident in Equation 4.1, we solely use the hidden states of the encoder network to compute

the attentional context vector. The hidden state of the last time step h(L−1) of the encoder network

(the yellow arrow in Figure 4.1) is the main component of our context computation and attentional

output. This is because h(L−1) can potentially capture a lot of information from the entire gesture

sample sequence.

With the context vector in hand, one could use the concatenation
[
c ; h(L−1)

]
to form the contex-

tual feature vector and perform classification. However, recall that the inputs to DeepGRU can be

of arbitrary lengths. Therefore, the amount of information that is captured by h(L−1) could differ

among short sequences and long sequences. This could make the model susceptible to variations in

sequence lengths. Our proposed solution to mitigate this is as follows. During training, we jointly

learn a set of parameters that given the context and the hidden state of the encoder network would

decide whether to use the hidden state directly, or have it undergo further transformation while

accounting for the context. This decision logic can be mapped to the transition equations of a GRU

(see Equation 2.3). Thus, after computing the context c, we additionally compute the auxiliary con-

text c′ and produce the attention module’s output oattn using Γattn (the attentional GRU) as follows:
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c′ = Γattn
(
c, h(L−1)

)
(4.2)

oattn =
[
c ; c′

]

In summary, we believe that the novelty of our attention model is threefold. First, it only relies on

the hidden state of the last time step h(L−1), which reduces complexity. Second, we compute the

auxiliary context vector to mitigate the effects of sequence length variations. Lastly, our attention

module is invariant to zero-padded sequences and thus can be trivially vectorized for training on

mini-batches of sequences with different lengths. As we show in Section 4.4, our attention model

works very well in practice.

4.2.4 Classification

The final layers of our model are comprised of two FC layers (F1 and F2) with ReLU activations

that take the attention module’s output and produce the probability distribution of the class labels

using a softmax classifier:

ŷ = softmax
(

F2

(
ReLU

(
F1(oattn)

)))
(4.3)

We use batch normalization [126] followed by dropout [127] on the input of both F1 and F2 in

Equation 4.3. During training, we minimize the cross-entropy loss to reduce the difference between

predicted class labels ŷ and the ground truth labels y.
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4.3 Evaluation

To demonstrate the robustness and generality of DeepGRU, we performed a set of experiments

on datasets of various sizes. Specifically, we evaluate our proposed method on five datasets: UT-

Kinect [3], NTU RGB+D [77], SYSU-3D [51], DHG 14/28 [4, 128] and SBU Kinect Interactions

[129]. We believe these datasets cover a wide range of gesture interactions, number of actors, view-

point variations and input devices. We additionally performed experiments on two small-scale

datasets (Wii Remote [55] and Acoustic [83]) in order to demonstrate the suitability of DeepGRU

for scenarios where only a very limited amount of training data is available. We compute the

recognition accuracies on each dataset and report them as a percentage.

Implementation details. We implemented DeepGRU using the PyTorch [11] framework. The

input data to the network are z-score normalized using the training set. We use the Adam solver

[7] (β1 = 0.9, β2 = 0.999) and the initial learning rate of 10−3 to train our model. The mini-

batch size for all experiments is 128, except for those on NTU RGB+D, for which the size is

256. Training is done on a machine equipped with two NVIDIA GeForce GTX 1080 GPUs, Intel

Core-i7 6850K processor and 32 GB RAM. Unless stated otherwise, both GPUs were used for

training with mini-batches divided among both cards. Our reference implementation is available

at https://github.com/Maghoumi/DeepGRU .

Regularization. We use dropout (0.5) and data augmentation to avoid overfitting. All regulariza-

tion parameters were determined via cross-validation on a subset of the training data. Across all

experiments we use three types of data augmentation: (1) random scaling with a factor2 of ±0.3,

(2) random translation with a factor of ±1, (3) synthetic sequence generation with gesture path

2A factor of ±0.3 indicates that samples are randomly and non-uniformly (e.g.) scaled along all axes to [0.7, 1.3]
of their original size.
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stochastic resampling (GPSR) [108]. For GPSR we randomly select the resample count n and

remove count r. We use n with a factor of (±0.1 × L̃) and r with a factor of (±0.05 × L̃). Addi-

tionally, we use two more types of regularization for experiments on NTU RGB+D dataset. We use

a weight decay value of 10−4, as well as random rotation with a factor of ±π
4
. This was necessary

due to the multi-view nature of the dataset.

4.3.1 UT-Kinect

This dataset [3] is comprised of ten gestures performed by ten participants two times (200 se-

quences in total). The data of each participant is recorded and labeled in one continuous session.

What makes this dataset challenging is that the participants move around the scene and perform the

gestures consecutively. Thus, samples have different starting positions and/or orientations. We use

the leave-one-out-sequence cross validation protocol of [3]. During our tests, we noticed that the

label of one of the sequences was corrupted3. We manually labeled the sequence and performed

our experiments twice: once with the corrupted sequence omitted, and once with our manually la-

beled version of the corrupted sequence. We obtained the same results in both settings. We achieve

state-of-the-art results with the perfect classification accuracy of 100% as shown in Table 4.1.

4.3.2 NTU RGB+D

To our knowledge, this is the largest dataset of actions collected from Kinect (v2) [77]. It comprises

about 56,000 samples of 60 action classes performed by 40 subjects. Each subject’s skeleton has

25 joints. The challenging aspect of this dataset stems from the availability of various viewpoints

for each action, as well as the multi-person nature of some action classes. We follow the cross-

3The second sample of participant 10’s carry gesture
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Table 4.1: Results on UT-Kinect [3] dataset.

Method Accuracy

Grassmann Manifold [53] 88.5
Histogram of 3D Joints [3] 90.9
Riemannian Manifold [49] 91.5
Key-Pose-Motifs [130] 93.5
LARP + mfPCA [131] 94.8
Action snippets [132] 96.5
ST LSTM + Trust Gates [79] 97.0
Lie Group [58] 97.1
Graph-based [59] 97.4
ST-NBNN [56] 98.0
SCK + DCK [133] 98.2
DPRL + GCNN [134] 98.5
GCA-LSTM (direct) [19] 98.5
CNN + Kernel Feature Maps [135] 98.9
GCA-LSTM (step-wise) [19] 99.0
CNN + LSTM [81] 99.0
KRP FS [136] 99.0

DeepGRU 100.0

subject (CS) and cross-view (CV) evaluation protocols of [77]. In the CS protocol, 20 subjects

are used for training and the remaining 20 subjects are used for testing. In the CV protocol, two

viewpoints are used for training and the remaining one viewpoint is used for testing. Note that

according to the dataset authors, 302 samples in this dataset have missing or incomplete skeleton

data which were omitted in our tests.

We create our feature vectors similar to [77]. For each action frame, we concatenate the 3D co-

ordinates of the skeleton joints into one 75 dimensional vector in the order that they appear in

the dataset. In cases where there are multiple skeletons in a single action frame, we treat each

skeleton as one single time step. For each frame, we detect the main actor, which is the skeleton

with the largest amount of total skeleton motion. The time step frames are created in descending
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Table 4.2: Results on NTU RGB+D [77] dataset.

Modality Method Accuracy

CS CV

Image Multitask DL [137] 84.6 –
Glimpse Clouds [17] 86.6 93.2

Pose+Image DSSCA - SSLM [138] 74.9 –
STA Model (Hands) [139] 82.5 88.6
Hands Attention [16] 84.8 90.6
Multitask DL [137] 85.5 –

Pose Skeletal Quads [61] 38.6 41.4
Lie Group [58] 50.1 52.8
HBRNN [140] 59.1 64.0
Dynamic Skeletons [51] 60.2 65.2
Deep LSTM [77] 60.7 67.3
Part-aware LSTM [77] 62.9 70.3
ST LSTM + Trust Gates [79] 69.2 77.7
STA Model [20] 73.2 81.2
LSTM + FA + VF [18] 73.8 85.9
Temporal Sliding LSTM [80] 74.6 81.3
CNN + Kernel Feature Maps [135] 75.3 –
SkeletonNet [75] 75.9 81.2
GCA-LSTM (direct) [19] 74.3 82.8
GCA-LSTM (step-wise) [19] 76.1 84.0
JTM CNN [141] 76.3 81.1
DPTC [82] 76.8 84.9
VA-LSTM [78] 79.4 87.6
Beyond Joints [142] 79.5 87.6
Clips+CNN+MTLN [143] 79.6 84.8
View-invariant [144] 80.0 87.2
Dual Stream CNN [145] 81.1 87.2
DPRL + GCNN [134] 83.5 89.8

DeepGRU 84.9 92.3

order of total skeleton motion. Following [77], we transform the coordinates of all skeletons to the

spine-mid joint of the main actor in the action frame.

Our results are presented in Table 4.2. Although DeepGRU only uses the raw skeleton positions

of the samples, we present the results of other recognition methods that use other types of gesture
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Table 4.3: Results on SYSU-3D [51].

Method Accuracy

LAAF [52] 54.2
Dynamic Skeletons [51] 75.5
ST LSTM + Trust Gates[79] 76.5
DPRL + GCNN [134] 76.9
VA-LSTM [78] 77.5
GCA-LSTM (direct) [19] 77.8
GCA-LSTM (step-wise) [19] 78.6

DeepGRU 80.3

data. To the best of our knowledge, DeepGRU achieves state-of-the-art performance among all

methods that only use raw skeleton pose data.

4.3.3 SYSU-3D

This Kinect-based dataset [51] contains 12 gestures performed by 40 participants totaling 480

samples. The widely-adopted evaluation protocol [51] of this dataset is to randomly select 20

subjects for training and the use remaining 20 subjects for testing. This process is repeated 30

times and the results are averaged. The results of our experiments are presented in Table 4.3.

4.3.4 DHG 14/28

This dataset [128] contains 14 hand gestures of 28 participants collected by a near-view Intel

RealSense depth camera. Each gesture is performed in two different ways: using the whole hand,

or just one finger. Also, each sample gesture is repeated between one to ten times yielding 2800

sequences. The training and testing data on this dataset are predefined and evaluation can be

performed in two ways: classify 14 gestures or classify 28 gestures. The former is insensitive to
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Table 4.4: Results on DHG 14/28 [128] with two evaluation protocols.

Protocol Method
Accuracy

C = 14 C = 28

Leave-one-out Chen et al. [60] 84.6 80.3
De Smedt et al. [146] 82.5 68.1
CNN+LSTM [81] 85.6 81.1
DPTC [82] 85.8 80.2

DeepGRU 92.0 87.8

SHREC’17 [4] HOG2 [147][4] 78.5 74.0
HIF3D [148] 90.4 80.4
De Smedt et al. [149][4] 88.2 81.9
Devineau et al. [76] 91.2 84.3
DLSTM [74] 97.6 91.4

DeepGRU 94.5 91.4

how an action is performed, while the latter discriminates the samples performed with one finger

from the ones performed with the whole hand. The standard evaluation protocol of this dataset is

a leave-one-out cross-validation protocol. However, the SHREC 2017 [4] challenge introduces a

secondary protocol in which training and testing sets are pre-split. Table 4.4 depicts our results

using both protocols and both number of gesture classes.

4.3.5 SBU Kinect Interactions

This dataset [129] contains 8 two-person interactions of seven participants. We utilize the 5-fold

cross-validation protocol of [129] in our experiments. Contrary to other datasets, which express

joint coordinates in the world coordinate system, this dataset has opted to normalize the joint values

instead. Despite using a Kinect (v1) sensor, the participants in the dataset have only 15 joints.

We treat action frames that contain multiple skeletons similarly to what we described above for
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Table 4.5: Results on SBU Kinect Interactions [129].

Modality Method Accuracy

Image Hands Attention [16] 72.0
DSPM 93.4

Pose + Image Hands Attention [16] 94.1

Pose HBRNN [140] 80.4
Deep LSTM [77] 86.0
Ji et al. [150] 86.8
Co-occurance Deep LSTM [151] 90.4
Hands Attention [16] 90.5
STA Model [20] 91.5
ST LSTM + Trust Gates [79] 93.3
SkeletonNet [75] 93.5
Clips + CNN + MTLN [143] 93.5
GCA-LSTM (direct) [19] 94.1
CNN + Kernel Feature Maps [135] 94.3
GCA-LSTM (step-wise) [19] 94.9
LSTM + FA + VF [18] 95.0
VA-LSTM [78] 97.2

DeepGRU 95.7

the NTU RGB+D dataset, with the exception of transforming the joint coordinates. Also, using

the equations provided in the datasets, we covert the joint values to metric coordinates in the

depth camera coordinate frame. This is necessary to make the representation consistent with other

datasets that we experiment on. Table 4.5 summarizes our results.

4.3.6 Small Training Set Evaluation

The amount of training data for some gesture-based applications may be limited. This is especially

the case during application prototyping stages, where developers tend to rapidly iterate through

design and evaluation cycles. Throughout the years, various methods have been proposed in the
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literature aiming to specifically address the need for recognizers that are easy to implement, fast to

train and work well with small training sets [44, 45, 71, 152].

Traditionally, deep networks are believed to be slow to train, requiring a lot of training data. We

show this is not the case with DeepGRU and our model performs well with small training sets

and can be trained only on the CPU. We pit DeepGRU against Protractor3D [71], $3 [152] and

Jackknife [44] which to our knowledge produce high recognition accuracies with a small number

of training instances [44].

We examine two datasets. The first dataset contains acoustic over-the-air hand gestures via Doppler

shifted soundwaves [83]. This dataset contains 18 hand gestures collected from 22 participants via

five speakers and one microphone. At 165 component vectors per frame, this dataset is very high-

dimensional. Also, the soundwave-based interaction modality is prone to high amounts of noise.

The second dataset contains gestures performed via a Wii Remote controller [55]. This dataset

contains 15625 gestures of 25 gesture classes collected from 25 participants. In terms of data rep-

resentation, both datasets differ from all others examined thus far. Samples of [83] are frequency

binned spectrograms while samples of [55] are linear acceleration data and angular velocity read-

ings (6D), neither of which resemble typical skeletal representations nor positional features.

For each experiment we use the user-dependent protocol of [44, 55]. Given a particular participant,

τ random samples from that participant are selected for training and the remaining samples are

selected for testing. This procedure is repeated per participant and the results are averaged across

all trials. Considering that in the prototyping stage the amount of training samples is typically

limited, we evaluate the performance of all the recognizers using τ=2 and τ=4 training samples

per gesture class. The results are tabulated in Table 4.6. We see that with τ=4 training samples

per gesture class, DeepGRU outperforms other recognizers on both datasets.
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Table 4.6: Rapid prototyping evaluation results with T training samples per gesture class.

Dataset Method Accuracy

τ = 2 τ = 4

Acoustic [83] Jackknife [44] 91.0 94.0

DeepGRU 89.0 97.4

Wii Remote [55] Protractor3D [71] 73.0 79.6
$3 [152] 79.0 86.1
Jackknife [44] 96.0 98.0

DeepGRU 92.4 98.3

Table 4.7: DeepGRU training times (in minutes) on various datasets.

Device Configuration Dataset Time (mins)

CPU 12 threads Acoustic [83] (τ=4) 1.7

Wii Remote [55] (τ=4) 6.9

GPU 2× GTX 1080 SHREC 2017 [4] 5.5

NTU RGB+D [77] 129.6

1× GTX 1080 SHREC 2017 [4] 6.2

SYSU-3D [51] 9.0

NTU RGB+D [77] 198.5

4.4 Discussion

Comparison with the state-of-the-art. Experiment results show that DeepGRU generally tends

to outperform the state-of-the-art results, sometimes with a large margin. On the NTU-RGB+D [77],

we observe that in some cases DeepGRU outperforms image-based or hybrid methods.

Although the same superiority is observed on the SBU dataset [129], our method achieves slightly

lower accuracy compared to VA-LSTM [78]. One possible intuition for this observation could be

that the SBU dataset [129] provides only a subset of skeleton joints that a Kinect (v1) device can

produce (15 compared to the full set of 20 joints). Further, note that VA-LSTM’s view-adaptation
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(a) Punching (b) Kicking

(c) Shaking hands (d) Exchanging

(e) Hugging (f) Departing

Figure 4.2: Attention response visualization for samples from the SBU Kinect Interactions [129]
dataset. Each sample starts from the left and progresses to the right. The color intensity indicates
the amount of attentional response (norm) to the frame (darker = higher response).

sub-network assumes that the gesture data are 3D positions and viewpoint-dependent. This is in

contrast with DeepGRU which does not make such assumptions about the underlying type of the

input data (position, acceleration, velocity, etc.).

As shown in Table 4.4, classifying 14 gestures of the DHG 14/28 dataset [128] with DLSTM [74]

yields higher recognition accuracy compared to DeepGRU. As previously mentioned, DLSTM

[74] uses hand-crafted angular features extracted from hand joints and these features are used as

the input to the recurrent network while DeepGRU uses raw input, which relieves the user of the

burden of computing domain-specific features. Classifying 28 classes, however, yields similar

results with either of the recognizers.

Generality. Our experiments demonstrate the versatility of DeepGRU for various gesture or ac-

tion modalities and input data: from full-body multi-actor actions to hand gestures, collected from

various commodity hardware such as depth sensors or game controllers with various data represen-
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tations (e.g. pose, acceleration and velocity or frequency spectrograms) as well as other differences

such as the number of actors, gesture lengths, number of samples and number of viewpoints. Re-

gardless of these differences, DeepGRU can still produce high accuracy results.

This flexibility is, in large part, due to our attention module and context vector computation. We

present an example visualization of our attention module’s response in Figure 4.2. We can see

that after training, our attention mechanism correctly selects the most discriminative frames in the

sequence. Additionally, we did not observe much overfitting during training suggesting that our

regularization methods seem to generalize well to various application domains.

Ease of use. In addition to accuracy, the adoption of any one gesture recognition method ul-

timately comes down to the ease of use. In that regard, DeepGRU has a few advantages over

competitive methods. Our method uses raw device data, thus requiring fairly little domain knowl-

edge. Our model is straightforward to implement and as we discuss shortly, training is fast. We

believe these traits make DeepGRU an enticing option for practitioners.

Timings. Training time is an important factor in the prototyping stage. In such scenarios, the

ability to conveniently train a network without GPUs is desirable. We measured the amount of

time it takes to train DeepGRU to convergence with different configurations in Table 4.7. The

reported times include dataset loading, preprocessing and data augmentation time. Training our

model to convergence tends to be fast. In fact, GPU training of medium-sized datasets or CPU-

only training of small datasets can be done in under 10 minutes, which we believe is beneficial for

iterative design. We also measured DeepGRU’s average inference time per sample both on GPU

and on CPU in microseconds. On a single GPU, our method takes 349.1 µs to classify one gesture

sample while it takes 3136.3 µs on the CPU.

Ablation study. To provide insight into our network design, we present an ablation study in Ta-
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Table 4.8: Ablation study on DHG 14/28 dataset (14 class, SHREC’17 protocol). We examine
(respectively) the effects of the usage of the attention model, the recurrent layer choice (LSTM
vs. GRU), the number of stacked recurrent layers (3 vs. 5) and the number of FC layers (1 vs. 2).
Training times (seconds) are reported for every model. Experiments use the same random seed.
DeepGRU’s model is boldfaced.

Attn. Rec. # Stacked # FC Time (sec) Accuracy Attn. Rec. # Stacked # FC Time (sec) Accuracy
Unit Unit

- LSTM 3 1 162.21 91.78 X LSTM 3 1 188.29 92.74
- LSTM 3 2 164.07 91.07 X LSTM 3 2 192.12 92.02
- LSTM 5 1 246.47 91.90 X LSTM 5 1 277.32 92.38
- LSTM 5 2 251.67 89.52 X LSTM 5 2 283.35 92.26
- GRU 3 1 143.87 93.45 X GRU 3 1 170.48 94.12
- GRU 3 2 148.08 93.33 X GRU 3 2 174.00 93.81
- GRU 5 1 210.83 93.69 X GRU 5 1 243.10 93.93
- GRU 5 2 212.99 93.81 X GRU 5 2 248.66 94.52

ble 4.8. Most importantly, we note depth alone is not sufficient to achieve state-of-the-art results.

Further, accuracy increases in all cases when we use GRUs instead of LSTMs. GRUs were on av-

erage 12% faster to train and the worst GRU variant achieved higher accuracy than the best LSTM

one. In our early experiments, we noted LSTM networks overfitted frequently which necessitated

a lot more parameter tuning, motivating our preference for GRUs. However, we later observed un-

derfitting when training GRU variants on larger datasets, arising the need to reduce regularization

and tune parameters again. To alleviate this, we added the second FC layer which later showed

to improve results across all datasets while still faster than LSTMs to train. We observe increased

accuracy in all experiments with attention, which suggests the attention model is necessary. Lastly,

in our experiments we observed an improvement of roughly 0.5%–1% when the auxiliary context

vector is used (Section 4.2.3). In short, we see improved results with the attention model on GRU

variants with five stacked layers and two FC layers.

Limitations. Our method has some limitations. Most importantly, the input needs to be seg-

mented, although adding support for unsegmented data is straightforward, as we discuss in the

next chapter. In our experiments we observed that DeepGRU typically performs better with high-
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dimensional data, thus application on low-dimensional data may require further effort from devel-

opers. Although we used a similar set of hyperparameters for all experiments, other datasets may

require some tuning. Also, the data augmentation methods that we used for our experiments have

various hyperparameters and depending on the application, one may need to manually tune these

hyperparameters.

4.5 Conclusion

We discussed DeepGRU, a deep network-based gesture and action recognizer which directly works

with raw pose and vector data. We demonstrated that our architecture, which uses stacked GRU

units and a global attention mechanism along with two fully-connected layers, was able to achieve

state-of-the-art recognition results on various datasets, regardless of the dataset size and interaction

modality. We further examined our approach for application in scenarios where training data is

limited and computational power is constrained. Our results indicate that with as little as four

training samples per gesture class, DeepGRU can still achieve competitive accuracy. We also

showed that training times are short and CPU-only training is possible. We believe these properties

make our proposed method a viable option for rapid prototyping and development scenarios.
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CHAPTER 5: CONTINUOUS GESTURE RECOGNITION WITH

RECURRENT NETWORKS USING UDEEPGRU

5.1 Introduction

We introduced DeepGRU in Chapter 4, a deep learning-based recognizer for action and gesture

recognition of samples collected from commodity input devices. One of the limitations of Deep-

GRU was that it was designed to work with segmented data. We extend DeepGRU and apply it

to the task of recognizing continuous (unsegmented) gestures in an online recognition scenario.

Recognition of continuous gestures is an exciting field as it opens the doors for realizing many

fluid and novel UI interactions. Project Soli [153] is one recent example of how continuous ges-

ture recognition can be used to greatly enhance user experience.

5.2 Task Definition

In a continuous recognition scenario, gestures are fed into the system as a continuous stream of

data, simulating an interaction environment in which the users are free to use the interface arbi-

trarily. Users may or may not decide to invoke gestural commands. Consequently, the boundaries

of each gesture are not demarcated, and no prior knowledge about the existence of any particular

gesture is present. One definition for recognition in such scenarios would be spotting the valid

gestures in that continuous stream of data: the system outputs a class label as soon as it determines

the corresponding gesture was performed by the user. Alternatively, one could pose the recogni-

tion process as a segmentation problem in which the goal is to determine what (if any) gesture was

performed, and where the starting and ending points were. This is equivalent to labeling every

time step of the data, and extracting each segment of gestures based on the boundaries of their
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Figure 5.1: uDeepGRU – the adaptation of DeepGRU for continuous gesture recognition. uDeep-
GRU consists of an encoder network and a classification sub-network

occurrence. Due to these additional requirements, segmentation is a more challenging task [6]. In

this chapter, we focus on the recognition of continuous gestures through segmentation.

5.3 uDeepGRU

We refer to the variation of DeepGRU for unsegmented gesture recognition as uDeepGRU. Fig-

ure 5.1 depicts our network’s architecture, which is very similar in spirit to DeepGRU. Our network

consists of the encoder and the classification sub-networks. We use unidirectional GRUs as the re-

current layers of our encoder network with the same transition equations as DeepGRU (see 2.3).

The output of every GRU unit depends on all previously observed time steps only, making the net-

work suitable for use in online recognition applications. The classification sub-network consists of

one fully connected layer, preceded by batch normalization [126] and dropout [127]. Contrary to

DeepGRU, uDeepGRU is a shallower network and does not include an attention [12] sub-network.
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These omissions were motivated by our ablation study (see Table 4.8), and were done to reduce

the size of the network without drastically affecting its recognition power.

uDeepGRU works very similar to DeepGRU. The input to the network is the vector x, the raw

input device samples represented as a temporal sequence of the underlying gesture data. Thus, aN

dimensional feature vector of length L implies x ∈ RN×L. Our goal is to label each frame xt ∈ x

with the correct class label. Note that because the input data at time step t may not contain any

gestures, we need the ability to output “no gesture” specifiers too. As such, we treat no-gestures as

their own class.

More formally, given a dataset with gesture classes C = {c0, c1, ..., cc}, we define the augmented

class of gestures C̃ = {None ∪ C}, and define our goal as labeling each feature vector (frame) xt

with a class label ŷt where ŷt is the predicted label of the input frame at time step t computed from

the class-conditional probability estimate P (ŷt|xt).

5.3.1 Training Loss

As stated previously, given a feature vector xt at each time step, the network outputs ŷt, the pre-

dicted label of the input frame at time step t. To reduce the difference between predicted class la-

bels ŷ and the ground truth labels y during training, we minimize the unweighted sum of two losses,

namely the cross-entropy loss and the negative Sorensen-Dice coefficients (commonly known as

the Dice loss [154]). The Sorensen-Dice coefficients between two sets X and Y is defined as:

dice(X, Y ) =
2|X ∩ Y |
|X|+ |Y |

(5.1)

where |X| is the cardinality of the set X . Minimizing the negative Dice loss is equivalent to
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maximizing the F1 score computed between per-frame predicted and ground truth labels, yielding

improved overall recognition performance for tasks in which high precision and recall metrics is

desired.

5.4 SHREC 2019 Track: Online Gesture Recognition

We participated in the SHREC 2019 Online Gesture Recognition challenge [1] with uDeepGRU,

and took first place by achieving the top recognition accuracy among other participants. Here, we

overview the results of the competition.

5.4.1 Task Definition

The goal of this challenge was for teams to come up with accurate continuous gesture recognizers

that could recognize the class of the articulated gesture, and annotate the start and end of each

gesture. One requirement for participants was that their methods should simulate recognition in

an online recognition scenario; i.e. only rely on the data stream seen thus far. This implies the

decision on the input vector xt, should solely be based on the previously seen feature vectors

{x0,x1, ...,xt−1}.

The dataset of this challenge was a set of hand gestures performed by 13 participants collected

from a leap motion device. There are a total of five gesture classes. During gesture articulations,

The full position and orientation of the hand joints were recorded. A total of 195 samples were

collected, of which 60 samples from 4 subjects were annotated and provided to the participants as

the training data. The remaining 135 samples were reserved for testing and their annotations were

not publicly released.
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The evaluation was done by measuring the recognition accuracy, as well as the correctness of the

estimated gesture start and end times.

5.4.2 Training uDeepGRU

Considering the requirements for this challenge, and that the amount of training data was rather

limited, we carried out some additional data pre-processing to improve our odds of winning the

competition.

We treated each frame of the data as one 48-dimensional vector xt, containing the concatenated 3D

position of all joints, exactly as they appeared in data files, for time step t. We z-score normalized

every data using the mean and standard deviation of the training set and represented every sample

as trajectory paths ~x, which was the data that was fed to our network. We experimentally found

the benefit of using trajectory paths over raw point representation.

The training data for this challenge was limited. We overcame this limitation by employing syn-

thetic data generation techniques to augment and expand the dataset. Namely, we employed four

complementary techniques: gesture path stochastic resampling (GPSR) [108], Fourier coefficient

perturbations, time-series inversion, and rotations. First, GPSR uses a two-step approach to gener-

ate synthetic variations of a given trajectory, where one samples random points along the trajectory

and then normalizes the distance between each pair of consecutive points. This process changes

the velocity profile of a sample such that changes in curvature are temporally unique relative to the

original input, thereby resulting in a unique shape. Second, since GPSR does not significantly warp

low frequency information (straight edges will remain straight), we further modify the trajectory’s

Fourier coefficients. That is, we perform a discrete Fourier transform (DFT) on a given trajectory,

randomly adjust the amplitude of each coefficient by ±20%, and then perform an inverse DFT

to synthesize a variant of the original trajectory. The effect of this transformation is that a given
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sample will have “wobbles” not previously embedded within the trajectory (e.g. previously straight

edges may now have some bend). Note that results will also have additional high frequency noise

that one can remove with a low pass filter; however in our testing, we found this noise was unharm-

ful. Third, in order to increase the amount of non-gesture training data available to our system, we

reversed each training sample’s trajectory. Finally, we also added random rotations to each trajec-

tory in order to increase orientation variance. Specifically, we randomly rotated trajectories ±10

degrees around the x-axis. Using these techniques, we generated five new synthetic samples per

each real sample and trained uDeepGRU using all available data. We withheld 10% of the original

training data for validation and trained the network end-to-end.

We implemented uDeepGRU using the PyTorch [11] framework. We used the Adam solver [7]

(β1 = 0.9, β2 = 0.999) and the initial learning rate of 10−3 to train our model. The mini-batch

size for our experiments was 128. Training was done on a machine equipped with one NVIDIA

GeForce GTX 1080 GPUs, Intel Core-i7 6850K processor and 32 GB RAM. We saved the model

that produced the best F1 score on the validation set.

5.4.3 Obtaining Recognition

At test time, we ran each test sample through the network and obtain per-frame class labels ŷt.

The outputs were optionally post-processed by (1) thresholding the class-conditional probabilities

based on a predefined threshold T, and (2) ensuring that at least N frames before every frame were

assigned the same output label.

We obtained 3 sets of results. The first set of the result was the unprocessed output of our network

obtained after applying the best-performing model on the supplied test data. The second set con-

sisted of the results of an ensemble of six networks, each trained on different folds of the training

set. The outputs of the models were averaged and post-processed with T=0.5, N=5 before the final
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labels were generated. The last set of experiments contained the results of the first set, plus post

processing applied to the raw outputs with T=0.5, N=1.

5.4.4 Contenders

In this section, we briefly discuss the methods that uDeepGRU was pitted against.

Basline. The baseline method was the sliding window 3-cent recognizer [73], which is a k-nearest

neighbor recognizer.

PI-RN and AJ-RN. Two recurrent network models, consisting of LSTM units and fully-connected

layers. One neural network used palm and index finger features, while the other used all joint

information.

DeA: Divide et Agnosce. This model consisted of two different networks, one for segmentation

and the other for recognition. The segmentation network employed LSTM units with softmax

activation the goal of which was to determine when any gesture started and ended. The recognition

of the spotted gesture was delegated to the recognizer network, consisting of LSTM units and fully-

connected layers.

Segment LSTM. Which was yet another LSTM-based network. The distinguishing characteristic

of this method was the use of crops in the length of 20 frames to increase recognition accuracy.

5.4.5 Results

Two sets of evaluations were performed and reported in SHREC 2019. These sets were chosen as

they reflect the most pertinent measure to online recognition tasks, namely recognition accuracy

(Table 5.1) and latency (Table 5.2).
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Table 5.1: Recognition results of SHREC 2019 in percentage.

Method Correct Mislabeled False Detections Missed

uDeepGRU2 85.2 7.4 3.0 4.4

uDeepGRU1 79.3 8.1 3.0 9.6

uDeepGRU3 79.3 8.1 2.2 10.4

3-cent 75.6 16.3 2.2 5.9

DeA 51.9 18.5 25.2 4.4

AJ-RN 28.1 43.0 23.0 5.9

PI-RN 11.1 39.3 48.9 0.7

Segment LSTM1 11.1 28.9 60.0 0.0

Segment LSTM2 6.7 25.2 68.1 0.0

Table 5.2: Latency results of SHREC 2019, in terms of the offset from the average gesture start/end
positions (in seconds).

Method Start Offset End Offset

uDeepGRU2 0.66 −1.66
uDeepGRU1 0.21 −2.11
uDeepGRU3 0.46 −1.87
3-cent 1.61 −0.70
DeA 1.01 −1.31
AJ-RN 0.67 −1.65
PI-RN −0.67 −2.99
Segment LSTM1 5.56 3.23

Segment LSTM2 1.91 −0.41

In Table 5.1, we observe that all uDeepGRU variations achieved the highest recognition accuracy

as well as the lowest mislabeled classifications. These variations did, however, demonstrate some

false as well as missed detections. The variation which utilized an ensemble of networks produced

the best overall result.

Looking at the latency values (Table 5.2), we observe that most methods were quick to spot the

gesture starts and output a recognition before the gesture ends. PI-RN demonstrated negative lag,
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and was able to recognize gestures even before they started. Again the ensemble variation of

uDeepGRU demonstrated the best overall performance.

5.5 Improving uDeepGRU

After participating in the SHREC 2019 challenge, we incorporated additional improvements to the

uDeepGRU model. Our efforts were guided by experimentation across additional datasets, along

with the lessons we learned while working towards making a submission to the SHREC 2019

challenge. In this section, we provide an overview of our efforts and present an evaluation of our

final model.

5.5.1 Architectural Tweaks

We introduced small changes to the original uDeepGRU architecture. We removed all batch nor-

malization and dropout layers, and used a simple FC layer with 512 hidden units and tanh()

activation as the first layer of our network before the first GRU layer. This addition was motivated

by the idea of feature embedding which is typically done in language models [155]. We found this

addition helpful in increasing the model’s accuracy as it acts as an initial feature extractor for the

network. We additionally considered feature embedding via convolution layers, another common

practice in time-series analysis and also experimented with alternate activation functions such as

ReLU or sigmoid. We did not observe any noticeable benefits with these changes.
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5.5.2 Revisiting the Training Loss Function

We discussed the original version of uDeeGRU’s loss function in Section 5.3.1. This training

objective consisted of minimizing the cross-entropy loss as well as the negative Sorensen-Dice

coefficient, which in turn maximized the F1 score between the ground truth and the predicted

labels. We investigated several ideas before deciding on the final training loss function to use for

the improved uDeepGRU model.

As mentioned in Section 3.2.1, the use of probabilistic models such as conditional random fields

(CRF) for sequence labeling has been extensively explored in the literature. Inspired by the recent

success of such models in natural language processing tasks [156], we experimented with learning

the transition scores of a linear-chain CRF model as a part of uDeepGRU training. The resulting

model performed well, yet its accuracy did not exceed that of the original uDeepGRU model.

Next we investigated the use of sDTW scores [46] as a measure of the dissimilarity between the

ground truth labels and the predicted labels. In simple terms, given an input example x the training

process in this case optimizes uDeepGRU’s parameters such the sDTW dissimilarity between the

predicted output labels ŷ = {ŷ0, ŷ1, ..., ŷn} and the ground truth labels y = {y0, y1, ..., yn} is

reduced. Formally, this is equivalent to minimizing:

L = sDTW
(
y, ŷ; f) (5.2)

where f is the internal cost function for the sDTW algorithm. We experimented with the Euclidean

distance as well as cosine dissimilarity for this internal cost function. Our early experiments with

this formulation in fact showed promising results, where the F1 score increased by as much as 1%.

However, training times became longer as the sDTW algorithm is inherently more computationally
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intensive than our original loss formulation.

Our last final attempt to formulate a better loss function to train uDeepGRU with was guided by

manual error analysis on the model’s outputs. We observed that the majority of the misclassified

labels were due to missed detections: uDeepGRU would conservatively label many frames as “no

gesture”. This stems from the unbalanced nature of the continuous gesture recognition problem.

In most such problems, a majority of user interactions consist of non-gestural interactions while

the actual gestures occupy a smaller portion of the input data. Thus a recognizer trained on such

an unbalanced dataset often leans towards outputting the label for the majority class, which in this

case is the “no gesture” class.

Although the use of the Sorensen-Dice coefficients in our original loss formulation was to mitigate

such effects, other formulations have been studied in the literature. Notably, Lin et al. recently in-

troduced focal loss [157] which adds a dynamic weighting factor to the standard cross-entropy. As-

suming that the network outputs the probability p for a given class label the focal loss is defined as:

Lfocal = −(1− p)γ log(p) (5.3)

where γ ≥ 0 is the focusing parameter that determines how much emphasis is put on misclassified

examples (γ = 0 yields the original cross-entropy loss value). In practice, focal loss worked

remarkably well for us leading to increases of up to 5% in our F1 scores when γ = 1. Additionally,

this loss function is fairly straightforward to implement and significantly reduces the complexity of

the optimization problem. Taking all aspects into consideration, we decided to train our improved

uDeepGRU model via minimizing Equation 5.3 alone.
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5.6 Evaluating the Improved uDeepGRU Model

We designed a set of experiments to evaluate the improved uDeepGRU model. Our main evaluation

metrics consist of accuracy, F1 score, precision and recall which are not only widely adopted mea-

sures but are also suitable for the unsegmented gesture recognition problem due to class imbalance.

Datasets. We selected four different datasets for our evaluations, spanning across different ges-

ture modalities and input devices: Montalbano v2 [2] (14000 samples of 20 Italian sign language

utterances, collected from Kinect v1), the unsegmented version of DHG 14/28 [4] called Online

DHG1 (280 samples of 10 hand gestures collected from a near-view Intel RealSense depth), UT-

Kinect [3] and SHREC 2019 [1]. All of these datasets contain segmented training sequences and

unsegmented testing sequences. Note that although UT-Kinect [3] was not specifically designed

for continuous recognition, we found sufficient frame-level labels to adopt it for our evaluations.

Across all datasets we performed the same set of data augmentation techniques as our SHREC

2019 submission, except for sequence inversion which we found to hurt the performance in some

cases. Lastly, some of these datasets contained data from other gesture modalities (such as videos),

yet we only used the skeleton data for our tests.

Recognizers. We compare uDeepGRU against various recognizers: support vector machine (SVM),

random forest, naı̈ve Bayes, decision trees, AdaBoost and DeepGRU. These recognizers represent

a variety of commonly used methods in the literature of gesture recognition. Except for Deep-

GRU, all other methods require explicit feature extraction for which we use the commonly used

Rubine [48] feature set extended to 3D gestures [158]. Since none of these methods were specifi-

cally designed for continuous recognition, we implemented a sliding window recognizer based on

each one. The length of this window was set to 20 frames established as via cross-validation.

1Dataset available at: http://www-rech.telecom-lille.fr/ shrec2017-hand/
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Table 5.3: Recognition results on SHREC 2019 [1] (all values are percentages).

Recognizer F1 Accuracy Precision Recall

Naı̈ve Bayes 28.2 58.2 22.8 36.8
Decision Trees 35.6 80.8 32.2 39.7
AdaBoost 37.4 86.5 38.6 36.3
Random Forest 51.6 90.4 61.0 44.7
SVM 60.4 91.8 69.3 53.5
DeepGRU 66.7 91.3 65.4 68.0
uDeepGRUv1 68.3 92.3 68.6 68.1
uDeepGRUv2 73.6 94.0 77.8 69.9

Table 5.4: Recognition results on Montalbano v2 [2] (all values are percentages).

Recognizer F1 Accuracy Precision Recall

Naı̈ve Bayes 18.5 28.4 16.7 20.8
AdaBoost 25.1 60.3 48.1 17.0
Decision Trees 31.7 56.7 31.2 32.3
Random Forest 43.8 68.1 55.0 36.4
SVM 56.9 74.1 68.9 48.4
DeepGRU 66.8 79.8 71.8 62.5
uDeepGRUv1 69.7 81.5 73.8 66.0
uDeepGRUv2 70.7 82.1 75.2 66.7

5.6.1 Discussion

Tables 5.3 to 5.6 summarize the results of our experiments. All evaluations were performed on

raw outputs without any post-processing on the output labels. The original and the improved

uDeepGRU models are signified as v1 and v2 respectively. The results in each table are sorted in

the increasing order of F1 score.

Across all experiments, we observe that the top three performing recognizers are the models that

we proposed and discussed in this work. We also observe a large performance gap between these
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Table 5.5: Recognition results on UT Kinect [3] (all values are percentages).

Recognizer F1 Accuracy Precision Recall

AdaBoost 32.6 36.4 34.6 30.8
Decision Trees 33.3 52.3 35.6 31.2
Naı̈ve Bayes 37.0 27.0 28.6 52.5
Random Forest 37.6 62.8 53.7 28.9
SVM 48.2 68.9 54.1 43.4
DeepGRU 52.1 65.5 55.0 49.5
uDeepGRUv1 61.2 65.9 61.8 60.6
uDeepGRUv2 66.9 70.9 64.1 70.0

Table 5.6: Recognition results on Online DHG [4] (all values are percentages).

Recognizer F1 Accuracy Precision Recall

Naı̈ve Bayes 23.7 23.7 18.3 33.6
Decision Trees 28.5 54.4 24.9 33.3
AdaBoost 37.3 69.8 37.1 37.6
Random Forest 38.2 70.0 37.4 39.1
SVM 45.5 71.7 45.0 46.0
DeepGRU 53.3 75.0 53.0 53.6
uDeepGRUv1 55.3 76.3 54.4 56.2
uDeepGRUv2 58.6 77.7 58.0 59.1

models and the classical machine learning methods such as SVM and random forest, despite the

popularity of the latter models in various gesture recognition tasks.

Focusing on the DeepGRU family of recognizers, we note that the improved uDeepGRU model

outperforms its original counterpart which highlights the importance of the additional changes that

we included in the improved version. The benefit of using focal loss for training is also evident in

these results. This improved model additionally outperforms the windowed DeepGRU recognizer.

Considering DeepGRU’s segmented recognition performance on UT-Kinect (Table 4.1), these re-

sults are remarkable as DeepGRU previously achieved the recognition accuracy of 100%. Yet,
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training the same model on the continuous version of this dataset yields mediocre results, which

highlights the challenging nature of continuous gesture recognition.

In closing, we note that from a practical point of view, F1 score applied to frame-level labeling

may be too strict to measure the performance of a continuous recognizer from the usability point

of view. The users’ interaction experience with a gesture-based interface ultimately hinges on how

well the system can detect an intended action, rather than how many times during the performance

of the action the system was able to output correct detections. In other words, a user who intends

to execute a punching motion expects the system to register the action as such once the motion is

completed. Despite these, the F1 score is a widely adopted measure in the recognition literature,

which is why we adopted it for this work.

5.7 Conclusion

In this chapter, we discussed the architecture of uDeepGRU, a deep-learning based network for

online gesture recognition. We discussed how we adapted DeepGRU to online gesture recognition

tasks. We discussed the original uDeepGRU model and the results of SHREC 2019 Online Gesture

Recognition challenge which showed the effectiveness of our proposed method. We then turned our

focus to the improvements that we made to the network’s architecture since the original submission.

These improvements consisted of adding an embedding layer at the beginning of the network and

adopting focal loss instead of minimizing cross-entropy and negative Sorensen-Dice score. We

also discussed some other improvement ideas which we explored but found unhelpful.

We evaluated both versions of uDeepGRU across four different datasets and compared their per-

formance against other recognizers. In all experiments, the improved uDeepGRU model outper-

formed all other recognizers both in accuracy and F1 score.
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CHAPTER 6: GESTURE GENERATION WITH RECURRENT NEURAL

NETWORKS

6.1 Introduction

In this chapter we turn our focus to gesture generation using deep recurrent neural networks. As

stated previously, GANs have been explored extensively for image generation tasks, but the gen-

eration of real-valued sequences, and especially gestures has not received much attention in the

literature. We focus on modality-agnostic gesture generation wherein gestures are represented

by a sequence of 2D or 3D positional features typically produced by touch interfaces, Kinect or

similar input devices. The overarching goal is to address the challenges involved with training

GANs, such as challenge the need for training two networks (the generator and the discriminator)

simultaneously which can lead to long training times.

We start by discussing DeepGAN, our novel GAN approach for dynamic gesture generation,

through which our deep recurrent gesture generator network is born. We thereafter discuss our

unique solution for alleviating the difficulties associated with training GANs. Specifically, we

formulate a novel and intuitive loss function for training our gesture generator. Our loss func-

tion, which is based on the dynamic time warping (DTW) algorithm [42], completely replaces

DeepGAN’s discriminator network. This, transforms the significantly complex adversarial train-

ing procedure of a GAN to the much simpler non-adversarial training problem: train the generator

by minimizing a loss function that directly maps the quality of the generated samples to their

similarity to the real ones. We call this approach DeepNAG. We evaluate both methods by using

their generated gestures in data augmentation for improved gesture recognition across a variety of

datasets of different sizes and modalities, as well as different gesture recognizers.
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6.1.1 Task Definition and Goals

Given a dataset D of gesture samples, our task is to learn the distribution of the samples through

training a generator network G. Because our underlying data are time-series, the natural choice for

G is an RNN, as explained in Section 2.4.1. We leverage GAN models (see Section 2.4.1), as well

as a novel formulation of a generator network to model the distribution of D.

In addition to generating synthetic samples, we show that the generalization ability of DeepGRU

is not limited to recognition tasks. Rather, we reuse many components of DeepGRU in designing

DeepGAN and DeepNAG.

6.2 Gesture Generation with GANs

Our initial approach for gesture generation uses the well-known GAN training setting comprised of

a generator and a discriminator. We call this recurrent model DeepGAN, which we designed incre-

mentally and was informed by the latest developments in deep learning. Early on, the simplicity

and the recognition power of the DeepGRU model inspired us to adopt it as our discriminator.

Through experiments guided by our ablation on DeepGRU (see Section 4.4), and with the goal of

managing design complexity, we settled for the simpler uDeepGRU variant as our discriminator.

One typical problem encountered in training GANs is that during training, one network may over-

power the other. This can cause various problems, including non-convergence or increased training

times. As such, when selecting the neural architecture for either D or G, a typical safe choice is

to select similar architectures for both D and G and equalize the number of training parameters.

Although there is no consensus or guideline about the choice of architectures, our experience has

shown that using similar architectures for both networks reduces the complexity and the uncertainty

of the training process. We conducted experiments across different datasets with generators con-
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Figure 6.1: DeepGAN – our proposed model for gesture generation. DeepGAN consists of the
discriminator and generator networks.

sisting of both LSTM and GRU units, as well as a varying number of recurrent layers. We observed

more stable training, less overfitting and more plausible outputs with a decoder-style network re-

sembling the flipped version of our discriminator. A possible explanation for this could be that

this choice potentially benefits from the balance between the two D and G networks. Figure 6.1

depicts the architecture of DeepGAN, which we believe is easy to understand and straightforward

to implement in any modern deep learning framework. A common design for generators is the use

of the tanh() activation function in the last layer, which is what we use as well.

74



To generate a gesture sample x′ of class c, a class-conditioned latent vector zĉ is created and fed

to G to create a sample x′ as follows:

z =
{
zi; ∀zi ∼ N

(
0, 1
)}

(6.1)

ĉ = one-hot
(
c
)

zĉ =
{

[ zi; ĉ ], ∀zi ∈ z
}

x′ = Gθ

(
zĉ
)

In simple terms, z contains per time step random noise vectors. Thus, given that we intend to

generate sequences with a fixed length of 64 time steps, z contains 64 elements. Each time step

zi ∈ z is sampled independently from the standard normal distribution, and class-conditioning is

done by appending the one-hot representation of c to each time step which avoids ignoring the

conditioning through forgetting [24]. Also, we fixed the dimensionality of the latent space to 32.

6.2.1 Loss Function

We experimented with different loss functions to train DeepGAN. Even though training with the

classic adversarial loss [21] yielded plausible results, we observed improved sample quality and

better convergence with the improved Wasserstein loss [28], which is what we use in this work.

Specifically, we minimize with gradient descent LD and LG as defined below:
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x̂ = εx + (1− ε)x′ (6.2)

LD = Dθ

(
x′
)
−Dθ

(
x
)

+ λ

(∥∥∥∇x̂Dθ(x̂)
∥∥∥
2
− 1

)2

LG = −Dθ

(
Gθ

(
z
))

where ε ∈ U(0, 1) and λ controls the gradient penalty as described in Section 2.4.1.2.

6.2.2 Training Procedure

We train DeepGAN end-to-end: we sample mini-batches of size 64 from the training data, and

optimize both D and G networks at the same time. As a pre-processing step, we scale all available

training data to the range [−1, 1]. Also, to reduce the complexity of working with gestures of

different sizes, we resample all gesture sequences in D to the length L = 64, thus both the inputs

as well as the outputs of DeepGAN have the same length.

We employ the same optimization procedure and the hyperparameter set as [28]. Specifically, we

use the Adam solver [7] (β1 = 0, β2 = 0.9) with a learning rate of 10−4. We set the gradient

penalty coefficient λ = 10 and train D five times more frequently than G. Given the importance of

the gradient penalty coefficient λ, we performed a set of experiments to examine the effects of the

choice of this parameter. Figure 6.2 summarizes these effects on our training plots. Smaller values

of this coefficient led to unstable training, while larger values prevented convergence. Figure 6.3

depicts a small number of generated samples when DeepGAN is trained with different values of λ.

Note that some generated samples are rather noisy. Although both λ = 5 and λ = 10 were suitable

candidates, we settled for the latter which is what Gularjani et al. [28] used.
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Figure 6.2: Training curves of DeepGAN on $1-GDS [62] using different values of λ.

(a) λ = 1

(b) λ = 5

(c) λ = 10

(d) λ = 20

(e) λ = 100

Figure 6.3: Generation results after training using various values of λ. Note the noise in some of
the generated samples.
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6.3 Towards Non-Adversarial Gesture Generation

While DeepGAN shows promising results (see Section 6.5), it demonstrated a few shortcomings

early on. Most importantly, generating synthetic samples requires the training of two networks

at the same time, which increases the burden on the developer: every decision about the network

design has to have the balance between the generator and the discriminator in mind, all hyperpa-

rameters need to be tuned twice, and changes to one model may have adverse effects on the other.

Moreover, the training times were long and typically exceeded 72 hours. These issues contradict

our accessibility philosophy and design goals. With these challenges and our design goals in mind,

we aim to simplify the process of generating synthetic gestures with deep networks.

Perhaps the key to simplifying the network design and reducing the burden of working with GANs

is the answer to a fundamental question: do we really need two separate networks? Is it possible

to train a single network that is capable of generating synthetic samples? To answer this question,

we turn our focus to the reason GANs typically contain two separate networks.

As stated previously, a generator network aims to learn the distribution of the underlying dataset

D, so that new samples can be sampled from the distribution. It typically does so by learning how

to fool a discriminator, whose aim is to distinguish between real and fake instances. In Wasserstein

GANs, the discriminator is replaced by a critic, whose goal is to judge how well fake samples corre-

late with the real ones by learning the non-linear distribution of real samples. These designs, which

involve a discriminator or a critic, are necessary because a measure for distribution similarity, or

how similar fake samples to the real ones may not be readily available, or easily derivable. Also,

the Wasserstein distance formula is intractable [27], which is why it is replaced by a critic network.

While GANs are intended to serve as a general framework for learning sample distributions and

generating synthetic samples across a variety of domains, our goal, which is generating synthetic
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gestures, is rather well-defined and constrained: generate synthetic gestures that are similar to their

real counterparts. The fundamental question then becomes, how would one define the similarity of

two gestures, and how to train a generator that increases the similarity between fake and real ges-

tures? The answer is surprisingly simple: by reducing the dissimilarity between the two! Thinking

of gestures as temporal sequences, the very first dissimilarity measure that comes to mind is dy-

namic time warping [42]. Armed with this intuition we stride towards formulating our novel loss

function for gesture generation.

6.4 DeepNAG

In what follows, we show how to formulate the problem of synthetic gesture generation as the

training of a single recurrent network whose goal is to minimize a single loss function rather

than fooling a discriminator. We call our synthetic gesture generator DeepNAG: a non-adversarial

gesture generator. Since DeepGAN showed promise in generating synthetic samples, we reuse its

generator for DeepNAG (see Figure 6.1).

Our task remains the same as what we described in Section 6.1.1: given the class-conditional latent

variable zĉ, generate synthetic samples x′ = Gθ

(
zĉ
)
. However, we are interested in learning the

trainable parameters θ via minimizing a single loss function that directly provides a measure for the

similarity between real samples x and the generated ones x′. Obviously, the loss function should

be differentiable to be usable in deep network training.

As mentioned in Chapter 3, DTW [42] is a popular algorithm for measuring the dissimilarity be-

tween time-series The vanilla DTW formulation is not differentiable, because the shape of the

DTW function is non-smooth. Recently, Cuturi and Blondel [46] introduced a differentiable for-

mulation of DTW, called soft DTW (sDTW) which can be used for gradient-based optimization
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tasks. We leverage this formulation for sequence generation. Considering our goal with Deep-

NAG, which is to increase the similarity of a real sample x and a fake one x′ = Gθ

(
zĉ
)
, one could

naı̈vely decide to learn θ by minimizing:

L = sDTW
(
Gθ(zĉ),x; f) (6.3)

where f is the cost function of Equation 2.12, typically set to either the Euclidean distance (ED)

or the cosine similarity (COS). Unfortunately, this naı̈ve formulation merely states that generated

samples x′ should be as similar to the real samples x as possible, without regards to the variations of

the real samples. Observant readers immediately realize that a trivial solution to this optimization

problem is the mean (centroid) sample x̄ = 1
n

∑
x∈D

x. In other words, x̄ is the one possible value

that is the most similar to all samples in the dataset.

To avoid the pitfall of a trivial solution and account for inter-class variations, we ask ourselves

what defines the realism of fake samples? An obvious answer would be, how reminiscent of the

real samples they are. In other words, how closely they mimic the features, variations and subtleties

of the real ones. This naturally means the distribution of the synthetic samples should sufficiently

cover the distribution of the real ones.

With this in mind, we use the Hausdorff distance [159], which is a well-studied measure of point-

set similarity that is easy to compute and implement. Hausdorff distance computes a distance

between the two sets by taking into account the data points in each dataset that have the extreme

(minimum/maximum) distances from one another. Conveniently, the average Hausdorff distance

(denoted as dH henceforth) between point sets A and B is differentiable [160] and is defined as:
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dfH(A,B) =
1

|A|

∑
a∈A

min
b∈B

d
(
a, b; f

)
+

1

|B|

∑
b∈B

min
a∈A

d
(
b, a; f

)
(6.4)

where d
(
a, b; f

)
is the distance (dissimilarity) between two points a and b parameterized by f . We

use d
(
a, b; f

)
= sDTW(a, b; f), and will discuss the choice of f (sDTW’s cost function) shortly.

Finally, we propose the following as DeepNAG’s loss function to minimize. To our knowledge,

this is the very first formulation of a single loss measure to train a deep recurrent neural network

for generating synthetic gesture sequences:

Lf (X
′,X) = dfH

(
x′1,x1

)
︸ ︷︷ ︸
Similarity term

+
∣∣∣dfH(x′1,x′2)− dfH(x1,x2

)∣∣∣︸ ︷︷ ︸
Variation term

(6.5)

where X′ = {x′1, x′2} (two generated samples), and X = {x1, x2} (two real samples), and both

sample sets belong to the same gesture class. We only use the derivative ∂Lf/∂x′1 during train-

ing since it yielded good results and was faster. Intuitively, Equation 6.5 expresses that training

G should aim to increase the similarity of fake and real samples1 (similarity term), while main-

taining the similarity balance between two batches of fake and real samples (variation term). The

former term ensures real and generated samples are similar, while the latter term ensures gener-

ated samples maintain proper overall inter-class variations, effectively avoiding pitfalls such as

mode-collapse typically encountered in GANs.

1In other words decrease their dissimilarity.
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6.4.1 Practical Notes

When computing sDTW(a, b) we ensure class-awareness: the value is only computed if samples

a and b belong to the same gesture class. As for the choice of sDTW’s internal cost function f ,

we started with ED, but the benefits of using COS quickly became apparent to us: minimizing LED

yielded high-quality results but convergence was slow. Conversely, minimizing LCOS led to much

faster convergence with sometimes noisier results. In the end, we settled for minimizing both and

leave a thorough study on the effects of each cost function to future work. Lastly, recall our use

of fixed-length sequences (L = 64) where the points in the sequence are equidistant. To enforce

the production of such sequences by G we add an additional term LResample to our objective. Putting

everything together, the following is the loss function that we minimize for our experiments:

LDeepNAG

(
X′,X

)
= LED

(
X′,X

)
+ LCOS

(
X′,X

)
+ α ·LResample

(
x′1
)

(6.6)

LResample

(
x′
)

=
1

|~x′|

∑
∀ ~x′
i
∈ ~x′

(∥∥∥~x′i∥∥∥− L̃(x′)

)2

, L̃(x) =
1

|~x|

∑
∀ ~xi∈~x

∥∥∥ ~xi ∥∥∥

where L̃(x) is the length of each ~xi ∈ ~x after x is resampled to L equidistant points. Thus, LResample

simply enforces that points in x′ be equidistant with α as its regularizer. Note that minimizing

LED alone (Equation 6.5) yields good-quality results in most cases. However, we achieved faster

convergence and better data augmentation performance using Equation 6.6.
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6.4.2 Training Procedure

We train DeepNAG end-to-end: we sample mini-batches of size 64 from the training data, and

optimize DeepNAG using the Adam solver [7] with the same hyperparameters as DeepGAN, and

employ the same scaling and resampling procedure to train DeepNAG. Lastly, we used γ = 0.1

and α = 103. All hyperparameters were established experimentally and via cross-validation.

Synthetic production results on the $1-GDS [62] using both DeepGAN and DeepNAG are de-

picted in Figure 6.4. At a glance, both networks produce visually compelling results and samples

demonstrate diversity.

6.4.3 Implementation

We implemented DeepGAN and DeepNAG with the PyTorch [11] framework. Our reference im-

plementation is accessible at https://www.deepnag.com . Additionally, our implementation re-

quirements yielded multiple other standalone projects, which we have publicly released in the

hope of benefiting the deep learning community.

Inspired by [161], we implemented a fast version of sDTW in CUDA with a PyTorch interface

using Numba [162]. Our novel implementation parallelizes both forward and backward passes,

and runs up to 100× faster than any other publicly available implementation that we know of. Our

public repository2 has gained traction among the practitioners since its release. We also imple-

mented fast GRU units using PyTorch’s just-in-time (JIT) compilation features to allow computing

their higher-order derivatives, a feature that is missing in PyTorch3. Such derivatives are required

2Fast sDTW for PyTorch: https://github.com/Maghoumi/pytorch-softdtw-cuda
3To our knowledge, the cuDNN framework is missing this feature. Thus, at the time of this writing one cannot

compute higher-order derivatives for GPU-based GRUs in any deep learning framework that relies on cuDNN.
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(a) DeepGAN (samples)

(b) DeepGAN (overlays)

(c) DeepNAG (samples)

(d) DeepNAG (overlays)

Figure 6.4: Some synthetic gestures produced by DeepGAN (a) and DeepNAG (b) when trained on
$1-GDS [62]. Overlayed rendering of synthetic samples (top row in each group), and real samples
(bottom row in each group) are shown. Each overlay consists of 16 samples per class. For both
DeepGAN and DeepNAG, the diversity of the synthetic samples resemble that of the real ones.
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to implement the improved WGAN loss [28] for GRUs. Our repository is publicly available4.

6.5 Evaluation

In this section, we evaluate DeepGAN and DeepNAG from two practical aspects, namely quan-

titative and qualitative. Our quantitative evaluation consists of using each model for generating

synthetic data for improved gesture recognition (i.e. data augmentation). This evaluation deter-

mines whether our generators are appropriate for improving gesture recognition accuracy. Our

qualitative evaluation consists of a user study on Amazon Mechanical Turk. This evaluation pro-

vides insight into the visual quality of the generated samples and gauges the human’s perception

of the realism of our synthesized samples.

A demo video showing generated samples from DeepNAG is available at https://www.maghoumi.

com/dissertation .

6.5.1 Quantitative Evaluation

We quantitatively evaluate DeepGAN and DeepNAG in data augmentation tasks focusing on sce-

narios with limited training data. Given a dataset of gestures collected from multiple participants,

we simulate small training sets by splitting the data into training (50%), validation (20%) and test

(30%) sets. Our experiments are all subject-independent [45]; i.e. the data of each participant

only appears in one of these sets. This is a more challenging and realistic evaluation protocol, as

it ensures that during training, the recognizer never sees any data from the participant it will be

evaluated on during the validation and testing phases.

4Just-in-time GRUs for PyTorch: https://github.com/Maghoumi/JitGRU
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We begin by training a gesture recognizer on the training set, and use the validation set for model

selection. We evaluate the best performing model on the test set and record its recognition error

(baseline). Next, we augment the training set with a selected data generation method and repeat

the experiment: train the recognizer with this new training set, use the validation data for model

selection, and evaluate the best model on the test set. We record the recognizer’s recognition error

again, which will be the error after augmenting the training set. Comparing this number with the

baseline benchmarks the synthetic data generation method. In total we perform 150 experiments:

we train five gesture recognizers on six different datasets to evaluate four synthetic data generation

methods against the baseline.

Datasets. We selected six datasets among the ones frequently studied in the literature. They vary

in size and span across gesture modalities and input devices: JK2017 (Kinect) [44] (14 full-body

fighting gestures of 20 participants with Kinect v2), JK2017 (Leap Motion) [44] (eight hand-

gestures of 20 participants with Leap Motion), UT-Kinect [3] (ten full-body daily activities of ten

participants with Kinect v1), MSR Action 3D [163] (20 full-body actions of ten participants with

Kinect v1), SBU Kinect Interactions [129] (8 two-person interaction of seven participants with

Kinect v1) and $1-GDS [62] (16 2D pen gestures of ten participants).

Recognizers. We selected five gesture recognizers: support vector machine (SVM), random forest,

naı̈ve Bayes, DeepGRU and Jackknife [44]. These represent classic machine learning algorithms,

deep learning as well as rapid prototyping [44] approaches, which are common choices for gesture

recognizers. The first three methods require explicit feature extraction for which we use the com-

monly used Rubine [48] feature set extended to 3D gestures [158]. Jackknife [44] is a 1-nearest

neighbor DTW-based template matching recognizer.

Data generation methods. We compare four data generation methods against the baseline: ran-

dom Gaussian noises, GPSR [108], DeepGAN and DeepNAG. Note that we found GPSR to be ben-
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eficial for DeepGRU and uDeepGRU evaluations, which is why we decided to compare against it.

Hyperparameters. All hyperparameters were tuned across different datasets, but the same set

of parameters were used for every experiment. Both DeepGAN and DeepNAG were trained on

the 50% split training set, and shared most hyperparameter settings as described previously. Other

parameters were chosen via cross-validation as follows. GPSR parameters were set to r = 2, σ =

0.25 and the magnitude of random noise was set to 2% of the bounding box of each feature.

6.5.1.1 Results and Discussion

Figure 6.5 depicts the results of our experiments. In many cases the use of some form of data aug-

mentation decreases the recognition error, indicating that our 50% split to simulate small training

sets is working as expected. To better contrast the generation methods we employ a scoring scheme

that quantifies whether the use of a given augmentation method is both warranted and effective.

Data augmentation is only warranted if a recognizer trained with the additional data outperforms

the baseline. Additionally, a method is effective only if it outperforms random noise. We start with

a score of zero for a given generator. In each experiment set, we increment this score if the method

outperforms all other methods in addition to the baseline and random noise. Ties are only counted

if the method outperforms both random noise and the baseline, and we use the cumulative score

for comparison.

Table 6.1 presents the computed score aggregates over each dataset and recognizer. We observe that

across both aggregate groups, DeepNAG outperforms other methods by a large margin, suggesting

its suitability for data augmentation regardless of the choice of dataset or recognizer. In a few cases,

DeepNAG reduced the recognition error to zero, which further supports its suitability. Compared

to GPSR, these results are notable as DeepNAG generates new samples purely from random noise.

Conversely, GPSR perturbs existing samples to generate new ones. This process leaves some
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(a) JK2017 (Kinect) [44] (b) JK2017 (Leap Motion) [44]
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Figure 6.5: Results of evaluation across six datasets (best viewed in color).

88



characteristics of the original gesture (e.g. bounding box size) largely unchanged, which benefits

recognizers that rely on such features.

Figure 6.5 also shows cases wherein data augmentation seems harmful. In particular, we observe

increased errors in almost all cases where data generation is used with multi-actor gestures (Fig-

ure 6.5e). This suggests that our generators may not be suitable for generating multi-actor gestures,

which we confirmed by visual inspection. In some cases, both DeepGAN and DeepNAG confuse

the main and the secondary actors, yielding malformed gestures. We intend to study the generation

of such gestures in future work. We additionally inspected some of the generated samples of Fig-

ure 6.5f wherein our generators increased recognition errors. Most synthetic samples were in fact

visually fine (as we show in our qualitative evaluations in Section 6.5.2) which suggests that the

use of domain adaptation techniques may be helpful [30, 31, 164]. We explore this in Section 6.6.

During a visual inspection, we did not observe any mode-collapse issues with DeepNAG. We

observed healthy variations across all gesture classes and datasets with minimal amounts of de-

generate samples (except for the few cases noted above). Lastly, factors such as ease of training

and training times compel the use of DeepNAG over DeepGAN as the former offers a significant

reduction in training times. Training DeepGAN on a Tesla V100 GPU takes between 3-5 days de-

pending on the dataset size, whereas DeepNAG takes around 3-7 hours under the same conditions,

a speedup of 12–17×.

6.5.2 Qualitative Evaluation

To evaluate the quality of the generated samples by DeepGAN and DeepNAG, we conducted a user

study using the HYPE∞ benchmark [41]. Specifically, we replicated the protocol of HYPE∞ and

used the Amazon Mechanical Turk platform to recruit participants and conduct our study.
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Table 6.1: Generator scores aggregated over dataset and recognizer.

Dataset
Generator Score

Recognizer
Generator Score

GPSR DeepGAN DeepNAG GPSR DeepGAN DeepNAG

JK2017 (Kinect) [44] 0 2 2 SVM 2 0 4
JK2017 (LeapMotion) [44] 0 1 4 Naı̈ve Bayes 1 3 2
UT-Kinect [3] 0 1 2 Random Forest 2 1 3
MSR Action3D [163] 1 0 3 DeepGRU 0 1 3
SBU Kinect 2 0 0 Jackknife [44] 0 0 2
$1-GDS [62] 2 1 1

Total Score 5 5 12 5 5 14

Our study design is as follows. Given a dataset D and a generator G we train the generator to

convergence. For every gesture class, we synthesize as many fake samples as the real samples in

D using the trained model. Thus if D contains N samples in total, we produce NG samples from

the trained model. This way, the generated sets will have the same number of samples from each

class as D. We then run the HYPE∞ benchmark: we randomly sample 50 fake gestures and 50 real

gestures from the pool of all available gesture sequences, while ensuring to maintain the ratio of

different gesture classes in each set.

To conduct the study, we recruit 30 participants on Amazon Mechanical Turk. Participants begin

by studying the purpose of the study and answering some demographic questions as detailed in

Table 6.2. We then randomly show them each of the 100 samples and ask them to indicate whether

they think a given sample is produced by a human or computer-generated (see Figure 6.6). Every

gesture sequence is drawn in the form of a looping gif animation with a framerate of 32. Between

each animation loop, we display a countdown with a duration of 0.25 seconds. This was inspired

by [41] and was done to avoid confusing participants who may be unaware that they are watching

an infinitely-looping animation.
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Table 6.2: Pre-study questionnaire. Except for age, all other questions are multiple-choice.

Q1 What is your gender?

Q2 What is the highest level of education that you have completed?

Q3 What is your age?

Q4 Do you play video games?

Q5 How many hours per day? (only if the participant plays video games)

Participants are given an infinite amount of time to respond to each question. Similar to the

HYPE∞ benchmark, we reveal the correct answer to the participant upon submitting a response to

every question. Every participant is allowed to participate in our study only one time, thus ensuring

a between-subject design across different datasets and generators. Once the study concludes, we

reveal the overall accuracy of the participant in our task and pay them $2 for their time [41].

When posting our study on the Mechanical Turk platform, we created a list of criteria to ensure

the selection of a pool of high-quality workers. First, participants must have an approval rating of

at least 97% to participate in our study. An approval rating of 97% indicates that participants only

had 3% of their work rejected by study requesters on the platform. This criterion filters out workers

whose work is frequently rejected possibly due to the low quality of the work. Our next participa-

tion requirement is that workers must have completed at least 5000 studies. This criterion filters out

participants who may have high approval ratings because they recently joined the platform. Lastly,

participants must be Mechanical Turk Masters to be eligible to participate in our study. Amazon

uses proprietary criteria to grant top-performing workers this qualification. Although the exact

criteria are not publicly disclosed, Amazon claims they continuously monitor the performance of

master workers across different user studies on the platform to ensure consistent performance5.

Our study consisted of evaluating each of DeepGAN and DeepNAG on three datasets covering

5Details available at https://www.mturk.com/worker/help
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Figure 6.6: The interface of our user study application. Participants are shown the gesture anima-
tion and are asked to select either “human” or “machine”. Once “submit” is clicked, the correct
answer is revealed and the next gesture is displayed.

different gesture modalities: Kinect (JK-2017 [44]), Leap Motion (JK-2017 [44]) and Pen gestures

($1-GDS [62]). Thus our generator factor has two levels and our dataset factor has three levels,

yielding a total of six experiments.

6.5.2.1 Results and Discussion

We recruited 180 participants with an average age of 41 years (σ=10.8). Figure 6.7 depicts the

demographics of our participants. A majority of our participants indicated that they played video

games. Those who did, played an average of 2.2 hours per day (σ=1.8). Across all tasks, partici-

pants spent an average of 12.3 minutes (σ=3.8), and each question was answered in 7.4 seconds on

average (σ=2.3). Considering a payment of $2 per study, our participants were compensated well
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Male (57.2%)

Female (42.2%)

Other (0.6%)

GENDER

America (82.2%)

Asia (16.6%)

Europe (1.1%)

CONTINENT

High School 
(13.3%)

Associate 
Degree 
(16.1%)
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Figure 6.7: Demographic information of our user study participants.

above the minimum wage specified by the federal guidelines ($7.25/hr at the time of this writing).

Table 6.3 presents the results of our user study. In all experiments, we observe higher HYPE∞ scores

for DeepNAG compared to DeepGAN. Unpaired t-tests confirm that the difference is significant in

all experiments: t(58)=3.3, p=0.001 (JK2017-Kinect [44]), t(58)=12.4, p <0.001 (JK2017-Leap

Motion [44]) and t(58)=2.8, p=0.006 ($1-GDS [62]).
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Table 6.3: Amazon Mechanical Turk user study results. Reported values are percentages (averaged
over 30 participants). The top performing model (with statistical significance) is boldfaced.

Dataset Generator HYPE∞ Std. Fake Errors Real Errors

JK2017 (Kinect) [44] DeepNAG 48.1 8.8 53.9 42.3

DeepGAN 38.4 12.9 44.3 32.5

JK2017 (LeapMotion) [44] DeepNAG 51.0 4.3 56.1 45.8

DeepGAN 22.7 11.4 23.9 21.4

$1-GDS [62] DeepNAG 50.0 6.7 56.3 43.7

DeepGAN 44.4 8.3 49.5 39.3

Focusing on the results with JK2017 (Leap Motion) [44] dataset, we observe a large HYPE∞ score

gap between the two generators. Notably, DeepNAG achieves hyper-realism on this dataset: its

fake samples look more realistic to humans than the real ones. These results correlate well with

those in Section 6.5.1.1: on the Leap Motion dataset, DeepNAG significantly outperformed Deep-

GAN in reducing the recognition error (Table 6.1) and in some cases, DeepNAG reduced the

recognition error to zero yielding perfect recognition accuracies (Figure 6.5).

Similar to [41], we report a breakdown of the error on the real and fake samples. We observe

higher fake errors with DeepNAG in all cases. Additionally, real and fake errors track each other

in every case, in line with Zhou et al.’s observation [41]. This indicates participants become more

confused when fake samples are particularly hard to distinguish from the real ones.

To investigate whether there is an association between playing video games and distinguishing

between real and fake samples, we performed a multiple regression analysis using dataset, gener-

ator and play video games as predictors. The results show that there is no statistically significant

association between playing video games and accuracy when controlled for dataset and generator(
coeff=0.01, p=0.51, CI (95%)=(-0.029, 0.058)

)
.
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6.6 Experiments with Domain Adaptation: DeepCycleGAN

As can be seen in Figure 6.5, the use of data augmentation increases the recognition error in a small

number of cases. To better understand this behavior, we manually inspected some of the samples.

In the case of SBU Kinect Interactions [129] dataset, the increased recognition errors were due to

the poor quality of the generated samples. In other cases, the synthetic samples were visually fine.

In fact, as we showed in Section 6.5.2 the synthetic samples produced by DeepNAG on the $1-

GDS [62] dataset were able to successfully deceive human evaluators. This observation motivated

us to experiment with domain adaptation techniques and determine whether the observed behavior

is due to the domain shift effect [29, 30].

As mentioned in Section 2.4.1.3, GANs can be used for mapping samples between domains. In

this section, we discuss the design and evaluation of a novel recurrent CycleGAN model to map

the synthetic samples of DeepNAG to the real sample domain. We evaluate the benefit of such

mapping in data augmentation for improved gesture recognition. To our knowledge, this is the first

time a recurrent gesture generator is trained in a CycleGAN framework towards domain adaptation.

6.6.1 Model Architecture

To perform domain mapping we require a GAN-based gesture generator. As discussed in Sec-

tion 2.4.1.3, CycleGAN’s loss function is agnostic to the underlying GANs which are trained for

domain adaptation. As such, the natural choice for the two required GAN models is DeepGAN.

Henceforth, we refer to our domain adaptation model as DeepCycleGAN which consists of two

DeepGAN models trained using a CycleGAN framework as described in Section 2.4.1.3. The

model signified as DeepGANreal uses the generator G to map synthetic samples to the real domain,

whereas DeepGANfake uses the generator F to map the real samples to the synthetic domain.
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Table 6.4: Evaluating the recognition errors when performing domain adaptation. All reported
values are percentages.

Recognizer
Recog. Error with Synthetic Generator

None DeepNAG DeepNAG+DeepCycleGAN

SVM 11.7 12.1 8.5
Naı̈ve Bayes 17.7 19.6 20.4
Random Forest 16.9 15.6 17.7
DeepGRU 8.1 7.9 9.1
Jackknife 0.4 0.4 0.4

6.6.2 Training Loss Function

We use the following loss function to train DeepCycleGAN which resembles the original Cycle-

GAN loss function [31]. We found the use of the identity loss term greatly beneficial for our prob-

lem domain. In our experiments we set λ1=10 and λ2=0.5 which we established experimentally.

LDeepCycleGAN = LDeepGANreal
+ LDeepGANfake

+ λ1Lcyc
(
G,F

)
+ λ2Lidentity

(
G,F

)
(6.7)

Although we trained DeepGAN with the WGAN-GP loss function for all of our experiments thus

far, we observed poor training convergence and long training times when we used the improved

Wasserstein loss function to train DeepCycleGAN’s mappers. After some experimentation, we

found the least squares GAN’s (LSGAN) objective function [165] to significantly improve the

training process and the quality of the generated samples.
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(a) Synthetic samples mapped to the real domain

(b) Real samples mapped to the synthetic domain

Figure 6.8: The results of mapping samples between the real and the synthetic domains using
DeepCycleGAN on $1-GDS [62] dataset.

6.6.3 Evaluation

To determine whether domain adaptation using DeepCycleGAN is beneficial we performed fol-

lowup experiments with the DeepNAG model trained on $1-GDS [62]. We took the trained Deep-

NAG models of Section 6.5.1.1 and generated an entire dataset of synthetic samples D′ and trained

DeepCycleGAN to perform domain mapping between D =
{

$1-GDS [62]
}

and D′.
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Table 6.4 summarizes the results of our experiments. Based on these results, DeepCycleGAN

helped in reducing the recognition errors in only one case. In most other cases, using DeepCycle-

GAN actually increased recognition errors. To better understand these results we visually exam-

ined some synthetic samples (see Figure 6.8). We see that many of the mapped samples are noisy

and demonstrate obvious defects. We hypothesize that the added noise on the mapped samples is

potentially what improved the results for the SVM recognizer in Table 6.4.

In summary, the results in Table 6.4 and Figure 6.8 suggest that the DeepCycleGAN model is not

functioning as expected. Perhaps one could achieve better results by a more careful design of the

model’s architecture. Given that such a design is out of the scope of this work, we leave a detailed

study of this subject to future work.

6.7 Experiments with Variational Autoencoders: VAEG

Thus far, we have shown that training our proposed RNN-based gesture generator using our novel

loss function outperforms the same generator that is trained with the improved WGAN loss in a

GAN training setting. In this section we intend to investigate whether our generator can be trained

in a variational autoencoder (VAE) setting.

As mentioned in Section 2.4.2, VAEs consist of encoder and decoder networks. Once training is

complete, the decoder network can generate new synthetic samples which implies that the decoder

acts as the synthetic generator which means it is possible to use DeepNAG’s generator as the

decoder in a VAE. We discuss the choice of encoder architecture shortly. We refer to our generator

trained in a VAE framework as VAEG henceforth.

The first step in training VAEG is to define the training loss function. Recall from Section 2.4.1 that
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the VAE objective is defined as follows and consists of reconstruction and regularization terms:

L(θ, φ; x, zĉ) = −Eqφ(zĉ|x)
[
log pθ(x|zĉ)

]
︸ ︷︷ ︸

reconstruction

+ DKL

(
qφ(zĉ|x)

∣∣∣∣ p(zĉ))︸ ︷︷ ︸
regularization

(6.8)

where zĉ is the latent vector conditioned on the class label c. Note that to adopt this loss function for

gesture generation, the regularization term can be used without modifications, as it simply ensures

that the learned latent space follows the standard normal distribution. The reconstruction term,

however, is domain-specific. To our knowledge, no reconstruction loss term for generating gestures

has been previously discussed in the literature. Recall that the reconstruction term ensures that the

output of the decoder (generator) closely resembles the input data. Conveniently, a differentiable

measure that can be used for this purpose is sDTW. Thus, we propose the following loss function

as the objective to minimize during the training VAEG:

L(θ, φ; x, zĉ) = sDTW
(
x, Gθ(zĉ); f

)
+ DKL

(
qφ(zĉ|x)

∣∣∣∣ p(zĉ)) (6.9)

where f is sDTW’s internal cost function. In simple terms, we define the reconstruction error

as the sDTW dissimilarity between the input data, and the output of the generator. Given that

p(z) = N (0, 1), minimizing Equation 6.9 aims to decrease the reconstruction error and force the

learned latent space to follow the standard normal distribution.

We now discuss the choice of the encoder network’s architecture. We started with the uDeepGRU

model as the encoder. This way, the VAEG model closely resembles that of DeepGAN’s, yielding

the overall architecture depicted in Figure 6.9. After running some preliminary experiments, we

observed that the choice of the encoder architecture, as well as the overall model choices had
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Figure 6.9: Our proposed VAE model for gesture generation dubbed VAEG. The encoder net-
work is based on the uDeepGRU model (see Section 5.3). The generator is the same as Deep-
GAN/DeepNAG (see Section 6.2)

very little impact on the model’s performance. Further, adding additional fully-connected layers

in either the encoder or the decoder also made little difference in the produced results, in line

with what Bowman et al. [166] observed. Although training plots showed a steady decrease of

the loss value and convergence, the generated results lacked quality and diversity. Most gesture

trajectories were rather noisy. We observed this trend regardless of the architecture of encoder or

decoder networks, hyperparameter settings, the choice of f (we tried ED and COS) or even the

gesture dataset. We additionally experimented with alternative reconstruction terms. Specifically,
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(a) VAEG (samples)

(b) VAEG (overlays)

Figure 6.10: Some synthetic gestures produced by VAEG trained on $1-GDS [62] dataset. Note
that most samples are noisy and lack visual quality. Overlayed rendering of synthetic samples from
our VAE model (b – top), and real samples (b – bottom). Each overlay consists of 16 samples per
class. Note the lack of variety in the synthetic results when compared to the real samples.

we experimented with the mean squared error (MSE) of both Euclidean distance as well as the

cosine similarity of gesture paths (~x) between the input and reconstructed samples. These alternate

formulations performed worse than our sDTW-based reconstruction term.

Some samples produced by VAEG when trained on the $1-GDS dataset [62], along with overlayed

samples for each of the real and synthetic data are depicted in Figure 6.10. These results show that

the produced samples lack sufficient diversity when compared to the real samples. Given the visual

quality of the results, we hypothesize that the VAE framework is unfit for training our generator to

produce good synthetic samples.
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6.8 Conclusion

We discussed modality-agnostic gesture generation with recurrent neural networks. We first pre-

sented DeepGAN, our GAN model for synthetic gesture generation across various datasets and

gesture modalities. To reduce the training complexity, we formulated a novel loss function based

on the dynamic time warping (DTW) algorithm and the average Hausdorff distance. Our loss func-

tion obviated the need for a separate discriminator network, yielded high-quality results, and led to

12–17× faster training. We called this approach DeepNAG and applied it towards data augmenta-

tion for improved gesture recognition. In our evaluations, DeepNAG outperformed other synthetic

gesture generators (including DeepGAN) across various datasets and recognizers. We also briefly

discussed the use of domain adaptation techniques to avoid problems such as domain shift when

training a recognizer using synthetic data. We discussed the design of DeepCycleGAN, a deep

recurrent network that maps samples between real and synthetic data domains. Preliminary exper-

iments with this model suggested that further investigation is needed before we can successfully

use such models for domain adaptation.

To evaluate the quality of the generated samples using our generators, we then designed and con-

ducted a user study on the Amazon Mechanical Turk platform using the HYPE∞ benchmark. Our

results showed that across three gesture datasets, DeepNAG’s fake samples were more frequently

confused with the real ones compared to DeepGAN’s. On one of our studied datasets, DeepNAG

achieved hyper-realism indicating a high degree of visual quality in the generated samples.

Lastly, we discussed the training of our generator in a VAE setting. We adapted VAE’s loss function

to the task of gesture generation by adopting a sDTW-based reconstruction term. These modifica-

tions led to the design of VAEG, our VAE-based gesture generator. Our experiments showed that a

VAE framework is not suitable for training our gesture generator since the produced results lacked

quality and diversity when compared to those produced by DeepGAN and DeepNAG.
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CHAPTER 7: CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, we discussed gesture generation and recognition using recurrent deep networks.

We formally introduced the recognition as well as the generation problems, and highlighted our

design philosophies in formulating a solution for each problem.

Our design philosophy is accessibility: proposed models should be simple, have a small number of

trainable parameters, and reusable across different tasks, yet perform well on evaluation measures.

With these goals in mind, we detailed our current progress.

We presented the relevant background information and reviewed some of the concepts and ter-

minologies pertinent to the task at hand. We then examined the existing related work on gesture

recognition and generation and elaborated on how this work differs from all of them. We then

proceeded to discuss and evaluate all of our proposed methods. Here, we provide a brief summary

of our methods and findings.

7.1 DeepGRU for Segmented Gesture Recognition

We introduced DeepGRU for segmented gesture recognition and showed that our small network

was able to achieve state-of-the-art results on many popular datasets, spanning over a broad range

of interaction modalities, such as hand or full-body gestures with diverse data representations,

such as skeletal or raw accelerometer measurements. We provided a comprehensive evaluation of

DeepGRU and compared it against other methods available in the literature.

Our evaluations showed that DeepGRU outperformed many state-of-the-art methods, while achiev-

ing competitive recognition performance in most other cases. We then evaluated our model’s per-
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formance in the absence of large amounts of training data. With as little as four training samples

per gesture class, our method outperformed other methods, including the state-of-the-art on two

publicly available datasets.

We additionally inspected the time it took to train DeepGRU without powerful hardware. On small

training sets, our model can be trained in under 10 minutes, while achieving competitive accuracy.

We ended our discussion of DeepGRU with an ablation study which showed the effects of each

component on the final performance of the system.

7.2 uDeepGRU for Continuous Gesture Recognition

While segmented gesture recognition is important, many practical applications of recognizers in-

volve continuous streams of data. As such, we next turned our focus to the task of continuous

gesture recognition. We discussed uDeepGRU, an extension of DeepGRU designed for working

with unsegmented data which outputs per-frame recognition labels. The design of this model was

guided by the ablation study that we conducted on DeepGRU.

We discussed the initial design of this model and a suitable loss function that worked well on con-

tinuous recognition tasks. Using this model, we participated in the SHREC 2019 Online Gesture

Recognition challenge and took first place. We discussed the results of the competition, along with

a comparison against other participating methods. Guided by the lessons learned while submitting

our method, we worked towards improving our model further.

Our improvements included some changes in the model’s architecture, as well as adopting focal

loss as our training objective. This loss function, which was recently introduced to overcome

imbalanced training sets, yielded improvements in the recognition accuracy across the board. We

evaluated our improved uDeepGRU model on four publicly available datasets and showed that this
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model not only outperformed its original counterpart, but was also able to outperform the sliding

window version of DeepGRU.

7.3 DeepGAN and DeepNAG for Synthetic Gesture Generation

After discussing gesture recognition, we turned our focus to the problem of gesture generation to

overcome training data shortage. To this end, we presented DeepGAN and DeepNAG, two novel

extensions of DeepGRU which were designed for gesture generation tasks.

DeepGAN tackled the problem of gesture generation using a GAN-style training framework. The

training process involved optimizing an adversarial loss function over two networks: the discrimi-

nator which aimed to determine whether a given example was real or fake, and a generator network

whose goal was to fool the discriminator. The discriminator network’s architecture was a slightly

modified version of uDeepGRU, whereas the generator network resembled the flipped version of

the discriminator. This architecture promoted simplicity and was found to work quite well in prac-

tice. However, training a GAN model is generally hard due to the need for training two networks

at the same time.

With the goal of simplifying the training process, we introduced DeepNAG: a single-network so-

lution capable of generating realistic fake gesture examples. We described our formulation of a

single loss measure, which was based on the average Hausdorff distance and a differentiable for-

mulation of the dynamic time warping algorithm dubbed sDTW. Using our loss function, one could

directly train the generator network without needing a separate discriminator network. This, not

only simplified the training process, but also resulted in training speedups of up to 17×, in line

with our design philosophy of accessibility. We evaluated both of our proposed models from two

aspects: improvements in gesture recognition through data augmentation (quantitative), and the
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perceived realism of our produced samples by human evaluators in a user study (qualitative).

Our quantitative evaluations consisted of augmenting the training set of five commonly used ges-

ture recognizers via four synthetic gesture generation methods, including DeepGAN and Deep-

NAG. The results showed that in many cases, the studied recognizers benefited from the additional

training data produced by DeepNAG, more so than other synthetic generators. In a few cases,

however, the use of synthetic data hurt the recognition performance.

Our qualitative evaluations consisted of evaluating the perceived realism of our synthetic samples

using the recently introduced HYPE∞ benchmark, a standard benchmark to qualitatively evaluate

various generative models. To this end, we recruited 180 human participants on the Amazon

Mechanical Turk platform. We randomly showed each participant a mixture of real as well as

synthesized gesture sequences from either DeepGAN or DeepNAG, and asked them to specify

whether they think those sequences were produced by humans or were computer-generated. Across

all of our experiments, human evaluators confused DeepNAG’s synthetic samples with the real

samples most frequently.

We ended our discussion on synthetic gesture generation by providing a preliminary study of

adapting our proposed generators towards domain adaptation, as well as gesture generation in a

variational autoencoder (VAE) setting. We discussed DeepCycleGAN, our novel recurrent model

for domain adaptation, and evaluated its efficacy in improving gesture recognition accuracy when

DeepNAG’s synthetic samples were additionally processed by it. Our early results did not indicate

an immediate benefit in using DeepCycleGAN. We leave a detailed study of this to future work.

We lastly discussed VAEG, an adaptation of DeepGAN to gesture generation in a VAE setting. We

discussed our proposed loss function to train VAEG. Our loss formulation was based on minimiz-

ing sDTW and was functional in practice. The quality of the generated samples, however, was not

on par with our expectations. We leave a detailed study of VAEG to future work.
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7.4 Future Work

We outline a few key areas that we believe can be further explored in future work. As previously

discussed, both DeepGRU and uDeepGRU were designed to work with vector or skeleton data. We

believe both methods can be easily extended to support other types of input data such as videos or

spoken words. To support videos, we foresee two possible approaches. The first approach involves

using high-level computer vision features such as optical flows to extract discriminant features that

the model could use for recognition. The second approach involves using convolutional layers for

feature extraction as the first few layers of the model. Prior work has demonstrated the effectiveness

of various types of convolution-based models towards this [76, 97]. One potential pitfall of the

second approach is the added complexity to our models which could result in a larger and possibly

slower model.

The recognition of spoken words can also be done with the use of convolutional layers. One could

use several convolutional layers as the first few layers of the model to extract relevant features from

spoken words. These features can then be fed to the GRU layers to perform recognition.

With respect to skeleton-based gesture recognition, other forms of extracting features from such

data can also be explored. Given the graph-like structure of skeletal data, we foresee that one

could represent such data using a graph and leverage graph convolutional networks (GCN) [167]

to extract features from each frame’s skeleton. However, this form of feature extraction will be

more complex than using a few recurrent layers for this purpose. As such, these approaches will

likely result in a more complex model which may be slower to train.

Besides supporting additional types of input data, we believe uDeepGRU can be improved even fur-

ther. As discussed in Chapter 5, we did not employ any post-processing methods to refine the out-

puts produced by uDeepGRU. Using such methods could increase the overall accuracy of uDeep-
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GRU’s predictions. Similar approaches can also be used to refine the outputs of sliding-window

DeepGRU. One possibility here is designing a post-processor that only registers a gesture if that

gesture is detected for at least N frames. This approach could reduce the amount of misdetections.

Addressing the limitations of DeepGAN and DeepNAG is another avenue for future research. Our

evaluations indicate that producing multi-actor gestures was challenging for both models. Addi-

tionally, both models are designed to produce synthetic samples of a fixed length, a limitation that

can be addressed by small modifications in the generator model. We foresee the need for outputting

an “end-of-gesture” token by the generator if the goal is to synthesize gestures of different lengths.

This is an approach similar to the one proposed by Zhang et al. [118].

The preliminary results from DeepCycleGAN and VAEG in Chapter 6 suggest that a more thor-

ough design and evaluation of both methods is warranted. Although our proposed loss functions

led to visually acceptable results, we think both models as well as their loss functions can be im-

proved. Although we did not observe any immediate benefits in changing VAEG’s architecture, we

did not examine alternate architectures for DeepCycleGAN which we think could improve domain

adaptation performance.

In closing, we believe both DeepGAN and DeepNAG can be used in other application domains

besides gestures. No component in the architecture of either network is specific to gestural data.

As such, adapting either model to other real-valued sequential data should be straightforward.
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invariant stroke gesture recognizer with controllable position, scale, and rotation invari-

ances. In Proceedings of the 2018 on International Conference on Multimodal Interaction,

pages 125–134. ACM, 2018.

[73] Fabio M Caputo, Pietro Prebianca, Alessandro Carcangiu, Lucio D Spano, and Andrea Gi-

achetti. Comparing 3d trajectories for simple mid-air gesture recognition. Computers &

Graphics, 73:17–25, 2018.

[74] D. Avola, M. Bernardi, L. Cinque, G. L. Foresti, and C. Massaroni. Exploiting recurrent neu-

ral networks and leap motion controller for the recognition of sign language and semaphoric

hand gestures. IEEE Transactions on Multimedia, pages 1–1, 2018.

[75] Q. Ke, S. An, M. Bennamoun, F. Sohel, and F. Boussaid. Skeletonnet: Mining deep part

features for 3-d action recognition. IEEE Signal Processing Letters, 24(6):731–735, June

2017.

122



[76] G. Devineau, F. Moutarde, W. Xi, and J. Yang. Deep learning for hand gesture recognition

on skeletal data. In 2018 13th IEEE International Conference on Automatic Face Gesture

Recognition (FG 2018), pages 106–113, May 2018.

[77] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+d: A large scale dataset

for 3d human activity analysis. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016.

[78] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng. View adaptive recurrent neural

networks for high performance human action recognition from skeleton data. In 2017 IEEE

International Conference on Computer Vision (ICCV), pages 2136–2145, Oct 2017.

[79] Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang. Spatio-temporal lstm with trust gates

for 3d human action recognition. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling,

editors, Computer Vision – ECCV 2016, pages 816–833, Cham, 2016. Springer International

Publishing.

[80] I. Lee, D. Kim, S. Kang, and S. Lee. Ensemble deep learning for skeleton-based action

recognition using temporal sliding lstm networks. In 2017 IEEE International Conference

on Computer Vision (ICCV), pages 1012–1020, Oct 2017.
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