
Computer Vision and Image Understanding 259 (2025) 104435

C
M
a

b

A

C

M
4
4
6
6

K
H
d
c
i

1

i
s
f
a

r
b
s
f
a
r
L
d
e
w
e
s
a
w
a
d
t
g

h
R
A
1
(

 

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier.com/locate/cviu  

ontinuous hand gesture recognition: Benchmarks and methods
arco Emporio a, Amirpouya Ghasemaghaei b, Joseph J. Laviola Jr. b, Andrea Giachetti a,∗

University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
Department of Computer Science, University of Central Florida, Harris Engineering Center 321, Orlando, 32816-2362, FL, USA

 R T I C L E  I N F O

ommunicated by Juergen Gall
SC:
1A05
1A10
5D05
5D17

eywords:
and gestures
etection
lassification
nteraction

 A B S T R A C T

In this paper, we review the existing benchmarks for continuous gesture recognition, e.g., the online analysis 
of hand movements over time to detect and recognize meaningful gestures from a specific dictionary. Focusing 
on human–computer interaction scenarios, we classify these benchmarks based on input data types, gesture 
dictionaries, and evaluation metrics. Specific metrics for the continuous recognition task are crucial for 
understanding how effectively gestures are spotted in real time within input streams. We also discuss the most 
effective detection and classification methods proposed for these benchmarks. Our findings indicate that the 
number and quality of publicly available datasets remain limited, and evaluation methodologies for continuous 
recognition are not yet standardized. These issues highlight the need for new benchmarks that reflect real-world 
usage conditions and can support the development of best practices in gesture-based interface design.
. Introduction

Gestural interfaces are becoming increasingly popular across var-
ous application fields and are expected to become even more wide
pread in the near future. Given that gestures are the most common 
orm of non-verbal communication, it is reasonable to rely on them as 
 foundation for building computer interfaces.
Enabling technologies are now inexpensive and easy to use: the most 

ecent generation of Head Worn Displays provide hand tracking capa-
ilities (Ungureanu et al., 2020; Schneider et al., 2021), and reliable 
oftware tools can perform real-time tracking of body limbs or fingers 
rom RGB (D) streams (Zhang et al., 2020). Gesture-based control is 
lready present in a variety of applications, such as virtual and mixed 
eality (Papadopoulos et al., 2021), industrial interfaces (Berg and 
u, 2020), automotive (Prabhakar and Biswas, 2021) and multime-
ia (Vatavu, 2012; Drossis et al., 2013) control, public kiosks (Huang 
t al., 2020), making it possible to interact with computers naturally 
ithout the need for input devices. For this reason, in recent years, rel-
vant efforts have been dedicated to gesture recognition research, and 
everal authors have recently published bibliographic surveys aiming to 
nalyze and classify the published works (see Section 2.1). However, 
hen looking at the literature, it is possible to see that most of the 
lgorithms presented and classified in the existing surveys are not 
esigned to detect and recognize gestures in a continuous stream of data; 
hey instead aim only to address the problem of classifying segmented 
estures.

∗ Corresponding author.
E-mail address: andrea.giachetti@univr.it (A. Giachetti).

Many popular benchmarks widely used to evaluate gesture recogni-
tion methods only provide recordings of segmented gestures for train-
ing/testing of algorithms and evaluating classification accuracy; some 
examples of these benchmarks include VIVA (Ohn-Bar and Trivedi, 
2014), DHG 14–28 (De Smedt et al., 2016), SHREC’17 (De Smedt et al., 
2017), and Jester (Materzynska et al., 2019). It is worth noting that for 
some popular benchmarks, such as EgoGesture (Zhang et al., 2018), 
featuring both a continuous detection and a segmented classification, 
the latter is significantly more popular.

This fact is surprising since it is more often necessary, in practice, 
to design methods to solve the so-called ‘‘continuous’’ or ‘‘online’’ 
gesture recognition problem, requiring the detection of the gesture in 
the input stream. This problem is a particular case of event detection, 
in which significant gestures are interleaved with non-significant hand 
movements (‘‘non-gestures’’), and the recognition algorithms must seg-
ment the gestures and classify them correctly, providing feedback with 
low latency. The algorithms should minimize false positives and false 
negatives to avoid activating unwanted actions.

Recognition delay can be critical in applications such as extended 
reality (XR), gaming, or robot control in hazardous environments. 
However, offline benchmarks are not suitable for evaluating this delay, 
as they assume gestures are pre-segmented and do not consider the 
exact moment when the method produces a prediction. Consequently, 
they fail to indicate when the system recognizes a gesture relative 
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Table 1
Comparison of the key characteristics of other survey papers on hand gesture recognition.
 Survey Scope Discussed

 Benchmarking Continuous recognition Continuous evaluation 
 Mitra and Acharya (2007) Hand, body, and face gestures 7 7 7  
 LaViola (2013) 3D gestures 7 7 7  
 Rautaray and Agrawal (2015) Methods in vision-based recognition 7 7 7  
 Pisharady and Saerbeck (2015) Recognition methods and databases ✓ 7 7  
 Cheng et al. (2016) 3D gesture datasets ✓ ✓ 7  
 Kakkoth and Gharge (2017) Real-time gesture recognition ✓ 7 7  
 Escalera et al. (2017) Multimodal gesture/action recognition ✓ 7 7  
 Gu et al. (2021) Action recognition datasets and evaluation ✓ 7 7  
 Oudah et al. (2020) Classification through task characteristics ✓ 7 7  
 Shi et al. (2021) Deep learning on gesture videos ✓ 7 7  
 Sarma and Bhuyan (2021) Methods in vision-based recognition ✓ 7 7  
 Jain et al. (2022) Methods in vision-based recognition ✓ ✓ 7  
 Our Survey Continuous hand gesture recognition ✓ ✓ ✓  
to its actual occurrence, making it impossible to measure whether 
recognition is early or late.

Evaluating an algorithm for continuous gesture recognition is not 
trivial, and it should consider all the aforementioned aspects, not 
only the classification accuracy. Existing works that survey gesture 
recognition algorithms, as discussed in Section 2.1, are not focused 
on the continuous problem, so they are not helpful for an interaction 
designer searching for guidelines to create user interfaces based on 
gestures.

In this work, we try to fill this literature gap by proposing an 
updated state-of-the-art report focused on the continuous recognition of
intentional gestures for Human–Computer Interaction, namely for com-
munication and system commands, using off-the-shelf technology. The 
base of our work is a systematic search for specific benchmarks to 
evaluate this task. We classified the benchmarks found according to 
a taxonomy describing their characteristics, and, for each of them, 
we looked at the methods providing the best results according to the 
specific evaluation metrics used, analyzing the main features of the 
gesture detection methods proposed. The paper is structured as fol-
lows: Section 2 motivates our work by analyzing existing survey papers 
on hand gesture recognition, highlighting that none of them adopt a fo-
cus similar to ours. The section also describes the methodology adopted 
to create our new survey.  Section 3 introduces the criteria used to 
classify the research papers we reviewed: gesture capture technology, 
input data encoding, the types of gestures included in the dictionary, 
and the metrics used to compare the tested algorithms. Additionally, 
we provide a taxonomy of the different gesture recognition approaches 
applied in these studies.  Section 4 presents the identified benchmarks, 
classifying them according to the previously introduced taxonomies and 
highlighting the techniques that achieved the best results. Finally, Sec-
tion 5 presents a discussion of the survey’s findings, identifying open 
issues, and suggesting research directions for future work.

2. Survey motivation and methodology

Several surveys on hand gesture recognition analyze the existing 
literature, but do not focus on continuous gesture recognition and 
related benchmarking issues. This gap motivated us to conduct a novel 
analysis of the literature, concentrating on these particular aspects 
through the methodology detailed in Section 2.2.

2.1. Existing surveys on hand gesture recognition

Searching for existing surveys on hand gesture recognition, we 
found that some of them are outdated and generic, like the work 
of Mitra and Acharya (2007). This survey is not limited to hand gestures 
but also deals with body and face movements. 

The survey of LaViola (2013), addresses many research challenges 
but does not discuss the benchmarking of continuous gesture recog-
nition. Rautaray and Agrawal (2015), Focus on vision-based gesture 
2

recognition. They also analyze commercial products for gesture track-
ing, but do not address the issues related to validation and benchmark-
ing.

Pisharady and Saerbeck (2015), presents a review that includes an 
analysis of both methods and databases that appeared in the gesture 
recognition literature. Here, the evaluation of continuous detection 
is also not considered. Cheng et al. (2016), deals with 3D gesture 
datasets and introduces the problem of continuous gesture recognition. 
However, they do not discuss the related evaluation or analyze the 
existing continuous gesture detection benchmarks.

Kakkoth and Gharge (2017), also focuses on real-time hand ges-
ture recognition and provides a taxonomy of hand gestures (dynamic 
and static) and detection methods (sensor-based, vision-based, and 
depth-based). However, the description is short, and benchmarking 
and continuous recognition are not considered. Escalera et al. (2017), 
presents a comprehensive overview of the challenges in multi-modal 
gesture (and action) recognition, discussing the outcomes of several 
contests in the domain. The paper is one of the few that discusses 
the evaluation of recognition algorithms. However, most of the tasks 
proposed in the contests are not continuous, and the discussed methods 
are nowadays outdated.

Gu et al. (2021), also deal with datasets and evaluation, but their 
survey is mostly dedicated to generic action recognition and not to 
gesture recognition. The evaluation methods presented are not ap-
propriate for continuous gesture recognition. Oudah et al. (2020), 
classifies a considerable number of research papers according to differ-
ent recognition tasks’ characteristics, but does not address the problems 
of benchmarking and continuous detection. Shi et al. (2021), focuses 
on gesture recognition in videos based on deep learning. The paper 
presents a list of gesture recognition benchmarks but does not clearly 
define a taxonomy or distinguish between segmented and continuous 
recognition. The authors also do not discuss the evaluation approaches.

Sarma and Bhuyan (2021), presents a detailed description of the 
methodologies applied in vision-based hand gesture recognition. How-
ever, they dedicate little space to benchmarks and evaluation. Jain et al. 
(2022), presents several benchmarks and methods, mixing continuous 
and non-continuous ones without discussing the differences in the eval-
uation. The paper focuses on techniques used for video-based gesture 
classification.

While the high number of surveys demonstrates the growing interest 
in the topic, it is difficult to find useful and up-to-date information 
to design interactive systems based on gestures captured with modern 
sensors. As shown in Table  1,  we did not find surveys dealing with 
the evaluation of continuous gesture recognition for interaction tasks, 
discussing all the related issues in detail. For this reason, we decided 
to survey recent works focusing on this particular domain. The idea 
is to start from benchmarks and related evaluation metrics, trying to 
understand the peculiarities of continuous recognition, the different 
approaches available for the specific evaluation, and the effectiveness 
of the different detectors proposed for the related tasks.



M. Emporio, A. Ghasemaghaei, J.J. Laviola Jr. et al. Computer Vision and Image Understanding 259 (2025) 104435
Fig. 1. Classification based on input types.

2.2. Literature search methodology

To search for the benchmarks with the required features (with 
a focus on continuous recognition of mid-air hand and upper body 
gestures), we first used the websites that are popular for benchmarking 
initiatives, such as Eurographics Shape Retrieval Contests (SHREC),1 
ChaLearn,2 and Kaggle,3 this resulted in 3 relevant benchmarks. We 
then conducted methodical research in generic literature archives, 
following the guidelines of the PRISMA 2020 methodology (Page et al., 
2021).

This procedure started with the ‘‘identification’’ phase aimed to 
form a superset of the papers that are related to ‘‘gesture recognition 
benchmarks and dataset’’ and ‘‘evaluation metrics’’.

We defined a base BASE query as follows:
BASE= {(Hand OR (Upper and Body)) AND (Gesture OR 

Gestural OR Interaction OR Interactions OR Recogni-
tion) AND (Benchmark OR Benchmarks OR Dataset OR
Datasets OR (Data and Set) OR (Data and Sets)) AND (On-
line OR Continuous OR Real-time OR (Real and Time))}.

We performed this search on Scopus4 since it is reliable, presents 
more relevant results, and has advanced searching capabilities that in-
clude the usage of custom queries. The query resulted in 2758 articles, 
and to find the most relevant ones, we initiated a screening phase in 
which we carefully read all the abstracts, keeping only the ones that 
matched our inclusion criteria, defined as follows:

• The paper must describe a benchmark for gesture recognition in 
continuous time.

• The gestures should be designed for interaction tasks, which are 
intentional, voluntary gestures used to control a system, issue 
commands, or communicate with a digital interface. This in-
cludes command and communication gestures commonly used in 
human–computer interaction scenarios. In contrast, gestures that 
are not explicitly intended for interaction, such as those used 
in general action recognition (e.g., walking, running) or in sign 
language recognition, are excluded.

We then thoroughly read the filtered papers to ensure that only the 
relevant ones are kept. Only 13 benchmark papers matched our strict 
inclusion criteria, and we excluded a benchmark (SHREC ’21, Caputo 
et al., 2021) as the benchmark’s authors declared annotation issues 
on their website. The benchmarks found were classified and analyzed 
according to several criteria, introduced in Section 3, and related to the 
acquisition method, the data encoding, the gesture dictionary, and the 
evaluation metrics.

Furthermore, we investigated the recognition approaches used on 
the benchmarks, introducing a specific taxonomy of the methods and 
analyzing the ones providing the best results on each benchmark. For 

1 https://www.shrec.net
2 https://chalearnlap.cvc.uab.cat/
3 https://www.kaggle.com
4 https://www.scopus.com/home.uri
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this purpose, we conducted a backtracking search of the papers that 
cited the related papers/sites. This search was performed on Scopus and 
Google Scholar5 and resulted in 1645 papers. From them, we selected 
only the works that tested novel methods on the benchmarks’ data, and, 
for those providing the best results (up to three per benchmark), we 
give a short description, classifying their characteristics according to 
our taxonomy and present the performance metrics in Section 4.

3. Benchmark taxonomy

We classified the selected benchmarks according to a set of charac-
teristics that need to be considered to understand the practical appli-
cations where they can be exploited.

• Input data: the characteristic of the sensing devices and the 
acquisition setup.

• Data encoding: The provided data stream to train and test the 
detection frameworks.

• Gesture set: the dictionary of gestures included in the bench-
marks.

• Evaluation metrics: The measurements used to assess the effec-
tiveness of the detection methods for the specific task.

Furthermore, we also classify the recognition approaches used on them.

3.1. Input modalities and data stream encoding

Devices (summarized in Fig.  1) used to capture gestures belong to 
two main categories: cameras and wearables. In the first category, we 
have RGB cameras, e.g., webcams in desktop interfaces, or devices 
mounted on HMDs for XR applications. Depth sensors/RGBD cameras
are also used to capture gestures. Depth information facilitates the 
spatial segmentation of arms/hands. Among the various cheap depth 
sensing devices used in gesture-based interfaces, we can mention stereo 
cameras (e.g., Zed, UltraLeap), active IR sensors (e.g., Microsoft 
Kinect, Intel Realsense De Smedt et al., 2016), Time-of-Flight (ToF)
cameras (e.g., the one mounted on HoloLens). IR/thermal cameras
have also been proposed for gesture capture (Vandersteegen et al., 
2020). Camera-based acquisition is simple and non-invasive, but it 
can suffer from occlusions, which may cause degradation of the data 
quality (Lee et al., 2022).

This issue is strictly related to another critical design choice for 
the acquisition, that is, where to place the sensors with respect to the 
subject’s body/hands. The choice of viewpoint depends on the target 
application and can influence the performance of the recognizers. Our 
taxonomy defines two categories for the camera viewpoint: Egocentric, 
e.g., captured with head-mounted cameras, and Exocentric, e.g., cap-
tured using external cameras. Egocentric benchmarks are useful to test 
recognizers for XR applications. Depending on the sensor distances, 
exocentric benchmarks are suitable for designing methods used in 
Human–Robot interaction, public kiosks, multimedia, or automotive 
controls.

Wearable sensors are typically more invasive than external cam-
eras but are unaffected by occlusions. Inertial measurement units 
(IMUs) can provide data such as acceleration, angular rate (rota-
tion speed), and orientation in space, and have been proposed in 
benchmarks for gesture recognition (Ruffieux et al., 2013). VR gloves
can also be equipped with sensors to capture joints’ motion (Caeiro-
Rodríguez et al., 2021), but are expensive and rarely used in real-world 
interaction scenarios. We did not find benchmarks with glove-based 
data. Surface Electromyography (sEMG) based wearable devices like 
the Myo armband (Benalcázar et al., 2017) have been recently used 
to create systems that can recognize dynamic hand gestures. We did 
not find public benchmarks based on them for continuous gesture 
recognition, while examples with segmented ones are available (Atzori 
et al., 2014; Amma et al., 2015).

5 https://scholar.google.com/

https://www.shrec.net
https://chalearnlap.cvc.uab.cat/
https://www.kaggle.com
https://www.scopus.com/home.uri
https://scholar.google.com/
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Fig. 2. Classification based on stream encoding.

Fig. 3. Classification based on gesture dictionaries.

3.2. Input stream encoding

The main types of data streams (shown in Fig.  2) processed by ges-
ture detection modules are raw video data, visual features (optical 
flow, disparity), arm/hand skeleton sequences, and raw vectors 
of wearable sensors’ data. Benchmarks provide the datasets in one or 
more of these encodings.

The most popular solution is to use raw sequences as recognizer in-
put, meaning that the tested technique needs to perform both temporal 
and spatial segmentation of the hands. NVGesture (Molchanov et al., 
2016) provides dense optical flow and disparity maps as additional 
input.

Skeleton data can be a reasonable input for recognition, as they 
are directly provided by the API associated with gloves or body/finger-
tracking devices. Inexpensive specialized devices like the Ultraleap 
products provide real-time hand skeleton data at high frame rates, 
and finger tracking modules are integrated in popular XR headsets like 
Hololens 2 or Meta Quest and used for gesture-based interaction. The 
skeleton representation typically includes the 3D spatial coordinates 
of joints and possibly quaternions representing segments’ orientation. 
Hand skeletons could be estimated from videos using specialized soft-
ware tools like Google MediaPipe (Zhang et al., 2020). The skeleton 
representation is compact and filters out non-relevant data captured 
by the original sensor. The drawback is related to the possible failure 
of the hand pose estimation algorithm. Several gesture-recognition 
benchmarks (De Smedt et al., 2017; Caputo et al., 2019; Emporio et al., 
2022) include hand skeleton data.

In the case of non-spatial acquisition techniques (IMUs, sEMG), the 
detector works directly on the stream of the captured raw data. In 
this case, additional helpful information for gesture recognition may 
be derived from the position of different worn sensors (Ruffieux et al., 
2013).

3.3. Hand gestures’ taxonomy and gesture dictionaries

In the tasks of our interest, according to the taxonomy of Karam 
and Schraefel (2005), we consider only ‘‘semaphoric’’ or ‘‘language’’ 
gestures that we must distinguish from ‘‘gesticulation’’ or non-gesture 
movements. We selected several aspects to characterize the different 
sub-types of these gestures found in the research papers of our interest 
(as illustrated in Fig.  3). The first one is related to their temporal 
features. For this aspect, we use a taxonomy similar to the one proposed 
4

in Li et al. (2019a), distinguishing Static and Dynamic gestures. Static 
gestures are those where the semantic is determined by the hand 
pose (spatial posture of the joints), without significant movements. A 
static gesture is performed by holding a specific hand configuration or 
pose for a minimum duration. Dynamic gestures are those where the 
semantic depends on the movements of the hands and can be further 
divided into up to three sub-types, as done in some existing benchmarks 
such as in Emporio et al. (2022):

• Dynamic Coarse, characterized by the hand’s global trajectory, 
for example, drawing a cross in mid-air.

• Dynamic Fine, where the semantic depends on a variation in the 
fingers’ articulation over time, such as pinch or grab.

• Dynamic periodic, where the semantics depend on the iteration 
of a basic motion pattern such as waving a hand or a finger.

The semantics of a gesture can be invariant with respect to specific 
changes in its execution. Invariance properties of the gestures are 
important as they influence the design of proper recognition tools. We 
can distinguish the following cases:

• Position-invariant gestures are those where a translation does 
not change the semantics. Interfaces where some gestures are 
considered meaningful only if executed in specific spatial regions 
employ non position-invariant dictionaries.

• Orientation-invariant gestures are those where a global hand 
rotation does not change the semantics. For example, a gesture 
dictionary that includes a thumb up or down gesture to indicate 
like or dislike is clearly non-invariant to orientation.

• Direction-invariant gestures are the dynamic ones where the 
correct labeling does not depend on the orientation of the global 
movements of the hand with respect to a fixed reference frame. 
The pinch gesture used in many practical VR interfaces to trigger 
actions has the same meaning, independent of the global hand 
movement.

To allow the users to interact with gesture-based interfaces, the 
designers (and the creators of benchmarks) create dictionaries of 
gestures, possibly including static and dynamic ones. In our classifi-
cation of gesture dictionaries, we will consider Position (Orientation, 
Direction) invariant, a dictionary of gestures where all the items feature 
the same property so that the recognizer can be trained/tested with an 
invariant encoding.

Dictionaries are characterized by the sets of class labels and by 
the origin of their semantics. Dictionaries may assign the semantics 
based on simple rules, such as error margins with respect to a standard 
pose/trajectory template. In this case, the classification errors may 
depend only on finger-tracking accuracy. In the reviewed benchmarks, 
the semantics are always data-driven and depend on a number of 
training templates or sequences. This can make the task challenging as 
different users can execute the gestures in quite different ways because 
of constraints in the individual hand articulation (Lee and Jung, 2015), 
different speeds, and different mental models of the gestures, possibly 
due to different cultural backgrounds. Hand morphology and size can 
vary, and the skin color can differ, and this can create challenges for 
image-based detection.

The number and the diversity of the subjects performing the 
gestures of the datasets are, therefore, important characteristics to 
understand how much the results obtained on a benchmark can be 
generalized in a practical setting. The limited ability of the training ex-
amples to represent the target users can be a relevant issue in practical 
applications, requiring the collection of a huge amount of additional 
training data. The choice of the gesture classes in the dictionary is 
also a critical feature of the benchmark to be pointed out. Dynamic 
ones can have an extremely variable time duration, quite challenging 
for online recognizers, and different gestures can share similar subparts. 
The recognition rates for individual gestures may depend critically on 
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Fig. 4. Classification based on evaluation metrics.

the other ones included in the dictionaries, which might be optimized 
for the discriminability of gestures. The dictionaries of the benchmarks 
included in our survey do not seem to have been optimized in this 
regard.

The number of sequences provided for training (and testing) is 
another relevant characteristic of the benchmark, as well as the type 
of gesticulation done in the non-gesture parts. In fact, the possible use 
and the performance of machine learning tools may be strongly affected 
by the low number of training examples. This problem can be mitigated 
by data augmentation (Maghoumi et al., 2021; Cabrera and Wachs, 
2018), but with some limitations in the case of continuous recognition. 
Meaningful gestures of a selected dictionary cover a small part of the 
potential ‘‘gesture space’’, including all the possible hand position/ori-
entation/pose variations. This means that in an online classifier where 
we need to discriminate the gestures from the ‘‘non-gesture’’ class, we 
have a large imbalance in the ‘‘gesture space’’ partitioning, with most 
of the space labeled as ‘‘non-gesture’’.

Training data for the continuous gesture recognition method are 
not (or not only) segmented gestures, but long sequences where the 
time location of the meaningful gestures is given as data annota-
tion. The characteristics of the non-gesture patterns used to interleave 
the gestures in these sequences should be accurately controlled to 
avoid unintentional executions of gestures not annotated. Ideally, the 
non-gesture parts should represent all the gesticulations done by all 
the users of the interactive system simulated, optimally sampling the 
‘‘non-gesture’’ space.

In the case of video data, the diversity of the visual scenarios for the 
data capture is also important to assess the robustness of the detector 
against changes in background, light conditions, and others. Therefore, 
we report the number of different scenes used in the datasets. In the 
practical design of the acquisition devices and the dictionary, many 
choices strongly depend on the application focus. We introduce a 
specific category in our taxonomy to record if a reviewed benchmark 
has a specific application domain. Specific applications for which con-
tinuous mid-air gesture recognition systems can be applied are mixed 
reality, automotive, public kiosks, sign language-based communication, 
and mobile/touchscreen interfaces.

3.4. Evaluation metrics

As discussed in Section 1, while for the segmented gesture clas-
sification task, the evaluation is simple and based only on the test 
gesture labeling accuracy, for the continuous classification task, the 
performance assessment is more complex, as it should also consider the 
temporal segmentation quality, the latency, and the probability of false 
detection.

Following Ward et al. (2011), (as show in Fig.  4) we divide the 
metrics into two groups:
5

Fig. 5. Classification of continuous gesture spotting/recognition methods.

• Frame-Based. These metrics are derived from the per-frame com-
parison of the predicted labels with the ground truth ones. Ex-
amples are the average classification scores of the single-frame 
labeling (Accuracy, Precision/Recall, F-Score, Area under curve 
(AUC)) or string distances (Jaccard Index, Goswami et al., 2018, 
Levenshtein Distance, Levenshtein et al., 1966).

• Event-Based. A gesture in a continuous sequence of frames can 
be considered an event with a specific start time, end time, and 
an associated label. An evaluation based on these parameters 
should cope with the temporal location of the gestures, possibly 
estimating their accuracy, and must define thresholds to consider 
whether an event is correctly detected. While frame-based metrics 
compare two strings of equal length with ground truth and the 
estimated sequences of frame labels, event-based metrics evaluate 
the differences between ground truth and estimated lists of events 
with associated attributes. These lists may have different lengths, 
as we can have missed and falsely detected events, so that the 
comparison is not straightforward. For these reasons, various 
metrics have been proposed and used in different benchmarks, 
making it difficult to compare the results obtained.
The Detection Rate (percentage of events correctly captured with 
respect to the ground truth total number, Ruffieux et al., 2013; 
Caputo et al., 2019; Emporio et al., 2022) and the False Positives 
Score (percentage of false detections with respect to the ground 
truth total number, Caputo et al., 2019; Emporio et al., 2022; 
Molchanov et al., 2016; Wannous and Vandeborre, 2022), are 
often measured, even if with variable criteria to consider a gesture 
correctly detected. Another viable option is the Levenshtein 
Accuracy (Benitez-Garcia et al., 2021b; Xu et al., 2023), which 
is based on comparing strings of consecutive events.
To characterize the accuracy of the temporal segmentation of the 
methods, some authors use the delay of the recognition feedback. 
In Ruffieux et al. (2013), new specific scores are proposed for this 
purpose: the Accurate Temporal Segmentation Rate (ATSR), 
the Absolute Temporal Segmentation Error (ATSE), and the
Performance Index. The computation of ATSR is derived by sum-
ming the absolute temporal discrepancies between the algorithm’s 
prediction and the ground truth for both the start and stop events. 
The result is then divided by the total duration of the gesture 
occurrence. The Performance Index (Perf) is a single metric that 
combines F-score and ATSR.

In our taxonomy, we also consider the efficiency metrics, to eval-
uate how much an algorithm can be adapted to different platforms, 
as many benchmarks also assess the amount of resources needed by 
the methods in terms of memory requirements (e.g., the number of pa-
rameters of the neural models used, overall model size), computational 
complexity and real-time detection performances (e.g., FLOPS).

3.5. Gesture detection methods

Fig.  5 shows a taxonomy of the different continuous recognition 
approaches that have been applied to the data and tasks of the surveyed 
benchmarks. Even if it is not an intrinsic property of the benchmarks, 
this classification can reveal how well the different recognition ap-
proaches perform on them, given the best results presented in Section 4. 
The methods can be classified according to how they deal with the 
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Table 2
Characteristics of the gesture dictionaries used in the reviewed benchmarks: types of gestures (S = static, DC = dynamic coarse, DF = dynamic 
fine, DP = dynamic periodic) and invariance (P = position, O = hand orientation).
 Name Year Type of gestures Invariance Application domain  
 ChAirGest 2013 DC, DP P General interaction  
 Montalbano T3 2014 DF, DP P Verbal communication  
 ConGD 2016 S, DF, DC, DP P Many domains  
 NVGesture 2016 S, DF, DC, DP P Automotive  
 EgoGesture 2018 S, DF, DC, DP P Mixed reality  
 SHREC’19 2019 DC P Mixed reality  
 IPN Hand 2020 S, DF, DC P, O Touchless screens  
 MlGesture 2020 DC,DP P, O Automotive  
 LD-ConGR 2022 S, DC P, O Long distance recognition 
 SHREC’22 2022 S, DF, DC, DP P Mixed reality  
 ODHG 14/28 2022 DF, DC P, O General interaction  
 ZJUGesture 2023 DF, DC P, O Mobile  
Table 3
Characteristics of the acquisition setups for the datasets included in the reviewed benchmarks.
 Name Data types View Input devices FPS  
 ChAirGest RGB, RGB-D, Hand pose, IMU EGO, EXO Kinect/Xsens MTw IMU 30/50  
 Montalbano T3 RGBD EXO Kinect 20  
 ConGD RGB-D EXO RGB-D Camera Setup NA  
 NVGesture RGB-D, Optical flow, IR EXO SoftKinetic DS325/DUO 3D 30  
 EgoGesture RGB-D EGO Intel RealSense SR300 30  
 SHREC’19 Hand pose EGO Leap Motion NA  
 IPN Hand RGB EXO Webcam 30  
 MlGesture RGB-D, RGB, Thermal EXO Industrial cameras 8/12/16 
 LD-ConGR RGB-D, RGB EXO Kinect v4 30  
 SHREC’22 Hand pose EGO Hololens 2 20  
 ODHG 14/28 RGB-D, Hand pose EXO Intel Real-Sense 30  
 ZJUGesture RGB EXO Mobile phone 30  
Table 4
Characteristics of the sets of sequences/gestures included in each benchmark. Figures in brackets specify the training/test splitting of sequences 
and gesture samples. Gps means Gestures per sequence (V = Variable).
 Name Scenes Subjects Classes Gesture samples Sequences Gps  
 ChAirGest 1 10 10 1200 (900 – 400) NA V  
 Montalbano T3 1 10 10 13,858 (3362 – 2742) 563 V  
 ConGD 15 21 249 47,933 (30,442 – 17,491) 22,535 V  
 NVGesture 1 20 25 1532 (1050 – 482) 1532 V  
 EgoGesture 6 50 83 24,161 (19,184 – 4977) 2081 9 to 12 
 SHREC’19 1 13 5 195 (60 – 135) 195 1  
 IPN Hand 28 50 13 4218 (148 – 52) 200 1 to 5  
 MlGesture 1 24 9 over 1300 Over 1300 1 to 2  
 LD-ConGR 5 30 10 44,887 (34,315 – 10,572) 542 V  
 SHREC’22 1 6 16 1152 (576 – 576) 288 3 to 5  
 ODHG 14/28 NA 20 28 2800 NA V  
 ZJUGesture 12 60 9 9892 (8290 – 1602) NA V  
continuous task, performing both temporal segmentation (also spatial 
in the case of video input) and classification of gestures.

A possible solution is to use two modules: one designed to perform 
the time segmentation, and one for the classification. A typical solution 
for the segmentation is to estimate the boundaries based on the motion 
energy (Kahol et al., 2003; Li et al., 2019c). The subsequent classi-
fication can be done with classifiers trained with labeled segmented 
gestures (of different sizes). Another option is to use a sliding win-
dows approach in the time domain, classifying one or more signal 
windows (Dietterich, 2002) ending at the current time frame with a 
specifically trained classifier to determine the frame label.

When using hand pose data, the classification module can be based 
on simple template matching (Caputo et al., 2018), but the recent liter-
ature is dominated by neural networks. Different network architectures 
have been proposed, such as 1D convolutional networks (Yang et al., 
2019), graph-convolutional networks (Li et al., 2019b), or transformer 
networks using the attention mechanism to focus on the co-occurrence 
of relevant features of the sequences in gesture classes (Shi et al., 2020). 
2D/3D convolutional networks can be applied for RGB-D images (Tran 
et al., 2015). Another possible solution for the continuous recognition 
is the use of a recurrent network, trained on continuous data and 
6

providing a predicted gesture label at each time step, using non-gesture 
as an additional class (Tsironi et al., 2017; Chai et al., 2016; Maghoumi 
and LaViola, 2019). In this case, the preliminary segmentation of the 
gestures in the test phase is unnecessary, but a further post-processing 
step is required to derive a reliable detection of gesture events from the 
frame labels. 

4. Surveyed benchmarks

This section presents the main characteristics of the 12 benchmarks 
selected, classified according to our taxonomy. These characteristics 
are summarized in Tables  2, 3, and 4. In detail, Table  2 presents the 
characteristics of the gesture dictionaries included, Table  3 shows the 
characteristics of the acquisition setups, and Table  4 presents more 
details of the datasets collected.

For each benchmark, we also describe the methods that provide the 
best results on it, following the criteria described in Section 3.5.

4.1. ChAirGest

The ChAirGest challenge (Ruffieux et al., 2013) was an open re-
search initiative aimed at motivating scholars to leverage data collected 
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Fig. 6. Recording setup for the ChAirGest Benchmark. Left: image captured by the 
Kinect. Right: external view of the same subject. Wearable IMUs are visible on his 
right arm.
Source: From Ruffieux et al. (2013).

Table 5
Performances of the best method on the ChAirGest benchmark.
 Method Date ATSE ATSR F1 score Perf  
 CHMM 2013 NA 0.923 0.907 0.912 

from diverse sensors to enhance and assess methods for gesture spotting 
and recognition. It was based on a dataset created using a Kinect RGBD 
camera (30 fps) and four IMUs (50 fps), strategically attached to the 
right arm and neck of ten subjects (Fig.  6). The dataset consists of a 
vocabulary of 10 one-hand dynamic gestures commonly used in close 
human–computer interaction (e.g., swipe, circle, push, etc.), initiated 
from three different resting postures and captured across two distinct 
lighting scenarios of the same scene. The authors collected a total of 
1200 annotated gestures, organized into continuous video sequences, 
each containing a variable number of gestures. The evaluation is based 
on a hybrid approach incorporating well-established metrics (event-
based precision and recall and the derived F-score) and an original 
time-based metric, the Accurate Temporal Segmentation Rate.

4.1.1. Best results on ChAirGest
Table  5 shows the metrics obtained with the best method tested 

on the ChAirGest benchmark, Concatenated Hidden Markov Models 
(CHMM, Yin and Davis, 2013). CHMM is based on three core compo-
nents: a feature extraction module, a temporal segmentation module, 
and a gesture spotting and recognition module. In the first step, for clas-
sification, a 12-dimensional feature vector is extracted from the Xsense 
data (linear acceleration, angular velocity, and Euler orientation) and 
Kinect data (relative position between shoulder and hand). The hand 
position given by the Kinect APIs was not considered to be reliable, 
and a custom salience-based hand segmentation method based on the 
RGB-D data was applied to replace it. The gesture spotting method 
exploits the training data from all the users to create Gaussian models 
for the ‘rest positions’ and a Gaussian model for ‘non-rest positions’, and 
then classifies the frames accordingly. Gestures are recognized when 
consecutive non-rest positions are detected for over 0.25 s. The gesture 
recognition exploits multiple Hidden Markov Models (HMM) trained 
for the three main gesture phases: pre-stroke, nucleus, and post-stroke. 
The three HMMs are concatenated to form one HMM for each gesture. 
To detect and correctly segment the nuclei of the gestures, the Viterbi 
algorithm is applied to find the most probable hidden state sequence.

4.2. Montalbano track 3

The Looking at People Challenge 2014 competition (Escalera et al., 
2015) included three different tracks and related benchmarks. The first 
two focus on action recognition and cannot be included in our survey; 
only the third complies with our inclusion criteria. In this track, the 
participants were tasked with recognizing 20 distinct Italian gesture 
categories using continuous RGB-D video sequences captured at 20 fps. 
The dataset comprises 13,858 gestures performed by 27 subjects in 563 
sequences. From those sequences, 287 were given to the participants 
7

Fig. 7. Example gestures from the Montalbano dataset. They are performed before a 
Microsoft Kinect while speaking Italian.
Source: From Escalera et al. (2015).

Table 6
Performances of the best methods on the Montalbano Track 3 benchmark.
 Method Date JI (%) 
 ConvNetsFusion 2021 92.3  
 Temp Conv + LSTM 2016 90.6  
 RNN + LSTM Cells 2016 88.8  

as training sequences and labels; the other 276 were used as test 
sequences. Throughout all the sequences, a single user is captured 
standing before a Kinect device without occlusion. The gestures in this 
dataset are not ‘‘commands’’ but are ‘‘natural’’ communicative gestures 
performed while the subjects were speaking fluent Italian (Fig.  7). Each 
sequence is 1–2 min long, and during it, the subjects move their arms 
without rest, resulting in an extremely varied ‘‘non-gesture’’ class. This 
dataset exhibits a notable intra-class variability among gesture samples, 
meaning that gestures within the same category can vary significantly. 
Conversely, the inter-class variability is relatively low, indicating that 
some gesture categories share similarities, making the classification 
hard. It is worth noting that no information is available regarding the 
number of gestures included within each sequence. The benchmark uses 
the Jaccard Index to evaluate the recognition’s accuracy.

4.2.1. Best results on Montalbano track 3
Table  6 shows the metrics obtained with the best results applied 

to this benchmark. ConvNetsFusion (Wang, 2021), is a two-module 
method. The temporal segmentation module combines two methods: 
the first detects the intervals where the height of the hands, seg-
mented with a Faster R-CNN, is above a threshold, and the second 
uses two-stream ConvNets fed with the RGBD images. In the recog-
nition module, Depth Dynamic Images (DDIs) and Depth Motion Dy-
namic Images (DMDIs), are generated from a depth sequence through 
bidirectional weighted rank pooling and are then fed into ConvNets 
for classification. Saliency sequences for depth and RGB sequences 
are also estimated using the algorithm described in Achanta et al. 
(2009) and are used as input on 3D ConvLSTM networks (Zhu et al., 
2017). The normalized outputs of all four networks are fused with the 
average-score rule in an element-wise way to obtain the final gesture 
label.

Both RNN + LSTM and Temp Conv + LSTM Cells are described 
in Pigou et al. (2018). In RNN + LSTM, they leverage the idea that 
a gesture becomes recognizable only after a few time steps, so they 
developed a method that uses a bidirectional RNN, which enables 
the processing of the sequences (frame by frame) in both temporal 
directions, with LSTM cells learning dynamic temporal dependencies.
Temp Conv + LSTM Cells is an extension of CNN layers with temporal 
convolutions, capable of extracting hierarchies of motion features and 
capturing time-related information from the input videos. The proposed 
method’s 3D convolution is factorized into two-dimensional spatial con-
volutions and one-dimensional temporal convolutions to avoid model 
overfitting. The resulting classification module is adapted to continuous 
detection using a sliding window with single-frame steps.
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Fig. 8. Left: depth maps from the ConGD dataset. Right: the corresponding RGB images.
Source: From http://www.cbsr.ia.ac.cn/users/jwan/database/congd.html.

Table 7
Performances of the best methods on the ConGD benchmark.
 Method Date JI (%) 
 TD-Res3D + Average fusion 2018 71.63  
 ConvNetsFusion 2021 69.04  
 ST-GAT 2022 65.78  

4.3. ConGD

Wan et al. (2016) created the Continuous Gesture Recognition 
Dataset (ConGD) based on batch classes and samples from the ChaLearn 
gesture dataset (CGD) (Guyon et al., 2012). The CGD dataset was 
designed for a series of ‘‘One-shot learning’’ tasks, where there is only 
one training example for each gesture, and the rest of the data is 
used for testing. The tasks correspond to different application domains, 
e.g., sign language, helicopter signals, traffic signals, and underwater 
sign language. For each of them, a specific batch of data with 100 
example gestures from a small lexicon of 8 to 12 classes has been 
created. The entire dataset consists of 289 classes from 30 lexicons 
and a total of 54,000 gestures recorded in 23,000 RGB-D videos. The 
ConGD dataset was obtained by annotating the videos with a semi-
automatic procedure, combining the different batches, removing some 
of them, and fusing the classes with similar characteristics. The final 
benchmark features a dictionary with 249 gesture classes, and it is 
composed of 22,535 RGB video recordings and 22,535 depth videos 
where 21 subjects perform them for a total of 47,933 executions (Fig. 
8). The dataset is split into a training set with 30,442 gesture samples, 
a validation set with 8889, and a test set with 8602. The Jaccard 
Index is the only metric used to measure the continuous recognition 
performance on this benchmark.

4.3.1. Best results on ConGD
Table  7 shows the best results obtained on the ConGD benchmark.
Temporal Dilated Residual ConvNet (TD-Res3D + Average fu-

sion) is an approach proposed by Zhu et al. (2019). This procedure 
begins with segmenting the continuous gesture sequences into isolated 
gesture instances with a temporal-dilated Res3D network (Tran et al., 
2017). The authors employed a balanced squared hinge loss function 
to handle the imbalance between boundaries and non-boundaries. The 
temporal dilation preserves temporal information for precise boundary 
detection, while a large temporal receptive field enhances the accuracy 
and effectiveness of the segmentation results. The method uses this 
segmentation network on both RGB and depth streams. The results are 
then merged with the average fusion score. The classification network 
is a combination of a 3D Convolutional Neural Network (3DCNN), 
a Convolutional Long-Short-Term-Memory Network (ConvLSTM), and 
a 2D Convolutional Neural Network (2DCNN) for isolated gesture 
recognition. This architecture is adapted to learn long-term and deep 
spatio-temporal features, making it effective to recognize the gestures 
of this benchmark.

The ConvNetsFusion method (Wang, 2021), already described 
among the best methods for Montalbano Track 3, presents good results 
on the ConGD benchmark as well.
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Fig. 9. Top left: recording setup for the NVGesture dataset. The subject uses his left 
hand to drive and performs the gestures with his right hand only. NVGesture includes 
multi-modal acquisitions. Data are captured with a SoftKinetic DS325 recording front-
view RGB-D videos (A), and with a DUO 3D stereo-IR camera mounted above the user 
(B).
Source: From https://www.v7labs.com/open-datasets/nvgesture.

Table 8
Performances of the best methods on the NVGesture benchmark. (*) metric from 
Köpüklü et al. (2020).
 Method Date 𝜏 AUC TPR (%) FPR (%) NTtD LA (%)* 
 R3DCNN 2015 0.3 0.93 88 15 0.56 NA  
 HSTV 2022 0.16 0.81 85 17 0.2158 NA  
 ResNet+ResNeXt 2020 0.15 NA NA NA NA 77  

Spatial–Temporal Graph Attention Network (ST-GAT) (Guo et al.,
2023) focuses on extracting essential features from video sequences by 
considering local details of the hand movements. The approach takes 
joint and bone information as inputs and constructs a spatial–temporal 
graph to capture inter-frame relevance and physical connections be-
tween nodes. It then exploits a graph-based multi-head attention mech-
anism with adjacent matrix calculation to effectively explore the local 
features. Additionally, it models the short-term motion correlation 
with a temporal convolutional network and uses a bidirectional long 
short-term memory (BLSTM) to capture long-term dependencies in the 
video sequences. Finally, it applies frame-by-frame the connectionist 
temporal classification to align the word-level sequences.

4.4. NVGesture

The NVGesture dataset (Molchanov et al., 2016), is designed to test 
gesture recognition for touchless driver control. The authors recorded 
it using multiple sensors and viewpoints; this involved 20 subjects 
who performed the gestures with their right hands while holding the 
steering wheel with their left hand. The SoftKinetic DS325 sensor was 
used to acquire front-view color and depth videos, and a top-mounted 
DUO 3D sensor was used to collect this dataset for recording a pair of 
stereo-IR streams (Fig.  9). Data are captured at a frame rate of 30 fps.

The dictionary includes 25 gesture types, and the benchmark con-
tains 1532 dynamic hand gesture samples; these samples are divided 
into 1050 training and 482 test samples. The metrics chosen for the 
evaluation are the area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve and the normalized time to detect (NTtD) at 
a detection threshold (𝜏 = 0.3).

4.4.1. Best results on NVGesture
Table  8 shows the best results obtained on this benchmark. Recur-

rent 3D convolutional neural network (R3DCNN) was proposed in 
the paper that introduced the benchmark (Molchanov et al., 2015). 
The method splits the entire video into fixed-length clips, computes 
the class conditional probabilities set for each clip, and averages them 
across the modalities. The architecture includes a deep 3D-CNN for 
spatio-temporal feature extraction, a recurrent layer for global temporal 
modeling, and a softmax layer for predicting the class-conditional 

http://www.cbsr.ia.ac.cn/users/jwan/database/congd.html
https://www.v7labs.com/open-datasets/nvgesture
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Fig. 10. Example RGB (top row) and depth images (bottom row) from the EgoGesture 
dataset.
Source: From http://www.nlpr.ia.ac.cn/iva/yfzhang/datasets/egogesture.html.

gesture probabilities. The authors also tested a support vector machine 
(SVM) instead of the softmax layer to compute the final classification 
score.

HandShapeTemporalVariation (HSTV) was proposed in Wannous 
and Vandeborre (2022). It is a deep learning-based approach that 
effectively utilizes the combined description of the hand shape and 
its temporal variation. To achieve this, they trained a CNN (Tang 
et al., 2014) on a depth image dataset for hand pose estimation. 
The network creates two distinct hand representations for each time 
step: fine features, representing the pose, and coarse features, roughly 
representing the hand shape. The features are fed into two different 
Recurrent Neural Networks (RNNs), RNNfine and RNNcoarse, modeling 
pose and shape variations over time. RNNs’ outputs are merged with a 
joint-fine-tuning method that retrains the two last softmax layers while 
forcing their sum to represent both networks. The online classification 
is handled by training the recurrent network with the gesture dictionary 
and a non-gesture class. The algorithm returns at each frame a class 
probability. A threshold for considering a gesture classification valid 
is obtained from the training data with a heuristic trying to maximize 
true positives and minimize the false positive rates.

ResNet+ResNeXt (Köpüklü et al., 2020) is a two-modules algo-
rithm. The detector is a ResNet-10 trained to distinguish gestures 
from non-gestures. It activates the classifier model when a gesture is 
detected. The classifier is a ResNeXt-101 (Xie et al., 2017), chosen 
after testing several resource-efficient 3DCNNs (Tran et al., 2014). 
The network is fed with the frames in the classifier queue sent from 
the detector. To prevent misclassification, the authors placed the raw 
softmax probability of the last detector predictions into a queue to 
obtain the final detector decisions with a filtering step.  This method is 
not comparable with the others because its performances are evaluated 
using Levenshtein Accuracy (see Section 3.4), which is not used in the 
benchmark description (Molchanov et al., 2015) and in other works 
(reported in column LA of Table  8). 

4.5. EgoGesture

The EgoGesture dataset (Zhang et al., 2018), includes egocentric 
RGB-D videos of hand gestures and is specifically designed to evaluate 
methods to interact with wearable devices like VR and AR headsets. 
Videos in this benchmark were captured using a head-mounted Intel 
RealSense SR300 RGB-D camera with a 640 × 480 resolution and a 
frame rate of 30 fps (Fig.  10). The dictionary comprises 83 static or dy-
namic gesture classes. The authors divided these classes into two types: 
Communicative and Manipulative. Communicative gestures represent 
choices or commands for interfaces (numbers, symbols). Manipulative 
gestures are designed to control actions on interface components, such 
as zoom, rotate, and open/close. The dataset includes 300 samples 
for each class with a large intra-class variety. Gesture samples are 
included in 24,161 RGB-D video sequences and are performed by 50 
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Table 9
Performances of the best methods on the EgoGesture benchmark. (*) metric from 
Köpüklü et al. (2020).
 Method Date JI (%) Runtime (FPS) LA (%)* 
 TMMF 2021 80.3 NA NA  
 C3D 2015 71.8 112 NA  
 ResNet+ResNeXt 2020 NA NA 91  

subjects. The video recordings have strong variations in background 
and illumination conditions and have been captured in indoor and 
outdoor environments. The start and end frame indexes of each sample 
are manually labeled. The minimum length of a gesture is three frames, 
while the maximum is 196 frames. The sequences were randomly split 
into a training set (1239), a validation set (411), and a test set (431). 
The evaluation metrics used for this benchmark are the Jaccard Index 
and the execution runtime of the tested methods measured in frames 
per second (fps).

4.5.1. Best results on EgoGesture
Table  9 shows the best results obtained on the EgoGesture bench-

mark. In the following, we report a description of the corresponding 
methods.

Temporal Multi-Modal Fusion (TMMF) (Gammulle et al., 2021) 
is a sliding window method that does not require a preliminary seg-
mentation step. Deep features are extracted from windows that slide 
along the video. Data are processed by individual Uni-modal Feature 
Mapping (UFM) blocks, composed of temporal convolution layers and 
multiple dilated residual blocks. The output feature vectors are passed 
through the fusion block, which selects and extracts temporal features 
using the attention level parameter to create the fused feature vector. 
This discriminative feature vector is the input to the Multi-modal 
Feature Mapping (MFM) block that performs the classification. The 
multi-modal fusion mechanism is scalable to any number of modes.  3-
dimensional convolutional networks (C3D) (Tran et al., 2015) also 
uses a sliding-window approach. C3D uses spatio-temporal convolu-
tional layers to extract features from a fixed-length window sliding 
along the video stream. In detail, the network is composed of eight 
3D convolutional layers, one 2D pooling layer, four 3D pooling layers, 
three fully connected layers, and, finally, an LSTM layer. This method 
was tested on EgoGesture by the benchmark’s creators and obtained the 
best results among the algorithms tested in the original paper (Zhang 
et al., 2018). ResNet+ResNeXt is the same method already presented 
in Section 4.4.1 as tested on NVGesture. It has also been tested on 
EgoGesture and evaluated using the LA event-based evaluation metric, 
different from those used in the original paper. This method is not 
comparable with the others since the metrics are different.

4.6. SHREC’19

The organizers of the SHREC 2019 Track: Online Gesture (Caputo 
et al., 2019) created this benchmark, by capturing the hand movements 
of 13 subjects while interacting with a 3D interface in an immersive 
VR environment. The subjects wore a Head Mounted Display (Oculus 
Rift) with a Leap Motion sensor placed on it to capture hand poses 
from an egocentric point of view. The dictionary is composed of 5 
different coarse gestures characterized by a 2D hand trajectory (Fig. 
11). The dataset includes 195 hand pose sequences, each containing 
a single gesture in a different time location. The non-gesture part 
of the sequences is roughly determined by a set of specific actions 
on the virtual interfaces required by the interactive VR app. For the 
training set, 60 of these sequences with manually annotated start/end 
of the gestures are used, and the rest of the data are used as the test 
set. In the evaluation, a gesture is considered correctly detected and 
labeled if the recognition method locates it within 2.5 s from the actual 
gesture time window in the sequence. Given the detected and ground 

http://www.nlpr.ia.ac.cn/iva/yfzhang/datasets/egogesture.html
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Table 10
Performances of the best methods tested on the SHREC’19 benchmark. (*) metric from Cunico et al. (2023). CD: percentage of gestures detected 
in the correct time window and correctly classified, ML: gestures detected in the correct time window and mislabeled, FP: percentage of false 
positives encountered before the true gesture, M: percentage of missed detections, T1 Err.: average error in estimating the initial mark T1, T2-e: 
average distance, in time, of the detection frame from the end mark, T2-s: average distance of the detection frame from the start mark.
 Method Date CD ML FP M T1 Err. (s) T2-e (s) T2-s (s) Time (ms)* FPR* 
 OO-dMVMT 2023 88 NA NA NA NA NA NA 5.8 5  
 uDeepGRU 2019 85.2 7.4 3 4.4 0.54 −1.66 0.66 3.0 10  
 SW-3 cent 2019 75.6 16.3 2.2 5.9 0.58 −0.7 1.61 1.7 NA  
Fig. 11. The dictionary of the SHREC’19 benchmark features 5 gesture types char-
acterized by simple 2D paths (red lines) hidden in longer 3D non-gesture trajectories 
(blue). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
Source: From Caputo et al. (2019).

truth gesture, the following metrics are estimated to characterize the 
methods’ performances: the percentage of correct detections, timely 
detections with wrong classification label, detections made before the 
correct time location, detections made after the correct time window 
or missed, the time difference between the decision time of the online 
algorithm and the actual start and end of the gestures. In the Cunico 
et al. (2023), the benchmark is used by adding the classification time 
and False Positive Ratio metrics.

4.6.1. Best results on SHREC’19
Different methods have been applied to the SHREC’19 benchmark, 

and the best results are summarized in Table  10.
On-Off deep Multi-View Multi-Task (OO-dMVMT) (Cunico et al., 

2023) is based on a fixed-size sliding window approach. This method 
exploits the multi-view classification paradigm, where multiple comple-
mentary features derived from the data in the input window are used 
to create a robust embedding. These features/views are derived from 
the DD-Net method (Yang et al., 2019) and are the Joint Collection 
of Distances (JCD), representing the hand pose, and the Motion-Fast 
and the Motion-Slow vectors representing the short-term global motion 
of the skeleton in terms of speed. OO-dMVMT also exploits the multi-
task (MT) paradigm, as in the sliding window training framework, the 
optimization is based on 4 tasks: (1) gestures classification into three 
rough categories, Static, Dynamic, and Non-Gestures; (2) gesture clas-
sification with the fine-grained label; (3 and 4) detection of gestures’ 
start and end. The on-off mechanism enables/disables the heads related 
to tasks 3 and 4 when the training window includes or does not include 
annotations of gesture limits.

uDeepGRU, by Maghoumi et al. is an extension of the Deep GRU 
approach proposed by the same authors (Maghoumi and LaViola, 
2019), used by them to participate in the SHREC’19 contest (Caputo 
et al., 2019). It adapts the original method to work in online application 
scenarios. uDeepGRU is an end-to-end deep learning-based unseg-
mented gesture recognizer. It features an encoder and a classification 
sub-network. The former uses Gated recurrent units (GRU), and the 
latter exploits fully connected layers followed by batch normalization 
and dropout. To reduce the over-fitting due to the small size of 
the SHREC’19 training set, the authors removed the attention sub-
network used in the original DeepGRU method. To cope with the 
limited amount of training data, this method also puts a particular 
emphasis on data augmentation, using four different methods: stochas-
tic resampling (GPSR), Fourier coefficient perturbations, time-series 
inversion, and rotation. This method obtained the best performances 
in the SHREC’19 contest.

SW-3cent was the baseline method proposed in Caputo et al. 
(2019), derived from a simple trajectory comparison-based technique 
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Fig. 12. The different data types included in the IPN Hand distribution. From left: RGB 
video frames, optical flow maps and segmentation masks. From https://gibranbenitez.
github.io/IPN_Hand.

called 3-cent (Caputo et al., 2018) and applied in a sliding window 
approach. The method tests sliding windows of different sizes (the 
average size of the gestures in the training classes), comparing them 
with the labeled examples. The comparison involves the resampling 
of the trajectories to obtain the same number of points using spline 
interpolation, the application of transforms to superimpose centroids, 
and scaling to fit a fixed-size bounding box. Finally, the trajectory 
distances are estimated as the sum of squared distances between pairs 
of corresponding points.

4.7. IPN Hand

This dataset (Benitez-Garcia et al., 2021b), focuses on interaction 
with touchless screens. It contains 100 RGB video recordings of se-
quences, including 4218 gesture samples, performed by 50 different 
individuals. The videos were captured with PC or laptop cameras, 
keeping a fixed resolution (640 × 480) and frame rate (30 fps). Authors 
provide not only video data and annotations but also optical flow se-
quences and accurate hand segmentation masks estimated as described 
in Benitez-Garcia et al. (2021b) (Fig.  12). The sequences are captured 
with 28 different background environments, both static and dynamic, 
with strong variations in background clutter and lighting conditions 
(both strong and weak illumination). Each video’s start and end frame 
index for gesture instances was manually labeled. The minimum length 
of a gesture is nine frames, and the maximum is 650 frames. The 
dataset is split into a training set with 148 videos comprising 3117 
gesture instances performed by 37 subjects and a test set with 52 videos 
and 1101 gesture instances performed by 13 subjects. The 13 gesture 
types are designed for desktop-like interface control: two static pointing 
gestures (with one or two fingers) and 11 dynamic gestures (clicking 
with one and two fingers, throwing to four positions, double-clicking 
with one and two fingers, zoom-in, and zoom-out). The metrics used 
for the evaluation are the Levenshtein accuracy, the model size, and 
the inference time.

4.7.1. Best results on IPN Hand
Table  11 shows the best results obtained on the IPN Hand bench-

mark.
EUREKA (Peral et al., 2022) consists of two main modules: the 

first focuses on the localization of landmarks in 2D images, and the 
second predicts the hand gesture class. In this architecture, the Google 
Mediapipe (Zhang et al., 2020) detector is applied to find the hand 
landmarks. A scaling- and translation-invariant feature vector is then 
extracted from the raw landmark positions and used as the input for 
a densely connected convolutional neural network to classify hand 

https://gibranbenitez.github.io/IPN_Hand
https://gibranbenitez.github.io/IPN_Hand
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Table 11
Performances of the best methods tested on the IPN Hand benchmark.
 Method Date LA (%) Mod.size (MB) Infer.time (ms) 
 EUREKA 2022 87.5 NA NA  
 FASSD-Net 2021 77.26 NA 28  
 TMMF 2021 68.12 NA NA  

Fig. 13. Sample RGB and thermal frames from the front sensor cluster (top row) and 
top sensor cluster (bottom row) included in the Mlgesture dataset.
Source: From Vandersteegen et al. (2020).

gestures. To recognize dynamic gestures, encoding the spatial changes 
among landmarks’ positions and over time, they proposed a frame 
selection strategy. For each gesture, they selected 15 keyframes from 
which they extracted hand positions and three features (Distances, 
DistAndTime, DistTime) to be used as inputs to the neural network. 
The keyframe selection is not trivial in continuous time, which is why 
a multiple-sized window approach is executed. This approach consists 
of taking the model’s prediction result of three different-sized windows 
and giving priority to the window with the highest score.

Fast and Accurate Semantic Segmentation with Dilated Asym-
metric Convolutions (FASSD-Net) (Benitez-Garcia et al., 2021a) em-
ploys a lightweight semantic segmentation approach to boost the accu-
racy of two efficient hand gesture recognition methods: the Temporal 
Segment Networks (TSN) and the Temporal Shift Modules (TSM). The 
FASSD-Net is based on the Harmonic Dense-Net architecture (HarD-
Net Chao et al., 2019) for the real-time semantic pixel segmenta-
tion (this architecture can segment pixels into the background, human 
shape, left and right hands). Two main modules are added to the 
U-shape encoder–decoder of HarDNet to increase the segmentation 
performance. Dilated Asymmetric Pyramidal Fusion (DAPF) increases 
the encoder’s receptive field, while Multi-resolution Dilated Asymmet-
ric (MDA) fuses and refines multi-scale feature maps that are deeper 
stages of the network’s outputs. To divide the sequences into clips, 
the authors took their inspiration from the Temporal Segment Net-
work (TSN) (Wang et al., 2016); this model presents a two-stream CNN 
combining RGB-based and Optical Flow-based networks. However, in 
this work, a single CNN is used (RGB input). Since the model learns 
frame-wise, it cannot infer any temporal relationship, so the authors 
added a temporal shift module (TSM, Lin et al., 2019) to shift part 
of the channels along the temporal dimension, facilitating information 
exchanged among neighboring frames.

Temporal Multi-Modal Fusion (TMMF) (Gammulle et al., 2021) 
was already introduced for the EgoGesture dataset (Section 4.5.1); 
this method has also been applied to the IPN-Hand benchmark, but 
the results are significantly worse than those obtained using the best 
method.

4.8. MlGesture

This benchmark (Vandersteegen et al., 2020) is based on the first 
publicly available hand-gesture recognition dataset based on low-cost 
thermal sensors (Melexis MLX90640/MLX90641) data. It aims at eval-
uating methods to control a multimedia system in a car. To investigate 
the impact of sensor type and viewpoint, two sensor clusters were used 
to capture data, each consisting of 5 different devices (the low-cost 
MLX90640 and MLX90641 thermal cameras, an OpenMV color cam, an 
MLX75027 time-of-flight depth sensor, a FLIR lepton thermal camera). 
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Table 12
Performances of the best methods on the Mlgesture benchmark for the 
low-latency continuous detection task.
 Method Date mAP (1-frame latency) 
 MC TCN 2020 0.83  
 BI-LSTM 2020 0.74  

One sensor cluster was mounted on the center of the car’s dashboard 
in front of the driver, while the other was mounted on the ceiling, 
pointing straight down (Fig.  13) . The dictionary consists of 9 different 
dynamic hand gestures compatible with low and ultra-low-resolution 
sensors. The authors acquired over 1300 RGB, RGB-D, and thermal 
video clips for both training and evaluation purposes, but only the 
thermal data are released in the public dataset. 24 different subjects 
performed the gestures in the videos. In addition to the gesture videos, 
non-gesture videos were also recorded, capturing actions like steering, 
gear switching, operating the radio, and using the wipers. Tests for 
continuous gesture detection were performed on a sequence obtained 
by stitching half of the test gesture and non-gesture acquisitions in 
a single long video and manually annotating the hand gesture nuclei 
in the resulting test video. In the continuous evaluation, if a correct 
prediction is within an annotated gesture nucleus, it is considered a 
True Positive, while further detections during the nucleus or detections 
outside the nucleus are considered False Positives. Missed gestures are 
considered False Negatives. In this benchmark, the metric used for the 
comparisons is the Mean Average Precision (plotted versus network 
output position graphs).

4.8.1. Best results on Mlgesture
Table  12 shows the best results obtained on the Mlgesture bench-

mark.
Mixed-Causal Temporal Convolution Network (MC TCN) (Van-

dersteegen et al., 2020) use a sliding window approach for the online 
recognition. The window classifier exploits a 2D CNN to generate an 
embedding vector for each video frame. The temporal domain is then 
modeled using a 1D TCN. The fundamental block of the architecture, 
called BB, is composed by multiple TCN basic blocks. The first layer of 
BB consists of a 1D dilated convolution with a kernel size of 𝑘 = 3. The 
dilation factor is doubled for each subsequent BB. A group of consecu-
tive BBs forms a stage. To create deeper networks, multiple stages can 
be stacked on top of each other, and the dilation factor is reset to 1 at 
the beginning of each new stage. This design enables the network to 
capture temporal dependencies effectively by increasing the receptive 
field through dilated convolutions in the TCN, facilitating better recog-
nition and understanding of complex spatio-temporal patterns in video 
data. To boost the performance for predictions close to the right edge, 
the method uses causal convolution combined with a regular (non-
causal) dilated convolution. For this reason, the configuration is called 
Mixed-Causal. The authors also proposed a variant of the architecture 
employing the SqueezeNet V1.1 (Iandola et al., 2016) spatial encoder 
instead of the ResNet18, resulting in a large reduction in the number 
of parameters with limited loss in accuracy.

Bidirectional LSTM Networks (BI-LSTM) The previous method is 
the top performing for the continuous task in the paper presenting this 
benchmark (Vandersteegen et al., 2020). Among the other methods 
compared in the same paper, the second best was Bidirectional LSTM 
Networks (BI-LSTM,Rocha and Cardoso, 2004). In the bidirectional 
approach, inputs are processed in two directions: from past to future 
and from future to past. This bidirectional approach provides a more 
comprehensive understanding of the sequence and contributes to the 
model’s enhanced performance. Vandersteegen et al. (2020) used BI-
LSTM with the same sliding window protocol adopted for MC TCN and 
other classifiers for the online recognition.
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Fig. 14. The gesture dictionary of the LD-ConGR dataset.
Source: From Liu et al. (2022).

Table 13
Performances of the best method tested on the LD-ConGR benchmark.
 Method Date JI (%) 
 ResNeXt-MMTM 2022 34  

4.9. LD-ConGR

The Large RGB-D Video Dataset for Long-Distance Continuous Ges-
ture Recognition (Liu et al., 2022), is characterized by a front view 
of the subject ranging from 1 to 4 meters away. The videos are 
captured with a Kinect V4 device at a resolution of 1280 × 720 for 
the color streams and 640 × 576 for the depth streams, with a frame 
rate of 30 fps. The dictionary includes 10 fine-grained hand gesture 
classes (Fig.  14), 3 of which are static (palm, fist, thumb up), and 7 
are dynamic (shift right, downward, upward, left, right, pinch, click). 
The authors collected 542 videos from 30 subjects in 5 meeting rooms 
(with different designs and furnishing); there are 6 recording spots 
in every meeting room. Each video contains multiple gestures, and 
all the gesture instances were manually annotated with the label and 
the starting and ending frames. Examples of correct gesture executions 
were shown to the subjects before the recording started. The gestures 
were performed continuously, allowing short breaks between gesture 
instances. Given the large distance, the hands are small and difficult 
to recognize, and the authors added their position as an annotation for 
each frame. There are a total of 44,887 gesture instances in the videos. 
These videos are divided into training and testing sets, with 34,315 
and 10,572 gestures (performed by 23 and 7 subjects), respectively. 
The evaluation of the continuous recognition is done with the Jaccard 
index.

4.9.1. Best results on LD-ConGR
Table  13 shows the best result obtained on the LD-ConGR bench-

mark.
Resnet-Xt Multimodal Transfer Modules (ResNeXt-MMTM) is 

the model proposed for this benchmark in Liu et al. (2022). The authors 
built a baseline method using ResNeXt-101 (Xie et al., 2017) and 
tested the recognition performances on single (RGB or depth) input 
modalities. Additionally, they developed a multimodal fusion model 
ResNeXt-MMTM inspired by Joze et al. (2019), combining the features 
of different modalities at multiple layers through Multimodal Transfer 
Modules (MMTMs). MMTM learns a multimodal embedding and fine-
tuning the features of each modality. In their architecture, features 
extracted from both the RGB and depth streams are combined by the 
MMTM after each ResNeXt block. After passing the fully connected 
layers, the feature vectors are integrated with an element-wise addition 
and passed through a softmax layer to have the prediction of the result. 
For the continuous recognition test, the classifiers are used on a 32-
frame window sliding over the video sequence (with a temporal stride 
of 2 frames).
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Fig. 15. The gesture dictionary of SHREC’22 includes static (top row), dynamic coarse 
(middle row), and dynamic fine and periodic gestures (bottom row).
Source: From Emporio et al. (2022).

4.10. SHREC’22

The dataset of the SHREC 2022 Track on Online Detection of 
Heterogeneous Gestures (Emporio et al., 2022) is designed to test con-
tinuous gesture recognition for a generic mixed-reality interaction. The 
publicly available data provided to the contest participants are hand-
pose skeleton streams directly estimated by the finger-tracking system 
integrated into the Hololens 2 headset. In the tracker’s data, each frame 
contains the coordinates of 26 right-hand joints with a relatively low 
and not perfectly stable frame rate (approximately 20 fps). The dictio-
nary features 16 heterogeneous gestures, including static (a fixed hand 
pose for at least 0.5 s), dynamic-coarse (characterized by whole hand 
trajectory), dynamic-fine (where the semantic also depends on finger 
articulations), and periodic (with repeated movements) gestures (Fig. 
15). The dataset is divided into a training and a test set, with the same 
number of sequences (144) and instances (36) of each gesture class. 
Each sequence has a minimum of 3 and a maximum of 5 gestures. 
Two different groups, each with three subjects, recorded the training 
and testing sequences. The training set is annotated with each gesture’s 
label, start frame, and end frame. The evaluation is based on a set 
of different metrics: detection rate, false positive ratio, Jaccard Index, 
classification time, average temporal delay, and the average delays in 
frames of the predicted gesture.

4.10.1. Best results on SHREC’22
Table  14 shows the best results obtained on the SHREC’22 bench-

mark. In the following, we report a description of the corresponding 
methods.

On-Off deep Multi-view Multi-Task (OO-dMVMT), already de-
scribed in  Section 4.6.1 is particularly effective for the SHREC’22 
benchmark. In this case, the task is more challenging due to the 
heterogeneous gesture dictionary. The authors (Cunico et al., 2023) 
used the same features for the recognition and adapted the sliding 
window size for the detection depending on the dataset.

Two-Model-Based Online Hand Gesture Recognition (Two-Mo
del), proposed in Doždor et al. (2023) is an online gesture detection 
system based on two models. The first model (gesture localizer) is a 
binary classifier that can identify a gesture’s execution. Segments that 
contain gestures are resampled to a fixed length and provided as input 
to the second model (gesture recognizer), which classifies them into one 
of the known gesture classes or the non-gesture class. For each input 
window, the per-axis coordinates are normalized to obtain zero mean 
and unit variance; joint velocity and pairwise Manhattan distances are 
derived from the coordinates, flattened, and concatenated to the input 
to obtain the input feature vector. The encoder’s architecture consists 
of a fully connected layer followed by two GRUs layers with hyperbolic 
tangent activation. The classification model consists of only one fully 
connected layer with a sigmoid activation function.
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Table 14
Performances of the best methods tested on the SHREC’22 benchmark. DR: Detection Rate (%), FPR: False Positive’s Ratio (%), JI: Jaccard 
Index (%), D-End/D-Start: average delays in frames from the ground truth end/start of the annotated gestures (depending on the algorithms’ 
design).
 Method Date DR FPR JI Delay (fr.) Time (ms) D-Start (s) D-End (s) 
 OO-dMVMT 2023 92 9 85 8 4 NA NA  
 Two-Model 2023 85 9 78 5 20 NA NA  
 Causal TCN 2022 80 29 68 19 28 4.36 −28.79  
Fig. 16. The different ways to perform gestures in the OHDG (and DHG 14/28) 
dataset: using (a) one finger or (b) the whole hand (from http://www-rech.telecom-
lille.fr/DHGdataset/).

Causal temporal convolutional network (Causal TCN) obtained 
the best results in the SHREC’22 original contest. The method, proposed 
by Ambellan et al. and described in Emporio et al. (2022), is based 
on a temporal convolutional network (TCN) employing causal filters 
to create a lightweight classification structure. The authors imple-
mented a sliding window approach for short-time windows to reduce 
the complexity of the learning task. In particular, each window is 
fed through two convolutional layers composed of causal or unidirec-
tional convolutional filters, and a fully connected linear layer gives 
the classification result. A per-frame labeling is obtained from the 
sliding window classification in the testing phase using a voting pro-
cedure, and a post-processing step is performed to derive the gestures’ 
segmentation.

4.11. ODHG 14/28

The Online Dynamic Hand Gesture dataset (Wannous and Van-
deborre, 2022) is derived from the well-known segmented gesture 
recognition benchmark called DHG-14/28 (De Smedt et al., 2016). 
This dataset was intended to be a segmented gesture benchmark, even 
though it was captured recording continuous sequences with both ges-
tures and non-gesture parts. Data consists of RGB-D sequences captured 
with an Intel RealSense camera and the corresponding hand skeleton 
sequences extracted with the RealSense API. The depth image resolu-
tion is 640 × 480, and both image and hand skeletons are recorded 
at 30 fps. The dictionary includes 14 gesture classes: five ‘‘dynamic 
fine’’ (Grab, Expand, Pinch, Rotation clockwise and counterclockwise), 
characterized by finger articulation, and nine ‘‘dynamic coarse’’ (Tap, 
Swipe Right, Swipe Left, Swipe UP, Swipe Down, Swipe X, Swipe V, 
Swipe +, and Shake), characterized by global hand movements. The 
gestures have variable execution times, ranging from 20 to 50 frames. 
There are two gesture execution methods: using only two fingers or 
using the whole hand (Fig.  16). If the same gesture class is assigned 
to both methods, there would be 14 gesture labels; otherwise, there 
would be 28 gesture labels. The whole dataset comprises 280 sequences 
performed by 20 subjects and ten gestures each. Each subject executed 
each gesture five times. While the original benchmark only tests the 
classification of segmented gestures from the captured data, Wannous 
and Vandeborre (2022) reused the sequences to create a continuous 
gesture detection benchmark, the Online DHG (ODHG). In this version, 
a class label is annotated for each frame of the sequences. The frames 
that occur between meaningful gestures are labeled as the ‘‘no gesture’’ 
class. During these intervals, the participants were allowed to take 
a resting position without any specific instruction. To evaluate the 
online detection and recognition, different metrics are used: accuracy, 
Receiver Operating Characteristic (ROC), False Positive Rate (FPR), 
True Positive Rate (TPR), and Normalized Time to Detect (NTtD).
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Table 15
Performances of the best methods on the ODHG benchmark.
 Method Date AUC (%) TPR (%) FPR (%) NTtD  
 HSTV 2022 91 85 17 0.2104 

Fig. 17. Examples of gestures sequences included in the ZJUGesture dataset, captured 
by different mobile devices.
Source: From Xu et al. (2023).

4.11.1. Best results on ODHG
Table  15 shows the best results obtained on the ODHG benchmark.
HandShapeTemporalVariation (HSTV) proposed in Wannous and 

Vandeborre (2022) and already described in Section 4.4.1 was applied 
to this benchmark by their creators. Also in this case the authors tuned a 
probability detection threshold based on the ROC curve plot, obtaining 
the results plotted in Table  15. The false detection rate is clearly too 
high for a practical use of the system.

4.12. ZJUGesture

This dataset was created by Xu et al. in 2022 (Xu et al., 2023), 
with the primary focus on one-handed operation scenarios commonly 
encountered in mobile phones or tablets, and includes RGB video 
sequences recorded with these devices (Fig.  17). The benchmark’s 
dictionary includes nine categories of gestures designed to be user-
friendly and easily operable. Each gesture is divided into preparation, 
core action, and retraction. To ensure the diversity of the captured 
samples, each gesture is recorded in 12 sub-scenes, which include 
various backgrounds and different light intensities. This approach helps 
to capture variations that may occur in real-world usage scenarios. 
All videos are labeled frame by frame with the gesture’s name; each 
video has a resolution of 1280 × 720 pixels, captured at a frame 
rate of 30 FPS. In the ZJUGesture, 60 people performed each gesture 
according to their habits at three speeds: fast, normal, and slow. The 
Levenshtein Accuracy is used to evaluate the online task together with 
three efficiency measures: speed, GFLOPs, and number of parameters.

4.12.1. Best results on ZJUGesture
Table  16 shows the best results obtained on the ZJUGesture bench-

mark. It is necessary to note that since the ZJUGesture benchmark was 
introduced in 2022, the only available results are those presented in 
the original paper.

MotionNet + GestureNet, is an online lightweight two-stage frame-
work for the detection and classification of dynamic gestures proposed 

http://www-rech.telecom-lille.fr/DHGdataset/
http://www-rech.telecom-lille.fr/DHGdataset/
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Fig. 18. (a) Data types used as input for the recognizers in the different benchmarks. Blue bars indicate video streams, and orange bars key point data streams. Most of the 
benchmarks are based on videos. (b) Most of the benchmarks feature data acquired from an exocentric view. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
Table 16
Performances of the best methods on the ZJUGesture benchmark.
 Method Date LA (%) Speed (seg/s) GFLOPs Param. (M) 
 MotionNet + GestureNet 2023 92.4 173 2.0 10  
 P3D ResNet 2017 78.2 57 15.9 25  
 C3D 2015 76.1 28 129.9 99  

by the creators of the benchmark (Xu et al., 2023). The architecture 
is composed of a detection module and a gesture recognition module. 
Input videos are pre-processed by using a sliding window with a length 
of 4 and a stride of 2. Differential images are also estimated and con-
catenated to the RGB images. The detection module, MotionNet (Wu 
et al., 2020), aims to determine if there is a gesture execution in the 
raw video stream and then sends the isolated gesture to the recognition 
module. Their gesture classification module, GestureNet (Chang et al., 
2014), is a temporal relation reasoning network that aims to process 
the cleaned gesture sequences and identify them. Furthermore, they 
have added a state machine to process the results of the gesture 
recognition network so that each classified gesture responds to a single-
time prediction. Pseudo-3D Residual Net (P3D ResNet), proposed 
in Qiu et al. (2017), is a network architecture that leverages all the 
variations of blocks found in ResNet (He et al., 2016) but arranges them 
in different positions within the architecture to enhance the structural 
diversity of the network. Pseudo 3D CNN reduces the model size of 
a ResNet and enables the pre-training of 2D CNN from image data, 
increasing the leveraging power of the knowledge of scenes and objects 
learned from images. The original method only supported the trimmed 
video clips containing a single gesture, so the ZJUGesture’s authors 
used their detection module to cut the video into small sequences and 
pass them through the P3D ResNet.

3-dimensional convolutional networks (C3D), already described 
in  Section 4.5.1, was also tested on the ZJUGesture benchmark (Xu 
et al., 2023). The Levenshtein accuracy is lower than those obtained 
with the previous techniques, but the method is significantly faster than 
the others.

5. Discussion

The outcomes of our survey are pretty interesting and show that 
while gesture recognition is a hot topic in the literature and promis-
ing results are being obtained in the field, there is a need for new 
efforts aimed at creating benchmarks and evaluation methods to test 
recognition systems designed for interactive applications in realistic 
settings. In the following, we discuss the characteristics of the surveyed 
benchmarks and the evaluation results, pointing out the main issues 
found in our analysis and trying to propose new research directions for 
future work that take inspiration from them.
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5.1. Benchmarks’ features

5.1.1. Few benchmarks are available
Despite our extensive search, we did not find many benchmarks, and 

it is clear that more effort is needed to allow the scientific community 
to compare different approaches for continuous gesture recognition.

The ones we found are mostly built around specific tasks (as shown 
in Tables  2 and 3), making it difficult to define general categories or 
group them meaningfully for fine-grained comparisons.

Looking at Fig.  18(a), it is evident that the data mostly comprises 
of RGB-D images, and there are no public benchmarks for continuous 
recognition based on gloves or sEMG data. There is a reasonable 
number of benchmarks with hand skeleton data. This feature is help-
ful, as XR headsets and other devices directly provide the skeleton 
data, resulting in a drastically simplified input for gesture recognition. 
However, the related datasets feature a limited number of subjects, 
which may be a relevant issue for generalizing their results. A further 
interesting aspect of the skeleton-based benchmarks, not covered in the 
literature, is the investigation of how much the recognition results are 
affected by the inaccuracy of the hand pose estimation. Skeletons are 
mostly obtained with computer vision algorithms applied to RGB, IR, 
or RGB-D images. While different finger trackers have been evaluated 
and compared for generic accuracy performance (Schneider et al., 
2021), it is not apparent how robust gesture recognition is against pose 
estimation errors. The hand tracking performances may heavily depend 
on the position/orientation of the hand to the sensor, occlusions, and 
illumination; this may limit the accuracy of the recognition in practical 
settings, even if the systems work well when the pose estimation is 
correct. By looking at Fig.  18(b), it is apparent that most of the bench-
marks are recorded in Exocentric view, and all of them use cameras 
for recording (in Ruffieux et al., 2013 IMUs are used in addition to 
the cameras). A more significant number of egocentric datasets with 
different dictionaries would be helpful to assess occlusion issues for 
gestures captured from this viewpoint.

A possible explanation for the limited number of benchmarks and 
their weaknesses is the fragmented research community working on 
this topic. Most of the benchmarks (8) have been proposed in con-
ferences and journals of Computer Vision and Pattern Recognition 
(where algorithms’ benchmarking is quite popular), others (2) have 
been proposed within the Computer Graphics community, and only one 
has been introduced in an interaction-focused journal.

One possible reason for the HCI community’s limited effort is that 
using fixed dictionaries is a strong constraint for interaction designers, 
and a viable alternative would be to create a system enabling them 
to interactively generate and update sets of gestures to be recog-
nized at runtime. Some recent research papers describe frameworks 
designed for this task (Mo et al., 2021; Shen et al., 2022; Schäfer et al., 
2022). This approach follows ideas that were successfully applied to 2D 
gesture-based interface design.
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Fig. 19. (a) Most of the benchmarks feature a relatively small number of gestures 
classed in the dictionary (< 15), even if typically of heterogeneous types. (b) The 
number of subjects performing gestures is extremely variable.

However, testing proposed methods using realistic scenarios and 
standardized measurements for tasks that involve recognizing com-
plex gestures is important. This approach helps in selecting the most 
effective and optimal gesture recognition methods.

5.1.2. Number and diversity of subjects
As shown in Fig.  19(a), only three surveyed datasets present a large 

number of subjects that executed the gestures (> 50). A limited number 
of subjects and the lack of precise characterization of the participants, 
such as age and cognitive and spatial ability, limit the generalization 
of the gesture recognition results to any target users.

Benchmarks’ data should be captured on a large set of subjects 
representative of a generic population and collected with associated 
metadata, allowing an analysis of recognizers’ performance for different 
subsets of target users. Gestures can be executed in different ways and 
with different speeds, and even the same person may change the execu-
tion due to varied physical or mental states. It is challenging to capture 
datasets with many subjects under different conditions, collecting all 
the related metadata. However, the availability of benchmarks with 
this variety would enormously help the development of new methods 
with good usability in the wild. None of the considered benchmarks 
evaluates the per-subject performances of the methods. This feature 
is essential to assess the potential gesture-based interface’s accessibil-
ity regarding the recognizer. While considering bio-mechanical hand 
functions ergonomics (Lee and Jung, 2015), evaluating gesture dic-
tionaries is important, especially when subjects must perform many 
hand poses/movements. In this situation, it is possible that the subjects 
cannot easily execute some of the gestures due to individual limitations. 
The collection of data from a large variety of subjects could also be 
exploited to reason about the accessibility of gestural interfaces for 
people with different types of abilities.

5.1.3. Analysis of gesture dictionaries
Most of the surveyed papers, including those that describe contests 

or introduce a benchmark, present a limited analysis of the results. 
In particular, a limited number of research studies have presented a 
per-class results analysis focusing on the effectiveness of the proposed 
methods for the different gesture labels. Some of the benchmarks 
feature a relatively high number of gesture classes (Fig.  19(b)), and 
evaluating how the methods perform for individual or clustered labels 
could provide quite interesting results.

The performance analysis on different gesture categories (static, 
dynamic coarse/fine) has been presented in Shen et al. (2022), and 
the obtained results are of interest since they show that different 
methods can perform better for different categories. Researchers can 
exploit these outcomes to design improved techniques by combining 
multiple recognizers. In Wan et al. (2016), the dictionary consists of 
related classes subsets to different application domains that enable the 
assessment of the performances for a particular use. However, from 
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Fig. 20. Occurrence of the different evaluation metrics used to assess the method’s 
performances in the 12 benchmarks reviewed. JI=Jaccard index, FPR=false positive 
ratio, AUC=area under receiver-operator characteristic curve, NTtd=normalized time-
to-detect, LA=Levenshtein Accuracy, mAP=mean area precision. Orange bars indicate 
frame-based metrics, blue bars indicate event-based metrics, and green bars are 
efficiency-based metrics. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

the interaction design point of view, an interesting research direction 
could be related to selecting optimal gesture subsets that are less 
prone to errors and more suitable for reliable user interface design. 
This important aspect should be considered to improve the results 
obtained on the benchmarks, which are far from optimal, as discussed 
in Section 5.2.1.

5.1.4. Metrics are not standardized
As discussed in Section 3.4, the continuous task can be evaluated 

with many different metrics. The surveyed benchmarks use metrics 
that are all different from each other. Looking at Tables  5 and 13 and 
Fig.  20, we see that many benchmarks evaluate continuous gesture 
detection using frame-based metrics only; also, the Jaccard index, 
which is a frame-based metric, is the most used one. We consider this 
a non-optimal choice, as the frame-based metrics do not test missed or 
repeated detection and present relevant biases in evaluating gestures of 
different time lengths.

We emphasize that evaluating false positives is as important as 
the classification accuracy for verifying the methods’ suitability for 
practical use. Event-based metrics are also necessary since they quantify 
the feedback delay. However, since their values depend on thresh-
olds (related to the detection criteria), a standardized way to define 
the ‘‘correct gesture detection’’ would be necessary. In practical use, 
continuous recognition algorithms run on machines with different hard-
ware resources, and evaluating the computational requirements of the 
methods is also essential.

A reasonable design guideline for creating a continuous gesture 
recognition benchmark is to provide multiple evaluation metrics for 
correct event detection, false positives, detection delay, and hard-
ware requirements. Standardizing the metrics and the gesture detection 
criteria would also be helpful.

The benchmarks’ diversity poses a major challenge when attempt-
ing to compare results across benchmarks or to generalize evaluation 
methodologies and benchmark categories. A possible way forward 
could be to establish a set of standard evaluation metrics applica-
ble to all benchmarks, ensuring a common ground for comparison, 
while allowing for the addition of task-specific metrics tailored to 
each benchmark’s unique requirements. For instance, when deploying 
a recognition system on a smartwatch, memory usage (e.g., RAM con-
sumption) becomes a critical evaluation metric that should be included 
alongside general ones. 

5.2. Gesture spotting performances

5.2.1. Results are not really good
The best results reported in Section 4 indicate that the number of 

missed gestures and false positives is significant for all the benchmarks.
In many potential applications of gesture recognition, we cannot 

accept a detection rate of 90% or a false positive rate of 10% because, 
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in an extended interaction where many gestures need to be recognized, 
a huge amount of actions would not be activated or would be wrongly 
activated. Note that this issue is only captured by performing a proper 
event-based evaluation of the methods. In some cases, these bad results 
depend on the fact that benchmarks are old and not many recent 
techniques have been tested on them. Another reason is that few 
authors work on continuous tasks, whereas many papers only focus on 
segmented tasks. A further explanation for the sub-optimal results may 
be due to the challenging dictionaries, often including heterogeneous 
gestures with different durations and semantic characterization (static, 
dynamic, coarse, and fine). Specific strategies could be developed to 
cope with this issue, such as using different modules to detect different 
gesture types. Papers often report the results only as averages across 
all the classes in the dataset. For specific subsets of gesture labels, the 
accuracy in detection and the false positive ratio can be much better, 
meaning that it is possible to exploit these subsets to develop more 
reliable and usable interfaces. We did not find this kind of analysis in 
the reviewed works.

One of the most reasonable solutions to obtain better classification 
results is to improve the models’ training with proper data augmenta-
tion. Methods to generate synthetic data to train gesture classification 
models have been proposed in the literature (Maghoumi et al., 2021; 
Shen et al., 2021; Maslych et al., 2023) and tested on segmented bench-
marks. However, when it comes to data augmentation for continuous 
gesture recognition, there seems to be a gap. Generating synthetic 
examples of gestures with perturbations of the existing training data 
is easy. We can change the speed, position, orientation, size, or ap-
pearance of the hand, and the additional training data obtained can 
improve the classification results, simulating the gesture executions of 
different subjects. In the continuous domain, however, the real problem 
is different, and it is how to fill the non-gesture space with synthetic 
data. The characterization of sequences labeled as non-gesture and the 
generation of synthetic data of this kind of data is complex, as sampling 
the non-gesture space in the few sequences typically provided in the 
benchmarks is poor. The use of limited examples of non-gesture in 
the training phase is one reason for the non-negligible amount of false 
positives obtained by continuous recognizers. There is a need for new 
research on effective non-gesture data augmentation.

5.2.2. Different approaches
The analysis of the best-performing methods in the surveyed bench-

mark suggests that the two most popular approaches to address online 
detection, the first based on two modules (temporal detection and 
classification), and the second avoiding a preliminary segmentation and 
labeling frames or intervals with a sliding window approach, are used 
essentially with the same frequency. Looking at the results, there is 
no firm evidence of the advantages of one of the approaches, and this 
aspect needs further investigation. While two-module methods perform 
best on most of the benchmarks, in some, e.g., SHREC’22, the best 
method uses a single classifier model with a sliding window approach. 
Another relevant fact is that, in the latter work, the sliding window has 
been trained and is tested with fixed-length windows, meaning that the 
frame labeling relies on recognizing sub-parts of the gestures. This ap-
proach was successful and allows early detection with a bounded delay 
but could have problems in the case of dictionaries with long gestures 
containing similar sub-parts. In other methods, such as EUREKA (Peral 
et al., 2022) or SW-3cent (Caputo et al., 2019), which use both sliding 
windows or segmentation modules, the classifier is instead trained on 
complete gesture templates and tested on variable-size windows. This 
approach was the most successful on IPN Hand (Peral et al., 2022).

CNN is the most popular choice (Fig.  21) concerning the used classi-
fier type for the detection/classification modules. One important reason 
for CNN models’ popularity is that they are faster than other methods, 
decreasing the delay time. Using recurrent networks, transformers, or 
graph networks to handle skeleton data does not provide relevant 
advantages and may increase the complexity of the architecture. This 
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Fig. 21. Occurrence of different classifier types in the 23 methods performed applied 
on the proposed benchmarks and reviewed in our work.

outcome may be due to the networks’ training difficulty with limited 
data. It is also worth noting that, even if most techniques are based 
on neural networks, the models’ input does not always consist of the 
raw data. In many cases, especially for skeleton data, the input of the 
networks is not the original data sequence but a stream of handcrafted 
features derived from them (such as distances of finger key points or 
speeds).

5.2.3. Continuous vs. segmented task
As seen in Section 2.1, most of the methods proposed in the gesture 

recognition literature only focus on segmented gesture classification 
and are tested on related benchmarks like SHREC’17 (De Smedt et al., 
2017), VIVA (Ohn-Bar and Trivedi, 2014), LAP RGB-D Isolated Gesture 
Dataset (IsoGD) (Wan et al., 2016), Jester (Materzynska et al., 2019). 
We did not consider them in our survey as we focus on continuous 
evaluation, but we must recognize this large amount of literature. It 
is evident that a large number of Computer Vision researchers prefer 
to develop and test methods for this simplified task, and this is also 
evident considering that the most cited benchmark papers analyzed 
here are those including both a continuous and a segmented task eval-
uation (NVGesture, Montalbano, Egogesture). Most works citing those 
papers only report tests made on the segmented task. This is probably 
because it is easier to train classifiers for the segmented tasks and eval-
uate the results, comparing them with state-of-the-art, even if we need 
to cope with continuous recognition in many practical applications. The 
outcomes of the work dedicated to the segmented task are interesting 
to us, as the ‘‘continuous’’ and ‘‘segmented’’ tasks are obviously linked. 
We can take the best methods for segmented gesture classification 
and use them for the continuous task by adding a sliding windows 
approach (Dietterich, 2002) or a gesture segmentation module. This 
procedure, however, is not straightforward. The training approach must 
be specifically designed for the continuous task, independently of the 
testing approach, as the non-gesture sequences interleave the gestures’ 
data with non-meaningful hand movements that may be highly variable 
and present significant differences in training and test data. The specific 
training procedures must cope with a considerable class imbalance 
(non-gesture is more represented). The false positives issue needs to be 
addressed with care. It is impossible to understand the performances of 
the classifiers in a realistic continuous setting based on the classification 
results using the segmented benchmarks.

Adapting classifiers created for segmented tasks to a continuous set-
ting has been proposed in Cunico et al. (2023). Using a sliding windows 
approach, the authors adapted the best methods on the DHG14-28 and 
SHREC’17 benchmarks for working online on the SHREC’22 task. They 
had to retrain the networks on fixed-length windows, including a non-
gesture class. Other efforts of this kind could be beneficial in developing 
better recognizers.
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5.3. Future research directions

The analysis of benchmarks and results suggests some possible 
research directions for future work aimed at focusing on relevant 
problems and improving the quality of the detection results.

• Novel gesture recognition benchmarks are needed, but their 
creation should follow specific guidelines. Large numbers of sub-
jects should be involved, covering different user categories, and 
related metadata should be collected. Multimodal capture could 
help to analyze how much the results depend on input data acqui-
sition and pre-processing quality. The robustness of the methods 
against user diversity should be tested. Basic research on algo-
rithms should be brought closer to the problems of application 
domains by creating specific benchmarks for them.

• The evaluation should be standardized or, at least, specified 
for each application task in a way accepted by the scientific com-
munity. An effort to reduce the fragmentation of the community 
working on this topic would be desirable. We recommend the use 
of four primary metrics: TPR (events recognized by a method), 
FPR (events predicted poorly), classification time (to understand 
the speed of method execution), and, finally, temporal delay (to 
understand how fast an event is recognized). Once evaluation 
metrics are unified, one could compare the same method on 
multiple datasets by understanding how to improve it and the real 
difficulties of those benchmarks.

• Optimization of gesture dictionaries could be another goal of 
the evaluation. A possible idea could be to develop evaluation 
benchmarks/metrics for gesture dictionary usability and also for 
interactive gestural interface design.

• The quality of the hand tracking in skeleton-based classification 
should be assessed to separate the errors due to bad tracking from 
the actual gesture classification errors.

• A careful comparison of the different continuous recogni-
tion approaches (two modules, sliding windows trained with 
fixed duration subparts, sliding windows trained with segmented/
resampled gestures, recurrent networks) should be performed 
on different kinds of datasets to understand better their advan-
tages/disadvantages All the methods recently proposed for the 
segmented task should be evaluated on continuous bench-
marks, considering the related metrics. New research should 
focus more on solving the issues related to training and testing for 
online detection rather than on trying small changes in network 
architectures to solve the segmented task on old benchmarks.

• In the case of heterogeneous gestures, specialized classifiers for 
different gesture types included in the dataset could be consid-
ered.

• New augmentation methods should be proposed, especially 
for the non-gesture movements, considering the biomechanical 
constraints.

6. Conclusion

In this study, we systematically surveyed the literature for con-
tinuous hand and upper body gesture recognition benchmarks and 
the methods providing the best performances on them. Our survey 
identified 12 continuous gesture recognition benchmarks published up 
to January 2024. For the best methods, we collected a total of 27 
methods across the benchmarks. In our work, we dedicated special 
attention to the evaluation metrics proposed in the literature for the 
continuous recognition task, providing a taxonomy for them and dis-
cussing their critical aspects. It is evident, from our findings, that there 
are few benchmarks, with a number of them being recent and used in 
a low number of research works, often affected by relevant issues, as 
they are evaluated without using event-based metrics or they include 
datasets collected on a few subjects. Our analysis allows us to point out 
17
the specificity of the continuous recognition task and to compare the 
approaches recently proposed to deal with it.

Researchers who are new to the field can use this survey as a guide 
to becoming familiar with the terms, data types, evaluation metrics, 
methods, and benchmarks, but this work is not just limited to the new 
researchers. It also serves any researcher in academia and industry as 
it can suggest topics for new work and provide helpful guidance to 
interaction designers.
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